Controllability of linear parabolic systems: New phenomena

Manuel González-Burgos, UNIVERSIDAD DE SEVILLA, In collaboration with **A. Benabdallah** et al.

Contrôle des EDP et Applications, Marseille, 9-13 November 2015.

GOAL:

The general aim of this talk is to show some phenomenona which arise when we deal with the null controllability properties of **coupled parabolic** systems:

- First phenomenon: Boundary controllability is not equivalent to distributed controllability for coupled parabolic systems.
- Second phenomenon: The null controllability properties are not equivalent to the approximated controllability of these problems.
- Third phenomenon: Minimal time of controllability. The null controllability only holds if is *T* is large enough.
- Fourth phenomenon: The null controllability of parabolic system depends on the position of the control open set.

伺下 イヨト イヨト

2) First phenomenon: Boundary and distributed controllability

3 Second phenomenon: Approximate and null controllability

Third phenomenon: Minimal time of controllability

5 Fourth phenomenon: Dependence on the position of the control set

伺 ト イ ヨ ト イ ヨ

M. González-Burgos Controllability of linear parabolic systems: New phenomena

伺下 イヨト イヨト

Let us fix T > 0, $\Omega \subset \mathbb{R}^N$, a regular bounded domain, $\omega \subset \Omega$, an open subset, and $\gamma \subset \partial \Omega$, a relative open subset. We consider the scalar parabolic problem:

(1)

$$y_t - \Delta y = u \mathbf{1}_{\omega} \quad \text{in } Q := \Omega \times (0, T),$$

$$y = 0 \qquad \text{on } \Sigma := \partial \Omega \times (0, T),$$

$$y(\cdot, 0) = y_0 \qquad \text{in } \Omega,$$

(2)
$$\begin{cases} y_t - \Delta y = 0 & \text{in } Q, \\ y = \mathbf{v} \mathbf{1}_{\gamma} & \text{on } \Sigma, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

In (1) and (2), 1_{ω} and 1_{γ} are, resp., the characteristic functions of the sets ω and γ , y(x,t) is the state, $y_0 \in L^2(\Omega)$ (or $y_0 \in H^{-1}(\Omega)$) is the initial datum and $\nu \in L^2(\Sigma)$ and $u \in L^2(Q)$ are scalar control functions.

Remark

We have two different concepts of controllability in the parabolic framework:

- Approximate controllability.
- **2** Exact controllability to zero.

And two different ways of acting on the system:

- **Distributed controls**.
- **O Boundary controls.**

Theorem (Approximate controllability)

Assume Ω , ω , γ and T as before. Then,

System (1) is approximately controllable at time T (distributed case).

System (2) is approximately controllable at time T (boundary case).

Theorem (Null controllability)

Assume Ω , ω , γ and T as before. Then,

System (1) is exactly controllable to zero at time T (distributed case).

System (2) is exactly controllable to zero at time T (boundary case).

[Lebeau-Robbiano] (1996), [Fursikov-Imanuvilov] (1996),

4 E N 4 E N 4 E N 4 E N

Remark

The previous results are valid for any Ω , ω , γ and T > 0.

Scalar systems: Summary

- The same positive results for the **distributed** and **boundary control** problems.
- On the same positive results for the approximate and null controllability problems.
- The positive results are valid for any time T > 0 (no minimal time for controlling).
- The controllability results do not depend on the position of ω and γ (no geometrical conditions).

伺下 イヨト イヨト

Non-scalar systems

Are this properties valid in the case of **non-scalar parabolic systems**?

OBJECTIVE

Analyze the controllability properties of **non-scalar parabolic systems** in the case of distributed and boundary controls. To this end, we will consider simple systems (2×2 **parabolic linear systems**).

IMPORTANT

We have systems of two coupled heat equations and we want to control these systems (two states) only acting on the second equation.

イロト イポト イヨト イヨト

2. First phenomenon: Boundary and distributed controllability

M. González-Burgos Controllability of linear parabolic systems: New phenomena

2.1 Distributed null controllability of a linear reaction-diffusion system

Let us consider the 2×2 linear reaction-diffusion system

3)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = Bu 1_{\omega} & \text{in } Q = (0, \pi) \times (0, T), \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Here $\omega = (a, b) \subset (0, \pi), T > 0, y_0 \in L^2((0, \pi); \mathbb{R}^2), u \in L^2(Q)$ and

$$\mathbf{D} = \begin{pmatrix} \mathbf{d}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{d}_2 \end{pmatrix}, \quad \mathbf{d}_1, \mathbf{d}_2 > \mathbf{0}, \quad \mathbf{A}_1 = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}.$$

2.1 Distributed null controllability of a linear reaction-diffusion system

Let us consider the 2×2 linear reaction-diffusion system

(3)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = Bu 1_{\omega} & \text{in } Q = (0, \pi) \times (0, T), \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Here $\omega = (a, b) \subset (0, \pi), T > 0, y_0 \in L^2((0, \pi); \mathbb{R}^2), u \in L^2(Q)$ and

$$\mathbf{D} = \begin{pmatrix} \mathbf{d}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{d}_2 \end{pmatrix}, \quad \mathbf{d}_1, \mathbf{d}_2 > \mathbf{0}, \quad \mathbf{A}_1 = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}.$$

One has

Theorem

System (3) is exactly controllable to trajectories at time T if and only if

$$\det\left[\underline{B}, A_1\underline{B}\right] \neq 0 \Longleftrightarrow a_{12} \neq 0.$$

2.1 Distributed null controllability of a linear reaction-diffusion system

Proof: \implies : If $a_{12} = 0$, then y_1 is independent of u.

 \leftarrow : The controllability result for system (3) is equivalent to the observability inequality: $\exists C > 0$ such that

$$\|\varphi_1(\cdot,0)\|_{L^2}^2 + \|\varphi_2(\cdot,0)\|_{L^2}^2 \le C \iint_{\omega \times (0,T)} |\varphi_2(x,t)|^2 \, dx \, dt,$$

where φ is the solution associated to $\varphi_0 \in L^2(\Omega; \mathbb{R}^2)$ of the adjoint problem:

(4)
$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + A_1^*\varphi = 0 & \text{in } Q, \\ \varphi = 0 \text{ on } \Sigma, \quad \varphi(\cdot, T) = \varphi_0 & \text{in } \Omega. \end{cases}$$

It is a consequence of well-known global Carleman estimates for parabolic equations.

