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Resumen

La calidad de los modelos de los procesos de negocio (es aeefactos software
gue capturan las relaciones entre las unidades organzéesode un negocio) es
esencial para la mejora de la gestion de los procesos deineddin embargo,
dicho modelado se hace normalmente a mano. Esa tarea ppessergar un gran
reto para el analista y consumir bastante tiempo, sobredoaiertos escenarios
con unos requisitos de disefio concretos (es decir, estmescde los atributos
de las actividades, incertidumbres, relaciones entrgidaties y asignacion de
recursos). Esta situacion es atn mas complicada seskeafalgunos requisitos de
optimizacion, ademas de flexibilidad y robustez. Aden@smodelos generados
puede ser poco eficientes, contener errores y, probablepssan muy estrictos.
Parafacilitar la tarea del analista y para mejorar los mosdé$ proceso de negocio
resultantes, en esta memoria de Tesis se describe un ngetitpaare para generar
planes de ejecucion de manera automatica en tiempo dgodéseartir de una
especificacion declarativa. Para gestionar estos plas&spropuesta se basa en
modelos de procesos de negocio configurables, los cualeéte@era los analistas
entender qué comparten esos planes y cuales son susidiéere

Antes de poder ejecutar el modelo de proceso de negocio ucalbig, es
necesario seleccionar un modelo de proceso de negocicetomier entre los con-
tenidos en el modelo configurable. Esta seleccion la hatealmente el analista,
quien manualmente individualiza el modelo teniendo en teulas requisitos del
negocio. Para individualizar dicho modelo, al contrarie gliresto de trabajos
relacionados que existen en la literatura, en esta tesisopeme un método to-
talmente automatico para crear una herramienta softves@da en cuestionarios
gue guie al usuario para la individualizacio de un modelg@ubceso de nego-
cio configurable en tiempo de ejecucion. Asi, la decislérqué aspecto tiene el
plan de ejecucion se retrasa hasta el tiempo de ejecupi@nes cuando hay mas
informacion disponible.

La principal diferencia de la propuesta que se presenta tantess frente
a otros trabajos previos es la gestion de considera latidaerbre de los esce-
narios a través de atributos estocasticos, ademas gitaizacion de maltiples
funciones objetivos. Ademas, se propone un herramierdgadaaen cuestiona-
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rios para permitir, en tiempo de ejecucion, la selecciérud plan de ejecucion
optimizado a partir de una especificacion declarativa.
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Abstract

The quality of business process models (i.e., softwaréaatsi that capture the
relations between the organizational units of a businese}sential for enhanc-
ing the management of business processes. However, suailimgds typically
carried out manually. This can be quite challenging and Ing thene consuming
in some real scenarios which present certain design reqaits (i.e., estimated
activity attributes, input uncertainty, relations betweetivities and resource al-
location). This situation is further complicated if suclyjugements have to be
addressed together with some optimization requiremenbsdmg flexibility and
robustness. Moreover, the resulting models may be nomragd, potentially
contain errors, and might be too strict. To facilitate thenlam work and to im-
prove the resulting business process models, this ThesgeBRation proposes a
software-supported approach for automatically genegadiptimized enactment
plans from declarative specifications at design-time. Fanaging these plans
the proposed approach suggests to build upon configurabladsas process mo-
dels (which allow analysts to understand what these plaasesdnd what their
differences are).

Before the execution of the configurable business proceslna business
process model has to be selected from it. This selectionpisaily performed
by an analyst who manually individualizes the model in otdeaddress the bu-
siness requirements. To individualize such models, urdiisting approaches,
a totally automated method to create a questionnaire-kegadtation for guid-
ing a business expert on individualizing the configurableiiess process model
during run-time is proposed. Therefore, the decision of bllmsvenactment plan
to be executed looks like is deferred to run-time, i.e., whremre information is
available.

