
Generation of test cases from functional
requirements. A survey

Javier J. Gutiérrez, María J. Escalona, Manuel Mejías, Jesús Torres
Department of Computer Languages and Systems

University of Seville
{javierj, escalona, risoto, jtorres}@lsi.us.es

Abstract:
One of the major quality criteria of a software system is how well it fulfils the
needs of users or customers. One technique to verify and improve the grade of
fulfilment is system testing. System test cases might be derived from the
requirements of the system under test. This paper presents the results of a
survey among 13 approaches to drive the generation of test cases from
functional requirements.

1. Introduction
Software testing is becoming more complex day by day. This complexity
enforces using techniques and methods to assure software quality. One
of this methods is system testing. The main goal of system testing is to
verify that requirements are successfully implemented into system under
test. In order words, system testing assures that software system does
what it is expected to do.

The main artefacts to obtain system test cases are the own
requirements of the system under test [Bertolino04]. This process might
be driven by systematic methods and tools.

Since 2003, we have been studying and comparing existing
approaches to derive test cases from the functional specification of the
system under test. A preliminary abstract of our survey was presented in
SV04 [Gutierrez04]. In this paper we present a more complete survey
which validates conclusions exposed in [Gutierrez04] and extends them.

Nowadays, use cases are widely used to define functional requirements
[Escalona04], so both terms are synonymous in this paper.

This work is organized as follows. Section 2 describes already analyzed
approaches. Section 3 identifies the solved and unsolved aspects in the
process of generation of test cases. Finally, section 4 exposes
conclusions and future work.

2. State of the art
There are several approaches to derive test cases from functional
requirements when those requirements are expressed in a formal and
precise notation, like Z or algebraic specifications. However, most of the
software industry works with requirements in natural languages. Template
and tabular models, like the ones introduced by [Cockburn00] or
[Escalona04], are widely used to develop all kind of systems.

This survey is focused on approaches that start from functional
requirements expressed in natural language, generally as use cases.
Actually, we only know two reports that analyse and compare approaches
to generate system test cases from requirements. The first report
[Denger03] (called Denger from here on) analyses 12 approaches. The
second report is this survey itself (called Gutierrez from here on), which
analyzes 13 approaches (listed in table 1). Five of those approaches are
also analyzed in Denger report (Id 1, 3, 7, 8 and Category Partition in 11).
Additional approaches included in Denger report are listed in table 2.
Those approaches are quite similar to the ones in table1, so, they have
been omitted.

Id Year Title References
1 1997 Software Requirements and Acceptance Testing. [Hsia95], [Hsia97]
2 2000 Automated Test Case Generation from Dynamic Models [Fröhlich00]
3 2000 Extended Use Case Test Design Pattern [Binder00]
4 2001 Requirement Base Testing [Mogyorodi02], [Mogyorodi03]
5 2002 A UML-Based Approach to System Testing [Labiche02]
6 2002 Test Cases from Use Cases [Heumann02]
7 2002 Testing From Use Cases Using Path Analysis Technique [Naresh02]
8 2002 Use Case Derived Test Cases. [Wood02]
9 1999 Scenario-Based Validation and Test of Software [Glinz99] , [Ryser03]
10 2003 Requirements by Contract [Nebut03]

11 2003 PLUTO & Category Partition Method [Ostrand88], [Bertolino03],
[Bertolino04]

12 2004 Derivation of Domain Test Scenarios from Activity
Diagrams.

[Ruder04],
[Ruder04-2]

13 2004 Requirements to Testing in a Natural Way [Boddu04]

Table 1: Approaches analyzed in Gutierrez Report.

Our previous paper includes four approaches. Only two of them (id 6

and id 9 in table 1) have been included in the final version of the survey.
An approach omitted is UML-Based Statistical Test Case Generation due
we have focused only on functional verification. Another omitted approach
is AGEDIS [Hartman04], since a further investigation and conversation
with their authors shows us that it is focused on design models and that it

requires the system built. However, AGEDIS papers are a good source of
ideas.

Year Authors Title Reference

1998

Meyer S. Sandfoss R. Applying Use-Case Methodology to SRE and

System Testing.

STAR West Conference.

1999 Carpenter P.B. Verification of Requirements for Safety-Critical

software.

SIGAda'99. Redondo Beach CA.

USA.

1999 Collard R. Test Design: Developing Test Cases from Use

Cases.

Software Testing & Quality

Engineering Magazine.

1999 Cunning S.J. Rozenblit

J.W.

Test Scenario Generation From a Structured

Requirement Specification.

IEEE Engineering of Computer

Based Systems.

2000 Hindel B. Hehn U. Constructing Test Cases from Derived

Requirements.

EuroSPI.

2002

Blacburn M. Busser R.