2. First phenomenon 2.1 Distributed null controllability of a linear reaction-diffusion system

Using some appropriate global Carleman inequalities for the adjoint problem (4), we get

$$\mathcal{I}(\varphi_1) + \mathcal{I}(\varphi_2) \leq \frac{C_1 s^3}{\int \int_{\omega_0 \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-3} \left(|\varphi_1|^2 + |\varphi_2|^2 \right),$$

 $\forall s \ge s_1 = \sigma_1(\Omega, \omega_0)(T + T^2).$

伺い イヨト イヨト

2. First phenomenon 2.1 Distributed null controllability of a linear reaction-diffusion system

Using some appropriate global Carleman inequalities for the adjoint problem (4), we get

$$\mathcal{I}(\varphi_1) + \mathcal{I}(\varphi_2) \leq \mathbf{C}_1 s^3 \iint_{\omega_0 \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-3} \left(|\varphi_1|^2 + |\varphi_2|^2 \right),$$

$$\forall s \geq s_1 = \sigma_1(\Omega, \omega_0)(T + T^2).$$

We now use the second equation in (4), $a_{12}\varphi_1 = \varphi_{2,t} + a_2\varphi_{2,xx} - a_{22}\varphi_2$, to prove ($\varepsilon > 0$):

$$s^{3} \iint_{\omega_{0}\times(0,T)} e^{-2s\alpha} [t(T-t)]^{-3} |\varphi_{1}|^{2} \leq \varepsilon \mathcal{I}(\varphi_{1})$$

+
$$\frac{C_{2}}{\varepsilon} s^{7} \iint_{\omega\times(0,T)} e^{-2s\alpha} [t(T-t)]^{-7} |\varphi_{2}|^{2}.$$

 $\forall s \ge s_1 = \sigma_1(\Omega, \omega_0)(T + T^2).$

伺い イヨト イヨト

2.1 Distributed null controllability of a linear reaction-diffusion system

From the two previous inequalities (global Carleman estimate)

$$\mathcal{I}(\varphi_1) + \mathcal{I}(\varphi_2) \leq \frac{C_2 s^7}{\int \int_{\omega \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-7} |\varphi_2|^2},$$

 $\forall s \geq s_1 = \sigma_1(\Omega, \omega_0)(T + T^2)$. Combining this inequality and energy estimates for system (4) we deduce the desired observability inequality.

2.1 Distributed null controllability of a linear reaction-diffusion system

$$\begin{cases} y_t - Dy_{xx} + A_1 y = Bu 1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Remark

- System (3) is always controllable if we exert a control in each equation (two controls). Important: Two equations and D is a diagonal matrix.
- The controllability result for system (3) is independent of the diffusion matrix *D*. This positive controllability result is also valid in the *N*-dimensional case.
- The same result can be obtained for the approximate controllability at time T. Therefore, *approximate* and *null controllability* are equivalent concepts.

2.1 Distributed null controllability of a linear reaction-diffusion system

References

- DE TERESA, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations 25 (2000).
- AMMAR KHODJA, BENABDALLAH, DUPAIX, KOSTIN, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim. 42 (2003).
- G.-B., PÉREZ-GARCÍA, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal. 46 (2006).
- G.-B., DE TERESA, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math. 67 (2010).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2.2 Boundary null controllability of a linear reaction-diffusion system

(5)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$A_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\nu \in L^2(0,T)$: scalar control.

伺下 (日下)(日

2.2 Boundary null controllability of a linear reaction-diffusion system

(5)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$A_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\nu \in L^2(0,T)$: scalar control.

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010))

Assume $d_1 = d_2 > 0$. Assume μ_1, μ_2 are the eigenvalues of A_1 . Then system (5) is null controllable at time T if and only $det [B, A_1B] = a_{12} \neq 0$ and

$$\mu_1 - \mu_2 \neq j^2 - k^2 \quad \forall k, j \in \mathbb{N} \text{ with } k \neq j.$$

• FERNÁNDEZ-CARA, G.-B., DE TERESA, Boundary controllability of parabolic coupled equations, J. Funct. Anal. 259 (2010).

2.2 Boundary null controllability of a linear reaction-diffusion system

$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

First phenomenon

The boundary and distributed controllability properties of the system

$$y_t - \mathbf{D}y_{xx} + \mathbf{A}_1 y$$

are different and not equivalent.

• AMMAR KHODJA, BENABDALLAH, G.-B., DE TERESA, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl. (2011).

2.2 Boundary null controllability of a linear reaction-diffusion system

$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Remark

The same result can be obtained for the approximate controllability at time T. Therefore, approximate and null controllability are equivalent concepts.

伺 ト イ ヨ ト イ ヨ

M. González-Burgos Controllability of linear parabolic systems: New phenomena

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$D = \operatorname{diag}(d_1, d_2), A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

We will assume that $d_1 \neq d_2$ and, for instance, $d_1 = 1$, $d_2 = d \neq 1$.

GOAL

(6)

Given
$$T > 0$$
, does there exist $v \in L^2(0, T)$ s.t. $y(T) = 0$?

Remark

Recall that the parabolic system $y_t - Dy_{xx} + A_0y = u\mathbf{1}_{\omega}$ is approximate and null controllable at time T for any T > 0.

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability:

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010)) Assume $d \neq 1$. Then system (6) is approximately controllable at time T > 0 if and only if $\sqrt{d} \notin \mathbb{Q}$.

$$\mathbf{D} = \left(\begin{array}{cc} 1 & 0 \\ 0 & d \end{array}\right), \quad \mathbf{d} \neq 1.$$

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability:

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010)) Assume $d \neq 1$. Then system (6) is approximately controllable at time T > 0 if and only if $\sqrt{d} \notin \mathbb{Q}$.

Is this problem null controllable at a given time T > 0 when $\sqrt{d} \notin \mathbb{Q}$??? No:

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Theorem (Luca, de Teresa, (2012))

There exists d > 0 with $\sqrt{d} \notin \mathbb{Q}$ such that system (6) is not null controllable at any time T > 0.