The current Thesis Dissertation differs from existing agghes since it con-
siders the uncertainty of the scenario through stochattibates, as well as the
optimization of multiple objective functions. Moreovermgaestionnaire-based ap-
plication is suggested to enable the selection of an optidhenactment plan from
a declarative specification during run-time.
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Chapter 1

Introduction

1.1 Generalities

A business process (BP) can be defined as a set of activitieb ate performed
in coordination in an organization to achieve a businesbk(@aaskeg 2007). These
activities can be manual activities, other BPs, or evengsiaxd software. In or-
der to support BPs, BP Management (BPM) embraces methaisiteies, and
software to design, enact, control, and analyze operdtjmogesses involving
humans, organizations, applications, and other sourcasfaimation (/an der
Aalst et al, 2003. Such management generally follows a strict methodology t
ensure the quality of the information systems which aretecea

Nowadays, there exist several software tools, namely BP#teBys (BPMSs),
which are intended to support the BPM during the BPM life eycleske 2007).
The traditional BPM life cycle includes four phasésdske 2007):

1. Process design & analysis, when a design of the BP (i.eR anBdel) is
created following the requirements.

2. System configuration, when the software defined in the Béefrie imple-
mented.

3. Process enactment, when the software is executed (ne.pomore BP
instances) following the BP model.

4. Evaluation, when monitoring information or logs are gmad to look for
design improvements.

In turn, it becomes increasingly common for organizatiandeal with large col-
lections of BP modelsosa et al.2012). Therefore, more and more research is
done related to BP collection®{kman et al, 2012 in which configurable BP

1



2 CHAPTER 1. INTRODUCTION

models (a Rosa et a).2008 are widely used to capture families of BPs in an
integrated manner allowing the users for a high variabillty such scenarios a
new phase, namelgonfiguration & individualizationis defined in the BPM life
cycle after the process design & analysis phase<osa et a}.2009. Such a new
phase is in charge of selecting one BP model from the contidgi&P model.

In addition, in the last years, the interest in the effective flexible manage-
ment of BPs has grown considerabiyg(chert and Webg01Z Dijkman et al,
2012 since real scenarios are generally subject to uncertainty related way,
flexibility and robustness concerns have received inangasttention {e Haan
et al, 2011 Golden and Powel200Q Gueorguiev et al.2009 Cicerone et a).
2012, also in the field of BPM Reichert and WebgR01Z Schonenberg et al.
20083.

To support the BPM lifecycle, artificial intelligence (Al)anning techniques
have been successfully applied at different stages sindaséance of a BP is
analogous to a plan in Al. Al planning(allab et al.2004) proposes techniques
to select a plan (i.e., a set of activities to execute in aiipewrder) to achieve
a given goal. In addition, the performance of an executi@m pklated to a BP
model can be greatly influenced by scheduling decisiénsedq 2008 Bruc-
ker et al, 20069 such as the resource allocatioah@h and Ward2003 Karim
and Arif-Uz-Zaman 2013. Such scheduling decisions are commonly made by
BPMSs during the enactment phase (i.e., run-time) by auioatly assigning
work (i.e., activities) to the available resourcési¢sell et al.2009. In general,
a planning & scheduling (P&S) problem consists of deterngnan enactment
plan for a set of activities which are related by temporalstints, which com-
pete for some shared resources, and where the optimizdtisonte objective
functions is pursued. In such context, constraint progrargrCP) (Rossi et al.
2006 supplies a suitable framework for modeling and solvingyprms involving
P&S aspectsalidg 2010).

1.2 Motivation

The quality of a BP design (i.e., of a BP model) has a greatenfte on all the
phases of the BPM life cycle and is essential for BP improvanwehich has been
ranked as the number one priority for top management by thé Eartner survey
(Group 2010.