Nauman A.

Interface-Driven Model-Based Test Automation. International Conference on Soft.

Testing Analysis & Review

2002 Pudipeddi H.V. Understanding, Designing and Testing Use Cases. http://www.stickyminds.com

Table 2: Approaches analyzed in Denger Report.

Approaches analyzed in Gutierrez report can be divided into three

groups (shown in figure 1) due to their notation for modelling system
behaviour. The first group derives test cases directly from requirements in
natural language. The second group builds a model from the functionality
and derives test cases from that model. Artefacts used to express the
behaviour of the system are listed in table 4. The third group is based on
the Category-Partition technique. Two approaches join techniques from
the two groups. Approach [Boddu04] builds state machines from
requirements in natural language as a first step to derive test cases.
Approach [Ruder04] builds an activity diagram annotated with categories
and partitions.

Figure 1: Techniques to modelling the behaviour of the system.

There are also differences among the artefacts needed to generate test

cases. Some approaches start from use cases described with UML Use
Case diagram [UML03] and completed with templates in natural

language. Other approaches include their own elicitation phase, so their
starting point is a set of needs from the users. One approach needs use
cases and additional information, like class diagrams and sequence
diagrams. A classification is shown in figure 2.

Figure 2: Artefacts needed to generate test cases.

The results obtained from the approaches have been classified into 2

groups (figure 3). The first group denotes that derived test cases are
expressed like actions over the system in natural language or decision
tables (like [Binder00]). Those test cases must be implemented by hand.
The second group allows us to obtain test scripts. However, they used
commercial or experimental tools, not available. In some cases, the
Category-Partition method can generate executable results, as described
in [Balcer89].

Figure 3: Results obtained from each approach.

There are several approaches that mention a supporting tool. A
classification is shown in figure 4. The only tool freely available that we
have found is a supporting tool for [Nebut03] approach.

Many of the analyzed approaches include the generation of expected
results. However, in all of the approaches, this activity is developed by
hand, using the criterion of the testers.

Figure 4: Supporting tools.

Denger and Gutierrez analyses have similar conclusions although
Gutierrez report is two years older than the Denger report. The main
conclusion of Denger report is that approaches work at a theoretical level
without describing how to generate executable test cases. Denger report
exposes that there is room for more approaches to solve the troubles and
the lacks detected in the exiting ones. The conclusions at Gutierrez report
exposes that new approaches have the same lacks than the ones
analyzed in Denger. There is a lack of documentation, case studies, and
available supporting tools. These facts make hard the application of
theses approaches over real projects.

3. Resolved and unresolved aspects
After analyzing and comparing approaches listed in table 1, we have
extracted which aspects are treated satisfactorily and which aspects need
a further development. Those aspects are listed in table 3 and described
in the following paragraphs.

Resolved aspects Unresolved aspects
• Building behavioural mode.
• Supporting tools.
• Two levels in test cases derivation.
• Definition of requirements

• Documentation and practical cases.
• No measure of effectiveness and quality.
• Lack of systematization and automation.
• Test case implementation.
• Lack of empirical studies.

Table 3: Resolved and unresolved aspect identified.

As seen in figure 1, ten approaches develop a behavioural model to

express the functionality expected in the system under test. The notations
used are listed in table 4.

Reference Behavioural model
[Hsia97] Scenario trees and finite state machines.
[Fröhlich00] Finite state machines.
[Mogyorodi03] Cause-effect diagrams.
[Labiche02] UML activities and sequence diagrams.
[Naresh02] Action-flow diagram.
[Nebur03] Use cases annotated with precondition, post-conditions and invariants.
[Ryser03] Own Use cases execution model (similar to FSM).
[Ostrand88], [Bertolino04] Categories, choices and restriction.
[Ruder04] UML activity diagram annotated with categories, choices and restriction.
[Boddu04] Finite state machine.

Table 4: Techniques to generate behavioural model.

The use of behavioural models allows systematize and automate the
process. A widely used technique in testing is called model-based testing
[Bertolino04-2]. Testing approaches based on model-based testing might
also be applied to derive system test cases from behavioural models.

The existence of supporting tools can be classified as a resolved but
also as an unresolved aspect. Seven of the approaches analyzed have a
supporting tool. This fact is a grade of their maturity and improves their
automation. However, an unresolved aspect is to allow the access of
these tools by free or open-source licences or, at least, investigation
licences, like AGEDIS project.