• LUCA, DE TERESA, Control of coupled parabolic systems and Diophantine approximations, SeMA J. 61 (2013).

Second phenomenon

For system (6): Approximate controllability () null controllability.

ヘロト ヘ戸 ト ヘ ヨ ト ヘ ヨ

4. Third phenomenon: Minimal time of controllability

M. González-Burgos Controllability of linear parabolic systems: New phenomena

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$D = \text{diag}(1, d), A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Assumption

In the sequel,
$$\boxed{D = \text{diag}(1, d)}$$
 with $\boxed{d \neq 1}$ and $\sqrt{d} \notin \mathbb{Q}$

Goal

(6)

Analyze the null controllability properties at time T > 0 of system (6).

イロト イポト イヨト イヨト

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Let φ be a solution of the adjoint problem:

(6)

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^*\varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \\ \varphi(\cdot, T) = \varphi_0 \in H_0^1(0, \pi)^2 & \text{in } (0, \pi). \end{cases}$$

If *y* is a solution of the direct problem, then

$$\langle y(T), \varphi_0 \rangle - \langle y_0, \varphi(0) \rangle = \int_0^T v(t) B^* D \varphi_x(0, t) dt$$

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Let φ be a solution of the adjoint problem:

(6)

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^*\varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \\ \varphi(\cdot, T) = \varphi_0 \in H_0^1(0, \pi)^2 & \text{in } (0, \pi). \end{cases}$$

If *y* is a solution of the direct problem, then

$$\langle y(T),\varphi_0\rangle - \langle y_0,\varphi(0)\rangle = \int_0^T v(t)B^*D\varphi_x(0,t)\,dt$$

Thus
$$y(T) = 0 \iff \exists \mathbf{v} \in L^2(0, T)$$
 such that
$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0, t) \, dt = -\langle y_0, \varphi(0) \rangle, \quad \forall \varphi_0 \in H_0^1(0, \pi)^2$$

Fattorini-Russell Method

M. González-Burgos Controllability of linear parabolic systems: New phenomena

通とくほとくほど

э

Fattorini-Russell Method

•
$$\sigma(-D\partial_{xx}^2 + A_0^*) = \bigcup_{k\geq 1} \{k^2, dk^2\} := \bigcup_{k\geq 1} \{\lambda_{k,1}, \lambda_{k,2}\}.$$

• { $\Phi_{k,i}$ } a (Riesz) basis of $H_0^1(0, \pi)^2$, where $\Phi_{k,i} = V_{k,i} \sin kx$, i = 1, 2 are eigenfunctions of the operator $-D\partial_{xx}^2 + A_0^*$].

• $V_{k,1}$ and $V_{k,2}$: eigenvectors of the matrix $k^2 D + A_0^*$ associated to the eigenvalues k^2 , dk^2 .

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Objective: Existence of $v \in L^2(0, T)$ s.t.

(6)

$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0,t) \, dt = -\langle y_0, \varphi(0) \rangle \,, \quad \forall \varphi_0 \in H_0^1(0,\pi)^2$$

通りくほりくほう

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Objective: Existence of $v \in L^2(0, T)$ s.t.

(6)

$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0,t) \, dt = -\langle y_0, \varphi(0) \rangle \,, \quad \forall \varphi_0 \in H_0^1(0,\pi)^2$$

• Choosing $\varphi_0 = \Phi_{k,i}$, we have $\varphi(\cdot, t) = e^{-\lambda_{k,i}(T-t)} \Phi_{k,i}$ and

$$\varphi(x,0) = e^{-\lambda_{k,i}T} \Phi_{k,i}(x), \quad \varphi_x(0,t) = k e^{-\lambda_{k,i}(T-t)} V_{k,i}$$

• The identity connecting y and φ writes (moment problem)

$$kB^*DV_{k,i}\int_0^T v(T-t)e^{-\lambda_{k,i}t}\,dt = -e^{-\lambda_{k,i}T}\left\langle y_0, \Phi_{k,i}\right\rangle, \quad \forall (k,i)$$

6)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (I)

•
$$\boxed{kB^*DV_{k,i}} \int_0^T v(T-t)e^{-\lambda_{k,i}t} dt = -e^{-\lambda_{k,i}T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

伺 ト く ヨ ト く ヨ ト

5)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (I)

•
$$\boxed{kB^*DV_{k,i}} \int_0^T v(T-t)e^{-\lambda_{k,i}t} dt = -e^{-\lambda_{k,i}T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

• A necessary condition: $B^*DV_{k,i} \neq 0$ for all $k \ge 1, i = 1, 2$

• Recall $d \neq 1$,

$$\boldsymbol{B}^* = (0,1), \quad \boldsymbol{V}_{k,1} = \begin{pmatrix} 1\\ \frac{1}{(d-1)k^2} \end{pmatrix}, \quad \boldsymbol{V}_{k,2} = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad \forall k \ge 1.$$

So, here $B^*DV_{k,i} \neq 0$, $\forall k \ge 1, i = 1, 2$ (algebraic Kalman condition)

(6)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (II)

$$\lambda_{k,1} = \lambda_{j,2} = \lambda \Rightarrow \begin{cases} kB^* DV_{k,1} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{k,1} \rangle \\ jB^* DV_{j,2} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{j,2} \rangle \end{cases}$$

So it is necessary to have $\lambda_{k,1} \neq \lambda_{j,2}$. This leads to

$$k^2 \neq dj^2, \quad \forall k \neq j \ge 1 \iff \sqrt{d} \notin \mathbb{Q}$$

伺 ト イ ヨ ト イ ヨ

(6)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (II)

$$\lambda_{k,1} = \lambda_{j,2} = \lambda \Rightarrow \begin{cases} kB^* DV_{k,1} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{k,1} \rangle \\ jB^* DV_{j,2} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{j,2} \rangle \end{cases}$$

So it is necessary to have $\lambda_{k,1} \neq \lambda_{j,2}$. This leads to

$$k^2 \neq dj^2, \quad \forall k \neq j \ge 1 \iff \sqrt{d} \notin \mathbb{Q}$$

In the sequel, we will assume $\sqrt{d} \notin \mathbb{Q}$, i.e., the eigenvalues of $-D\partial_{xx}^2 + A_0^*$ with Dirichlet boundary conditions are pairwise distinct.