In the process design & analysis phase the BP models areatlypspecified
by hand using imperative languages like EPC or BPMNI{(IN, 2017). This way,
a precise activity sequence which establishes how a giveor setivities has to
be performed is defined. Such a sequence typically inclueteparal relations
between activities or even dependencies with input datgic@ily, such activities
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Figure 1.1: Motivation overview: Designs issues.

are related to a set of attributes (e.g., duration and cadsidhwneed to be esti-
mated. Furthermore, in many real scenarios such estimatgd be subject to
input uncertainty (e.g., normally, surgical operationations and recovery dura-
tions are imprecisely definitelOuki 2011). Therefore, regarding such scenarios
and motivated by the case study described in this Thesi€{@pter5), when de-
signing a BP model, analysts have to face certain designreggants (cf. Figure
1.1(1)), such as:

1. Dealing with activity attributes and their estimatedues.

2. Managing the input uncertainty which exists in many reahsrios Gouki
2017 in which providing a range of possible values for a BP proper
most reliable that providing an exact value which may bedliffito know.

3. Dealing with relations between the activities, i.e., tcorflow as well as
temporal and data constraints of the BP.

4. Considering resource allocation.

Since uncertain scenarios are considered, managing suetuncertainty be-
comes necessary. For this, flexibility and robustness amegsed since they are
considered the best way to properly address the considecsttainty. The situ-
ation is further complicated if the aforementioned desgpguirements have to be
addressed along with optimizing some (potentially) cotifiggobjective functions
(e.g., minimizing time and maximizing profit). Such opti@ion requirements
(cf. Figurel.1(2)) can be summarized as follows:

INote that the considered scenarios are focused on the téiotkoand the resource perspec-
tives of the BPs and the data perspective is only partialhsiztered.
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Initial set of process variants which can be executed
a) Existing O based on a given declarative model (i.e., such variants
Proposals represent the variability of the declarative model)

=» Narrowing down the process variants before run-time

Incrementally narrowing down the process variants during
run-time

Variability of the selected process variants after removing

b) Current O “pag” variants

Contribution
® The process variant which is finally selected and executed

Figure 1.2: Motivation overview: Run-time issues.

1. Flexibility, i.e., the capability to adapt to input untgnty (Reichert and
Weber 2012 Golden and Powell200Q Schonenberg et al20083. For
this, designed models should consider different executitgrnatives to
support such uncertain scenarios=ske 2007).

2. Robustness, i.e., the capability to withstand the uac#st to some extent
(Eppink, 1978 Cicerone et a).2012 de Haan et a].2011). For his, BP
models should be design&alavoid making unnecessary adaptations which
typically are costly.

3. Other objective functions are commonly considered stheeBP design
usually involves a trade-off between different quality dimsions which
may be in conflict or be opposeg¢ijers 2003).

This task of creating a BP design can form a very complex praldnd be
very time consuming (cf. Figurg.1(3)). Moreover, the resulting models may
be non-optimized, potentially contain errors, and mightdwestrict (-erreira and
Ferreirga 2006 Mendling et al, 2007 Westergaard and Magdt012) (cf. Figure
1.1(4)). For this, methods and tools for supporting analystendiuthe BP design
are becoming more and more necessatry.

To facilitate the human work involved in such design, to @vailures, and to
allow for a better optimization during the execution phatsglarative BP models
are increasingly used since the tacit nature of human krigelés often an obsta-
cle to eliciting accurate BP models€rreira and Ferreiy2006. However, due to
their flexible nature, there are frequently several vasaekated to a given decla-
rative model, each one presenting specific values for @iffieobjective functions
(e.g., overall completion time or profit). Therefore, theid®n about how to exe-
cute this declarative model (i.e., selecting a variant finally gets executed) can
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be quite challenging since usually many constraints nedxgttobeyed, multiple
instances of a process get concurrently executed withinriécpkar timeframe,

shared resources need to be allocated, and relevant ebjéatictions should be
considered.