An aspect discovered, is that it is necessary to derive two levels of test
cases. It is well known in code testing that test separate components or
fragments of code tested with unit test cases do not guarantee the proper
operation of the system [Cohen04]. Thus, an additional integration testing
phase which verifies that each component works successfully in
collaboration with other components is needed. This philosophy can be
also applied to system testing. System testing can be divided into two
stages. The first stage verifies the behaviour of each use case in isolation
(similar to code unit testing). The second stage verifies that use cases
work properly together and satisfy functional requirements (similar to
code integration testing). Both stages can be combined in order to obtain
test cases that combine several requirements and several execution
paths for each requirement. However, there are only 2 approaches (id 6
and 10 in table 1) that include dependences of use cases and derive test
cases that involve several use cases. So, this stage has to be studied
deeply for new approaches.

An important aspect is how to define a use case to derive a set of test
cases form it. Most of the approaches indicate the information that a use
case has to include to be useful in test case derivation. As there is not a
standard widely accept to define use cases, this aspect is resolved
enough.

There are also several aspects that we estimate that they are still
unresolved. Those aspects are listed in Table 3. The first aspect is the
lack of documentation. All approaches have little or incomplete technical
documentation. Many approaches do not refer to any practical application
or realistic case study. Both facts obstruct real application of those
approaches.

An aspect already forgotten by all approaches is to propose metrics and
tools to evaluate the quality of generated test cases. We assume that all
approaches start from the assumption that, if their steps are successfully
applied, a set of test cases with the maximum coverage are obtained.
Since there are several decisions that testing team has to adopt, a metric
to evaluate how those decisions affect to coverage is needed. This aspect
is also related to the absence of empirical studies about effectiveness of
each approach. None of the authors demonstrated with experiments that
their approach is better than random testing or than using common
sense.

Coverage criterion in the approaches analyzed (except in [Binder00]) is
mainly based in a combinational exploration of all possible scenarios from
a use case. Some approaches, like [Ruder04], [Nebut03] or [Naresh02],
include several coverage approaches (like all-transition or all-states) to
minimize the combinational explosion.

The implementation of test cases is also an aspect briefly (or omitted)
described in the analyzed approaches. The two approaches ([Ruder04]
and [Boddu04]) that derive executable test scripts need tools not
available. As seen in figure 3, many approaches just only generate textual
description of test cases in natural language. Additional and non-trivial
steps have to be performed to implement those test cases into executable
scripts or code.

4. Conclusions

The main conclusion is that there are enough approaches to acquire
precise ideas on how to derive test cases. However, there is still not a
complete and integrated approach that describes the whole process.

From this survey, it is concluded that the most-used technique is model-
based testing. This technique is being used more and more every day in
the software industry. Model-based testing is successfully applied and

documented when it is applied to design models or when models are
extracted from code. Our future work is to develop a model-based testing
approach from functional requirement. This approach has to be able to
derive test cases from early development phases, allowing improve
quality requirements and minimizing time and effort used in system
testing [Dahlstedt05].

The increasing number of analyzed approaches, from 4 to 13, has
confirmed the preliminary conclusions presented in [Gutierrez04]. None of
the approaches is the definite one. With their study as a whole set, we
have exposed its resolved and unresolved aspects, so there is a gasp for
a new approach which uses the resolved aspect and corrects the
unresolved ones.

Number Task

1 Build behavioural model.
2 Derive test scenarios from one use case.
3 Derive test scenarios from several use cases.
4 Generate test values.
5 Obtain test scenarios.
6 Reduction the number of tests cases without lost of coverage.
7 Measure of coverage.
8 Generate expected results.
9 Sort test cases to maximize a selected criterion (test scenario prioritize).

10 Build test scripts or executable test code.
Table 5: Tasks to generate test cases from use cases.

In paper [Gutierrez04], we exposed, as future work, the development of
a new methodology. Nowadays, we have defined the scope of the new
approach from the conclusions obtained from Gutierrez report. The scope
of our approach is listed in table 5.

Activity Approach

1 Approaches listed in table 4.
2 All approaches
3 [Labiche02], [Nebut03]
4 Approaches based in CP method [Bertolino04], [Ruder04], [Ostrand88]
5 [Labiche02]
6 [Naresh02]
7 [Binder00]
8 No approaches
9 [Naresh02]

10 No approaches
Table 6: Approaches that mentioned steps listed in table 5.

Comparing the aspects exposed in section 3 with tasks listed in Table
5, we have defined the grade of maturity and coverage of each task from
exiting approaches. Results are listed in table 6.

Some preliminary papers and several cases of study have been
developed. However, none of them have been published yet.

References

[Balcer89] Balcer M. J., Hasling W. M., Ostrand T. J. 1989. Automatic

Generation of Test Scripts from Formal Test Specifications. ACM, pp
210- 218. USA.

[Bertolino03] Bertolino, A., Gnesi, S. 2003. Use Case-based Testing of
Product Lines. ESEC/FSE’03. Helsinki, Finland.