(6)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$kB^*DV_{k,i}\int_0^T v(T-t)e^{-\lambda_{k,i}t}\,dt = -e^{-\lambda_{k,i}T}\left\langle y_0, \Phi_{k,i}\right\rangle, \quad \forall (k,i)$$

Summarizing

Let
$$m_{k,i} = -\langle y_0, \Phi_{k,i} \rangle$$
, $b_{k,i} = kB^* DV_{k,i}$ (for any $\varepsilon > 0$, $||m_{k,i}| \le C_{\varepsilon} e^{\varepsilon \lambda_{k,i}}|$ and
 $|b_{k,i}| \ge C_{\varepsilon} e^{-\varepsilon \lambda_{k,i}}|$),
 $\exists ? \mathbf{v} \in L^2(0,T) : \int_0^T \mathbf{v} (T-t) e^{-\lambda_{k,i}t} dt = \frac{m_{k,i}}{b_{k,i}} e^{-\lambda_{k,i}T}, \quad \forall k \ge 1, \ i = 1, 2$

э

伺下 (日下)(日

 $\mathbf{b}_{k,i}$

The moment problem: Abstract setting

Let $\Lambda = {\Lambda_k}_{k\geq 1} \subset (0,\infty)$ be a sequence with **pairwise distinct elements**:

$$\sum_{k\geq 1}\frac{1}{\Lambda_k}<\infty$$

Goal: Given
$$\{m_k\}_{k\geq 1}, \{b_k\}_{k\geq 1} \subset \mathbb{R}$$
 satisfying $|m_k| \leq C_{\varepsilon} e^{\varepsilon \Lambda_k}$ and
 $|b_k| \geq C_{\varepsilon} e^{-\varepsilon \Lambda_k}$, find $v \in L^2(0,T)$ s.t.
 $\int_0^T v(T-t)e^{-\Lambda_k t} dt = \frac{m_k}{b_k}e^{-\Lambda_k T}, \quad \forall k \geq 1.$

伺 ト く ヨ ト く ヨ ト

The moment problem: Abstract setting

Recall that the assumption

$$\sum_{k\geq 1}\frac{1}{\Lambda_k}<\infty$$

implies:

Theorem

Under the previous assumptions, $\{e^{-\Lambda_k t}\}_{k\geq 1} \subset L^2(0,T)$ admits a biorthogonal family $\{q_k\}_{k\geq 1}$ in $L^2(0,T)$, i.e.:

$$\int_0^T e^{-\mathbf{A}_k t} q_l(t) \, dt = \delta_{kl}, \quad \forall k, l \ge 1$$

• • • • • • • •

The moment problem: Abstract setting

A formal solution to

$$\int_0^T v(T-t)e^{-\Lambda_k t} dt = \frac{m_k}{b_k}e^{-\Lambda_k T}, \quad \forall k \ge 1,$$

is
$$\mathbf{v}$$
 given by: $\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\Lambda_k T} q_k(t)$

Question:
$$v \in L^2(0, T)$$
?, i.e., is the series $\sum_{k \ge 1} \frac{m_k}{b_k} e^{-\Lambda_k T} q_k(t)$ convergent in $L^2(0, T)$?

But this question itself amounts to:

$$\|\boldsymbol{q}_k\|_{L^2(0,T)} \underset{k\to\infty}{\sim}?$$

The moment problem: Abstract setting

Theorem

Assume that
$$\sum_{k\geq 1} \frac{1}{\Lambda_k} < \infty$$
 and (gap condition)

$$|\exists \rho > 0: |\Lambda_k - \Lambda_j| \ge \rho |k - j|, \quad \forall k, j$$

Then, for any $\varepsilon > 0$ *one has*

$$\|\boldsymbol{q}_k\|_{L^2(0,T)} \leq \boldsymbol{C}_{\varepsilon} e^{\varepsilon \Lambda_k}, \quad \forall k \geq 1,$$

and, for T > 0, the control $\mathbf{v}(T - t) = \sum_{k \ge 1} \frac{\mathbf{m}_k}{b_k} e^{-\mathbf{\Lambda}_k T} q_k(t) \in L^2(0, T)$.

伺い イヨト イヨト

The moment problem: Abstract setting

Theorem

Assume that
$$\sum_{k\geq 1} \frac{1}{\Lambda_k} < \infty$$
 and (gap condition)

$$|\exists \rho > 0: |\Lambda_k - \Lambda_j| \ge \rho |k - j|, \quad \forall k, j|$$

Then, for any $\varepsilon > 0$ *one has*

$$\|\boldsymbol{q}_k\|_{L^2(0,T)} \leq \boldsymbol{C}_{\varepsilon} e^{\varepsilon \boldsymbol{\Lambda}_k}, \quad \forall k \geq 1,$$

and, for T > 0, the control $\mathbf{v}(T - t) = \sum_{k \ge 1} \frac{m_k}{b_k} e^{-\Lambda_k T} q_k(t) \in L^2(0, T)$.

Recall that in our case $\Lambda = {\Lambda_k}_{k\geq 1} = {j^2, dj^2}_{j\geq 1}$, and the property

$$\exists
ho > 0: |\Lambda_k - \Lambda_j| \ge
ho |k - j|, \quad \forall k, j|,$$

does not hold.

The moment problem: Abstract setting

How does this fact affect our problem??

Theorem

Assume
$$\left|\sum_{k\geq 1} \frac{1}{|\Lambda_k|} < \infty\right|$$
. Then, for any $\varepsilon > 0$ one has

$$C_{1,\varepsilon}\frac{e^{-\varepsilon\Lambda_k}}{|W'(\Lambda_k)|} \le \|q_k\|_{L^2(0,T)} \le C_{2,\varepsilon}\frac{e^{\varepsilon\Lambda_k}}{|W'(\Lambda_k)|}, \quad \forall k \ge 1.$$

where W(z) is the Blaschke product:

$$W(z) = \prod_{k=1}^{\infty} \frac{1 - z/\Lambda_k}{1 + z/\Lambda_k}, \quad W'(\Lambda_k) = -\frac{1}{2\Lambda_k} \prod_{j \neq k}^{\infty} \frac{1 - \Lambda_k/\Lambda_j}{1 + \Lambda_k/\Lambda_j}$$

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

The moment problem: Abstract setting

Definition

The condensation index of $\Lambda = {\Lambda_k}_{k\geq 1} \subset \mathbb{C}$ is:

$$c(\Lambda) = \limsup_{k \to \infty} \frac{-\log |W'(\Lambda_k)|}{\Re(\Lambda_k)} \in [0, +\infty].$$

Corollary

For any $\varepsilon > 0$ one has

$$\|q_k\|_{L^2(0,T)} \leq C_{\varepsilon} e^{(c(\Lambda)+\varepsilon)\Lambda_k}, \quad \forall k \geq 1.$$

イロト イポト イヨト イヨト

э

The moment problem: Abstract setting

Recall that we had m_k s.t. $|m_k| \le C_{\varepsilon} e^{\varepsilon \Lambda_k}$, $|b_k| \ge C_{\varepsilon} e^{-\varepsilon \Lambda_k}$, for any $\varepsilon > 0$, and we wanted to solve: $v \in L^2(0, T)$ and

$$\int_0^T \mathbf{v}(T-t) e^{-\mathbf{\Lambda}_k t} \, dt = \frac{\mathbf{m}_k}{\mathbf{b}_k} e^{-\mathbf{\Lambda}_k T}, \quad \forall k$$

We took
$$v(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\Lambda_k T} q_k(t).$$

The moment problem: Abstract setting

Recall that we had m_k s.t. $|m_k| \le C_{\varepsilon} e^{\varepsilon \Lambda_k}$, $|b_k| \ge C_{\varepsilon} e^{-\varepsilon \Lambda_k}$, for any $\varepsilon > 0$, and we wanted to solve: $v \in L^2(0, T)$ and

$$\int_0^T v(T-t)e^{-\Lambda_k t} dt = \frac{m_k}{b_k}e^{-\Lambda_k T}, \quad \forall k$$

We took
$$v(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\Lambda_k T} q_k(t).$$

From the previous result: Given $\varepsilon > 0$:

$$\left|rac{m_k}{b_k}
ight|e^{-\Lambda_k T}\left\|q_k
ight\|_{L^2(0,T)}\leq C_arepsilon e^{-\Lambda_k (T-c(\Lambda)-arepsilon))}$$

Then

$$T > c(\Lambda) \Longrightarrow v(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\Lambda_k T} q_k(t) \in L^2(0,T).$$

(6)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

In our case,

$$\Lambda_d := \{\Lambda_k\}_{k\geq 1} = \{j^2, dj^2\}_{j\geq 1}.$$

Then

If $T > c(\Lambda_d)$, system (6) is null controllable at time *T*, where $c(\Lambda_d)$ is the **condensation index** of the sequence Λ_d .

4. Third phenomenon: Minimal time The controllability result

(6)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$D = \text{diag}(1, d), \quad \Lambda_d = \{k^2, dk^2\}_{k \ge 1}, \quad \sqrt{d} \notin \mathbb{Q}$$

We have proved:

Theorem

There exists $T_0 = c(\Lambda_d) \in [0, +\infty]$ *such that if* $T > T_0$ *then system* (6) *is null controllable at time T*

▶ < E > < E</p>

4. Third phenomenon: Minimal time The controllability result

(6)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$D = \operatorname{diag}(1, d), \quad \Lambda_d = \{k^2, dk^2\}_{k \ge 1}, \quad \sqrt{d} \notin \mathbb{Q}.$$

We have proved:

Theorem

There exists $T_0 = c(\Lambda_d) \in [0, +\infty]$ *such that if* $T > T_0$ *then system* (6) *is null controllable at time T*

 $T > c(\Lambda_d)$ is a sufficient condition for the null controllability of system (6) at time *T*. But,

what happens if
$$T < c(\Lambda_d)$$
?

M. González-Burgos Controllability of linear parabolic systems: New phenomena

The non-controllability result

One can prove:

Theorem

Let us take

$$T_0 = \boldsymbol{c}(\boldsymbol{\Lambda_d}) \in [0, +\infty]$$
.

Then, if $T < T_0$, *system* (6) *is not null controllable at time T*.

Idea of the proof

By contradiction:

• The null controllability at time T is equivalent to: $\exists C_T > 0$ s.t.

$$\sum_{n,i} e^{-2\lambda_{n,i}T} |a_{n,i}|^2 \leq C_T \int_0^T \left| \sum_{n,i} nB^* DV_{n,i} e^{-\lambda_{n,i}t} a_{n,i} \right|^2 dt, \ \forall \{a_{n,i}\}_{n,i} \in \ell^2.$$

• Argument: Use the overconvergence of Dirichlet series.

4. Third phenomenon: Minimal time The controllability result

(6)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The controllability result

• $\forall T > 0$: Approximate controllability at time *T* if and only if $\sqrt{d} \notin \mathbb{Q}$.

2 Assume $\sqrt{d} \notin \mathbb{Q}$, $\exists T_0 = c(\Lambda_d) \in [0, +\infty]$ such that

• the system is null controllable at time T if $T > T_0$

② Even if $\sqrt{d} \notin \mathbb{Q}$, if $T < T_0$ the system is **not null controllable** at time *T*!

伺下 イヨト イヨト

4. Third phenomenon: Minimal time The controllability result

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

In fact, the good minimal time is

$$T_0 = \limsup_{k \to \infty} \frac{-\left(\log |\boldsymbol{b}_k| + \log |W'(\boldsymbol{\Lambda}_k)|\right)}{\Re(\boldsymbol{\Lambda}_k)} \in [0,\infty]$$

(6)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$T_0 > 0?$

Is it possible to have a minimal time of control > 0? I.e., for $\Lambda_d = \{k^2, dk^2\}_{k \ge 1}$ with $\sqrt{d} \notin \mathbb{Q}$, is it possible that $c(\Lambda_d) > 0$?

• • • • • • • •

(6)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$T_0 > 0?$

Is it possible to have a minimal time of control > 0? I.e., for $\Lambda_d = \{k^2, dk^2\}_{k \ge 1}$ with $\sqrt{d} \notin \mathbb{Q}$, is it possible that $c(\Lambda_d) > 0$?