[Bertolino04] Bertolino, A., Gnesi, S. 2004. PLUTO: A Test Methodology
for Product Families. Lecture Notes in Computer Science. Springer-
Verlag Heidelberg. 3014 / 2004. pp 181-197.

[Bertolino04-2] Bertolino A., Marchetti E., Faedo A. 2004. Introducing a
Reasonably Complete and Coherent Approach for Model-based
Testing. TACoS'04 Preliminary Version.

[Bertolino04] Bertolino, A., Gnesi, S. 2004. PLUTO: A Test Methodology
for Product Families. Lecture Notes in Computer Science. Springer-
Verlag Heidelberg. 3014 / 2004. pp 181-197.

[Binder00] Binder R. V. 2000. Testing Object-Oriented Systems. Addison-
Wesley. USA.

[Boddu04] Boddu R., Guo L., Mukhopadhyay S. 2004. RETNA: From
Requirements to Testing in Natural Way. 12th IEEE International
Requirements Engineering RE’04.

[Cockburn00] Cockburn, A. 2000. Writing Effective Use Cases. Addison-
Wesley 1st edition. USA.

[Cohen04] Cohen, F. 2004. Java Testing and Design. From Unit Testing
to Automated Web Tests. Prentice Hall. USA.

[Dahlstedt05] Dahlstedt, Å. (2005) Guidelines Regarding Requirements
Engineering Practices in order to Facilitate System Testing. 11th
International Workshop on Requirements Engineering. Porto, Portugal.

[Denger03] Denger C., Medina M. 2003. Test Case Derived from
Requirement Specifications. Fraunhofer IESE Report.

 [Escalona04] Escalona M.J. 2004. Modelos y técnicas para la
especificación y el análisis de la Navegación en Sistemas Software. Ph.
European Thesis. Department of Computer Language and Systems.
University of Seville. Seville, Spain.

[Fröhlich00] Fröhlich, P, Link, J. 2000. Automated Test Case Generation
from Dynamic Models. ECOOP 2000. pp. 472-491.

[Glinz99] Glinz M., Ryser J. 1999. A Practical Approach to Validating and

Testing Software Systems Using Scenarios Quality. Week Europe
QWE'99 in Brussels, Institut für Informatik, Universität Zürich.

[Gutierrez04] Gutierrez J.J., Escalona M.J., Mejías M., Torres J., Álvarez
J.A. 2004. Comparative Analysis of Methodological Proposes to
Systematic Generation of System Test Cases from System
Requirements. Proceedings of the 3rd International Workshop on
System Testing and Validation.(SV'2004). pp. 151-160. Paris, France.
December.

[Gutierrez05] Gutierrez J.J. 2005. Resolved and unresolved aspects in
system test cases generation. Inner Report www.lsi.us.es/~escalona/

[Hartman04] Hartman, A. 2004 AGEDIS Final Project Report AGEDIS
Consortium Internal Report. http://www.agedis.de/

[Heumann02] Heumann, J. 2002. Generating Test Cases from Use
Cases. Journal of Software Testing Professionals.

[Labiche02] Labiche Y., Briand, L.C. 2002. A UML-Based Approach to
System Testing, Journal of Software and Systems Modelling (SoSyM)
Vol. 1 No.1 pp. 10-42.

 [Mogyorodi02] Mogyorodi G. E. 2002. Requirements-Based Testing:
Ambiguity Reviews. Journal of Software Testing Professionals. p 21-24.

[Mogyorodi03] Mogyorodi G. E. What Is Requirements-Based Testing?.
15th Annual Software Technology Conference. Apr. 28-May 1. Salt
Lake City, USA

[Naresh02] Naresh A. 2002. Testing From Use Cases Using Path
Analysis Technique. International Conference On Software Testing
Analysis & Review.

[Nebut03] Nebut, C. F., et-al. 2003. Requirements by contract allow
automated system testing. Proceedings of the 14th International
Symposium of Software Reliability Engineering (ISSRE'03). Denver,
Colorado. USA.

[Nebut04] Nebut, C. F., et-al. 2004. A Requirement-Based Approach to
Test Product Families. LNCS. pp 198-210.

 [Ostrand88] Ostrand, T.Jj, Balcer, M.J. 1988. Category-Partition Method.
Communications of the ACM. 676-686.

[Ruder04] Ruder A., et-al. 2004. A Model-based Approach to Improve
System Testing of Interactive Applications. ISSTA’04. Boston, USA.

[Ryser03] Ryser J., Glinz M. 2003. Scent: A Method Employing Scenarios
to Systematically Derive Test Cases for System Test. Technical Report
2000/03, Institut für Informatik, Universität Zürich.

 [UML03] Object Management Group, 2003, Unified Modelling Language
2.0