Theorem

For any
$$\tau \in [0, +\infty]$$
, there exists $\sqrt{d} \notin \mathbb{Q}$ such that $c(\Lambda_d) = \tau$.

Remark

- There exists $\sqrt{d} \notin \mathbb{Q}$ such that $c(\Lambda_d) = +\infty$ (LUCA, DE TERESA).
- $c(\Lambda_d) = 0$ for almost $d \in (0, \infty)$ such that $\sqrt{d} \notin \mathbb{Q}$.
- For any $\tau \in [0, +\infty]$, the set $\{d \in (0, \infty) : c(\Lambda_d) = \tau\}$ is dense in $(0, +\infty)$.

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$D = \text{diag}(1, d), A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Third phenomenon

(6)

For system (6): If $\sqrt{d} \notin \mathbb{Q}$, then,

- Approximate controllability: System (6) is approximately controllable at any time T > 0.
- **2** Null controllability: System (6) is null controllable is $T > T_0 = c(\Lambda_d)$ and is not if $T < T_0 = c(\Lambda_d)$.

伺 ト イ ヨ ト イ ヨ

Remark

This minimal time also arises in other parabolic problems (degenerated problems):

BEAUCHARD, CANNARSA, GUGLIELMI, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. (JEMS) (2014). BEAUCHARD, MILLER, MORANCEY, 2d Grushin-type equations: Minimal time and null controllable data, J. Differential Equations 259 (2015), no. 11

Reference

F. AMMAR KHODJA, A. BENABDALLAH, M.G.-B., L. DE TERESA, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal. **267** (2014).

http://personal.us.es/manoloburgos

イロト イ押ト イヨト イヨト

5. Fourth phenomenon: Dependence on the position of the control set

M. González-Burgos Controllability of linear parabolic systems: New phenomena

Let us fix T > 0 and $\omega = (a, b) \subset (0, \pi)$. We consider the coupled parabolic systems:

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu \mathbf{1}_{\omega} & \text{in } Q := (0, \pi) \times (0, T), \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

(7)

In (7), 1_{ω} is the characteristic function of the set ω , y(x, t) is the state, $y_0 \in L^2(0, \pi; \mathbb{R}^2)$ is the initial datum and

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Remark

If $q \in L^{\infty}(0, \pi)$ satisfies: There exist an open subset $\omega_0 \subseteq \omega$ and a constant $\delta > 0$ s.t.

$$\left| q \geq \delta > 0 \text{ a.e. } \omega_0 \right| \quad \text{or} \quad \left| q \leq -\delta < 0 \text{ a.e. } \omega_0 \right|$$

 $(\Longrightarrow [\operatorname{Supp} q \cap \omega \neq \emptyset])$, then it is possible to repeat the arguments of section 2 and prove:

Theorem

Under the previous assumption, system (7) is approximately and exactly controllable to zero at any time T > 0.

Let us consider the 2×2 linear reaction-diffusion system

$$\begin{cases} y_t - y_{xx} + q(x)A_0 y = Bu \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

where $q \in L^{\infty}(Q)$, $y_0 \in L^2(0, \pi; \mathbb{R}^2)$,

(7)

$$A_0 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 0 \\ 1 \end{array}\right),$$

 $\omega = (a, b) \subset (0, \pi)$ and $u \in L^2(Q)$ is a scalar control function.

Let us consider the 2×2 linear reaction-diffusion system

$$\begin{cases} y_t - y_{xx} + q(x)A_0 y = Bu 1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

where $q \in L^{\infty}(Q)$, $y_0 \in L^2(0, \pi; \mathbb{R}^2)$,

(7)

$$A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

 $\omega = (a, b) \subset (0, \pi)$ and $u \in L^2(Q)$ is a scalar control function.

No sign conditions on *q*.

 $\omega \cap \operatorname{Supp} q = \emptyset$

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Theorem (Ammar Khodja, Benabdallah, G-B, de Teresa (2011))

Assume $I_k(q) \neq 0$ for any $k \geq 1$, where

(8)
$$I_k(q) := \int_0^\pi q(x) |\sin(kx)|^2 dx,$$

and

$$\int_0^\pi q(x)\,dx\neq 0.$$

Then, for any T > 0, system (7) is **null controllable** at time T.

伺 ト イ ヨ ト イ ヨ

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Null controllability properties of system (7) when

$$\int_0^\pi q(x)\,dx = 0?$$

In order to simplify the problem, we will assume the **geometrical** assumption:

Assumption (A1)

(7)

The function q satisfies Supp $q \in [0, a]$ or Supp $q \in [b, \pi]$ ($\omega = (a, b)$).

4 日 ト 4 冊 ト 4 画 ト 4 画 ト

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Proposition (Boyer and Olive (2014))

Under the geometrical assumption (A1), system (7) is approximately controllable at time T > 0 if and only if

$$I_k(q) \neq 0, \quad \forall k \geq 1.$$

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Proposition (Boyer and Olive (2014))

Under the geometrical assumption (A1), system (7) is approximately controllable at time T > 0 if and only if

$$I_k(q) \neq 0, \quad \forall k \ge 1.$$

Remarks

The approximate controllability of system (7) does not depend on T.

Again, condition

$$I_k(q) \neq 0, \quad \forall k \ge 1.$$

is necessary for the null controllability of system (7) at time T > 0

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

We have a Riesz basis $\mathcal{B} := \left\{ \Phi_{k,1}^*, \Phi_{k,2}^* \right\}_{k \ge 1}$ of eigenfunctions and generalized eigenfunctions of the operator $L^* := -\frac{d^2}{dx^2} + q(x)A_0^*$ associated to the eigenvalue k^2 (simple).

Idea:

We will work with controls u(x,t) = f(x)v(t) with $v \in L^2(0,T)$ and $f \in L^2(0,\pi)$ (appropriate) satisfies Supp $f \subset \omega$.

Objective

Apply Fattorini-Russell method: moment problem

M. González-Burgos Controllability of linear parabolic systems: New phenomena

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

The moment problem

Find $\mathbf{v} \in L^2(0,T)$ s.t.

$$\begin{cases} \int_{0}^{T} \mathbf{v}(T-t) \boxed{e^{-k^{2}t}} dt = \frac{m_{k,1}}{f_{k}} e^{-k^{2}T}, \quad \forall k \ge 1, \\ \int_{0}^{T} \mathbf{v}(T-t) \boxed{t e^{-k^{2}t}} dt = \frac{m_{k,2}}{I_{k}(q)f_{k}} e^{-k^{2}T}, \quad \forall k \ge 1, \end{cases}$$

where
$$|m_{k,i}| \leq C_{\varepsilon} e^{\varepsilon \lambda_k}$$
 and $|f_k| \sim k^{-3} \geq C_{\varepsilon} e^{-\varepsilon \lambda_k}$ $(i = 1, 2)$.

▶ < E > < E</p>

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

The moment problem

Find $\mathbf{v} \in L^2(0,T)$ s.t.

$$\begin{cases} \int_{0}^{T} v(T-t)e^{-k^{2}t} dt = \frac{m_{k,1}}{f_{k}}e^{-k^{2}T}, \quad \forall k \ge 1, \\ \int_{0}^{T} v(T-t)te^{-k^{2}t} dt = \frac{m_{k,2}}{\boxed{I_{k}(q)}f_{k}}e^{-k^{2}T}, \quad \forall k \ge 1, \end{cases}$$

where
$$|\mathbf{m}_{k,i}| \leq C_{\varepsilon} e^{\varepsilon \lambda_k}$$
 and $|f_k| \sim k^{-3} \geq C_{\varepsilon} e^{-\varepsilon \lambda_k}$ $(i = 1, 2)$.

イロト 不得 とうほう うほう

æ

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Conclusion

We can obtain the positive controllability result if $T > \widetilde{T}_0(q) = \limsup \frac{-\log |I_k(q)|}{k^2}$,

Theorem

Assume $I_k(q) \neq 0$ for all $k \geq 1$. Then, if $T > \widetilde{T}_0(q)$, system (7) is null-controllable at time T.

Does the minimal time depend on the choice u(x, t) = f(x)v(t)?

What happens if $T < \widetilde{T}_0(q)$?

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

As before, the null controllability property for system (7) is equivalent to the **observability inequality**:

$$\|\varphi(\cdot,0)\|_{(L^2)^2}^2 \leq C_T \int_0^T \int_{\omega} |\varphi_2(x,t)|^2 dx dt,$$

for the solutions to the adjoint problem

$$\begin{cases} -\varphi_t - \varphi_{xx} + q(x)A_0^*\varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \end{cases}$$

ヨトイヨ

$$\|\varphi(\cdot,0)\|_{(L^2)^2}^2 \leq C_T \int_0^T \int_{\omega} |\varphi_2(x,t)|^2 dx dt,$$

If $T < \tilde{T}_0(q)$, we can prove that the inequality does not hold reasoning by contradiction: Then system

(7)
$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

is not null controllable at time T.

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

$$\boldsymbol{\omega} \cap \operatorname{Supp} \boldsymbol{q} = \emptyset$$

Theorem

Assume $I_k(q) \neq 0$ for all $k \geq 1$ and let:

$$\widetilde{T}_0(q) := \limsup rac{-\log |I_k(q)|}{k^2} \in [0, +\infty]$$

Then,

- If $T > \widetilde{T}_0(q)$, then system (7) is null-controllable at time T.
- **②** *If* Supp *q* ⊂ [0, *a*] *or* Supp *q* ⊂ [*b*, π], *for any T* < $\widetilde{T}_0(q)$, *the system is not null-controllable at time T*.

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Remarks

- The previous results cannot be obtained using Carleman inequalities.
- 2 Due to the geometrical assumption

The function q satisfies $\operatorname{Supp} q \subset [0, a]$ or $\operatorname{Supp} q \subset [b, \pi]$ ($\omega = (a, b)$)

the boundary and distributed null controllability results coincide.

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

General case

$$\boldsymbol{\omega} = (a, b) \subset (0, \pi)$$
 and $\operatorname{Supp} \boldsymbol{q} \cap \boldsymbol{\omega} = \emptyset$.

The condition $I_k(q) \neq 0$ is no longer necessary:

$$I_{1,k}(q) := \int_0^a q(x) |\sin(kx)|^2 dx; \quad I_{2,k}(q) := \int_b^1 q(x) |\sin(kx)|^2 dx$$
$$I_k(q) = I_{1,k}(q) + I_{2,k}(q) = \int_0^\pi q(x) |\sin(kx)|^2 dx;$$

/□ ▶ < 글 ▶ < 글

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Proposition (Boyer and Olive (2014))

If $\omega = (a, b)$, system (7) is approximately controllable at time T > 0 if and only if $|I_k(q)| + |I_{1,k}(q)| \neq 0, \quad \forall k \ge 1.$

The proof uses the independence of the functions $\sin(kx)$ and $\cos(kx)$ in ω .

4 口 ト 4 冊 ト 4 戸 ト 4 戸 ト -

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Remarks

The approximate controllability of system (7) does not depend on T.

Again, condition

 $|\mathbf{I}_k(\mathbf{q})| + |\mathbf{I}_{1,k}(\mathbf{q})| \neq 0, \quad \forall k \ge 1.$

is necessary for the null controllability of system (7) at time T > 0.

Null controllability of system (7)???

4 E F 4 🖓 F 4 E F 4 E F

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

In this case we can have $I_k(q) = 0$, and then,

$$\boldsymbol{L} := -\frac{d^2}{dx^2} + \boldsymbol{q}(x)\boldsymbol{A}_0 : \boldsymbol{L}^2(0,\pi;\mathbb{R}^2) \longrightarrow \boldsymbol{L}^2(0,\pi;\mathbb{R}^2)$$

has eigenvalues (k^2) of multiplicity 2.

Idea

Apply Fattorini-Russell's method with control under the form:

$$u(x,t) = f_1(x)v_1(t) + f_2(t)v_2(t)$$

with $\operatorname{Supp} f_1$, $\operatorname{Supp} f_2 \subset (a, b)$

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Theorem

Let
$$\omega = (a, b) \subset (0, \pi)$$
 and $q \in L^{\infty}(Q)$ satisfying $\omega \cap \operatorname{Supp} q = \emptyset$,

$$|I_{1,k}(q)|^2 + |I_{2,k}(q)|^2 \neq 0 \ (\iff |I_{1,k}(q)|^2 + |I_k(q)|^2 \neq 0).$$

and

$$T_0(q) = \limsup \frac{\min \left[-\log |I_{1,k}(q)|, -\log |I_k(q)| \right]}{k^2}$$

Then,

If T > T₀(q), then system (7) is null-controllable at time T.
For any T < T₀(q), the system is not null-controllable at time T.

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Remark

If

$$|I_{1,k}(q)|^2 + |I_{2,k}(q)|^2 \neq 0$$

and

$$\int_0^a q(x) \, dx \neq 0 \quad \text{or} \quad \int_b^\pi q(x) \, dx \neq 0 \quad \text{or} \quad \int_0^\pi q(x) \, dx \neq 0,$$

Then $T_0(q) = 0$ (Null controllability of system (7) for every T > 0).

イロト イポト イヨト イヨト

Idea of the proof:

- The reasoning for $T < T_0(q)$ is by contradiction.
- For proving the positive controllability result for $T > T_0(q)$ we have to "mesure" the linear independence of $\boxed{B^* \Phi_{k,1}^* := \psi_k}$ and

 $\begin{bmatrix} B^* \Phi_{k,2}^* := \sin(kx) \end{bmatrix} \text{ in } \omega \ (\Phi_{k,1}^* \text{ and } \Phi_{k,2}^* \text{ are the eigenfunctions or the} \\ \text{eigenfunction and the generalized eigenfunction of } L^* := -\frac{d^2}{dx^2} + q(x)A_0^* \\ \text{associated to } k^2 \text{). Thanks to the assumption } \omega \cap \text{Supp } q = \emptyset \text{ and the} \\ \text{expression of } \psi_k \text{ in } \omega \text{ this amounts to prove} \end{cases}$

$$\det \begin{pmatrix} f_{1,k} & f_{2,k} \\ \widetilde{f}_{1,k} & \widetilde{f}_{2,k} \end{pmatrix} \ge \frac{C}{k^m} \frac{I_{1,k}(q)}{I_k(q)}, \text{ when } I_{1,k}(q) \neq 0 \text{ and } I_k(q) \neq 0$$

where C > 0, $m \ge 1$, $f_{i,k}$ is the Fourier coefficient of f_i and

$$\widetilde{f}_{i,k} = \int_0^{\pi} f_i(x)\psi_k(x)\,dx, \quad k \ge 1, \quad i = 1, 2.$$

M. González-Burgos Cor

Controllability of linear parabolic systems: New phenomena

Example

$$q(x) = \begin{cases} 1 & \text{si } x \in (a_1, a_1 + \ell) \\ -1 & \text{si } x \in (a_2, a_2 + \ell), \end{cases}$$

 $a_1 > 0, a_1 + \ell < a_2, a_2 + \ell < \pi, \ell > 0 \text{ and } \omega = (a, b).$

• $\omega \cap \operatorname{Supp} q \neq \emptyset$ or $\omega \subseteq (a_1 + \ell, a_2)$: $T_0(q) = 0$. Null controllability $\forall T > 0$.

Example

$$q(x) = \begin{cases} 1 & \text{si } x \in (a_1, a_1 + \ell) \\ -1 & \text{si } x \in (a_2, a_2 + \ell), \end{cases}$$

 $a_1 > 0, a_1 + \ell < a_2, a_2 + \ell < \pi, \ell > 0 \text{ and } \omega = (a, b).$

• $\omega \cap \operatorname{Supp} q \neq \emptyset$ or $\omega \subseteq (a_1 + \ell, a_2)$: $T_0(q) = 0$. Null controllability $\forall T > 0$.

②
$$ω = (a,b) ⊆ (0,a_1)$$
: $I_{1,k}(q) = \int_0^a q(x) dx = 0, \forall k,$

$$I_{2,k}(q) = -\frac{2}{k\pi} \sin(k(a_1 + a_2 + \ell)) \sin(k(a_2 - a_1)) \sin(k\ell)$$

Example

$$q(x) = \begin{cases} 1 & \text{si } x \in (a_1, a_1 + \ell) \\ -1 & \text{si } x \in (a_2, a_2 + \ell), \end{cases}$$

 $a_1 > 0, a_1 + \ell < a_2, a_2 + \ell < \pi, \ell > 0 \text{ and } \omega = (a, b).$

• $\omega \cap \operatorname{Supp} q \neq \emptyset$ or $\omega \subseteq (a_1 + \ell, a_2)$: $T_0(q) = 0$. Null controllability $\forall T > 0$.

②
$$ω = (a,b) ⊆ (0,a_1)$$
: $I_{1,k}(q) = \int_0^a q(x) dx = 0, \forall k,$

$$I_{2,k}(q) = -\frac{2}{k\pi} \sin(k(a_1 + a_2 + \ell)) \sin(k(a_2 - a_1)) \sin(k\ell)$$

• Aprox. Contr. $T > 0 \iff (a_1 + a_2 + \ell)/\pi, (a_2 - a_1)/\pi, \ell/\pi \notin \mathbb{Q}.$

• Given $\tau \in [0, \infty]$, $\exists a_1, a_2 \neq \ell$ satisfying the previous property s.t. $T_0(q) = \tau$. Minimal time of null controllability which could be $T_0(q) = \infty$.

(7)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Fourth phenomenon

For system (7): $\omega = (a, b) \subset (0, \pi)$ and $\omega \cap \text{Supp } q = \emptyset$, then,

- The approximate controllability is not equivalent to the null controllability.
- **2** Null controllability: The controllability result depends on the relative position of ω with respect to Supp q.

伺下 イヨト イヨト

Scalar case versus systems (parabolic problems)

SCALAR CASE SYSTEMS

boundary \Leftrightarrow distributed control	Yes	No
approximate \Leftrightarrow null controllability	Yes	No
minimal time for controling	No	Yes
geometrical conditions	No	Yes

イロト イポト イヨト イヨト

э

Thank you for your attention!!

M. González-Burgos Controllability of linear parabolic systems: New phenomena