In such context, there exist some proposals for generatipgiative BP mo-
dels or that could be extended in such direction (¢fegc 2008 Sadiq et al.
2005 Pesic et al.2007 Lu et al, 2009 Ferreira and Ferreird200§ Montali,
2009 Westergaard and Magd?012, Krogt et al, 2010 Hummer et al.2013).
These proposals are based on generating a single execlarowlpich fulfills all
the BP constraints starting with a constraint-based spatiin, e.g., a declarative
model. This plan could be, in turn, used for the generatioarimperative BP
model. However, as a major disadvantage of existing prdposaly one single
execution plan is selected (i.e., a single process vali@idye starting the process
execution which unnecessarily restricts the flexibiliga(ba et al. 20139 and
hence diminishes the advantages of using declarative ggonedels. In particu-
lar, if BPs are subject to uncertainty and conditions maygealuring BP execu-
tion, it might turn out that the selected BP model is not aggtlle and replanning
might be required. In order to be better able to cope with sudertainty, it is
more suitable to defer the decisions of how the BP model toxkeelged looks
like to run-time (i.e., to select the BP model to be executedeémentally during
run-time). To be more specific, instead of narrowing downdékection to one
single variant before run-time (cf. Figuie2 (a)), it would be better that onihe
worstvariants are removed while thilee bestvariants are kept (cf. the outermost
gray circle in Figurel.2 (b)). Thereby the goodness of a variant is measured by its
values for given objective functionsi(nenez-Ramirez et a20139. This way,
the variants which are kept can be narrowed down incremgmating run-time
at the last possible moment (i.e., gradually moving fromail@rmost inner circle
to the back dot in Figuré.2 (b)).

Thus, the existing proposals are not sufficient to addrdsthalpreviously
mentioned requirements, e.g., dealing with the flexibitigeds of existing BPs
(Reichert and Webe012.

1.3 Contributions

In order to facilitate the human work which is involved in thcess design &
analysis phase and to improve the resulting imperative BBetsaa method for
automatically creating configurable BP models (i.e, a modghrtifact that cap-
tures a family of process models in an integrated manner) {alst et al.2006

from declarative specifications¢rreira and Ferreif@2006) is proposed (cf. Fig-
ure 1.3). The proposed approach considers all the aforementicwpdrements
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which have to be considered when creating a suitable BP madel activity
attributes, resource allocation, input uncertainty,trefabetween activities, opti-
mization of several objective functions, as well as flexipind robustness issues,
and is detailed in the following.

Declarative models are typically easier to specify and tesgs-consuming
than imperative models in scenarios where high variabiitiequired Cerreira
and Ferreirp2006. Therefore, declarative specifications are used asrgggrtint
of the proposed approach. For this, the Declare languégesic 2009 is used
as basis, since it allows the specification of BP activiteggether with the cons-
traints which must be satisfied for correct BP enactment andhie goal to be
achieved. Declare is extended in order to widen its desigibiflgy by conside-
ring stochastic values for modelling the uncertainty ofgbenario (as required in
the considered problems, cf. Sectibi), resulting in the SDeclare language. To
be more precise, with the proposed extension, some prepeatia BP (such as
activity attributes, data and temporal constraints, asduece availability) can be
expressed through probabilistic mass functions insteamdtbffixed values. For
example, the current approach allows one to specify thertaiogy about the du-
ration of an activity by using a flat discrete range (e.g.;20%, meaning that such
an activity may last from 15 to 20 units of time with the samehability). This
can be used, for example, for specifying that the arrivaétohclients is uncertain
due to unpunctual clients, or that the availability of soragources is subject to
uncertainty. The SDeclare language is then used for thedgsle specification
of the BP models (cf. Figurg.3(1)).

Since a declarative model captures highly variable scesdrke., it allows nu-
merous possible enactment plans), it may include many éx@citernatives that
are not desirable for the business regarding the optinoizatf a set of objective
functions. For this, a desirable part of the variability odleclarative model has
to be extracted (cf. Chapt8}. To do this, a method for generating optimized BP
enactment plans from declarative specifications is praptzseptimize the perfor-
mance of a process by considering multiple objectives (gfue 1.3 (2)). This
process is done automatically using a constraint-basecbagip which obtains
the best execution alternatives of a declarative modelrdougpto a set of given
objective functions. For this, activities to be executetlehto be selected and
ordered (planning problenis(hallab et al.2004)) considering both control-flow
constraints as well as resource constraints imposed b\ettiardtive specification
(scheduling problemArucker and Knust2006)

Since the generated set of multi-objective optimized enant plans may
contain similar alternatives or non-robust alternatives;h set must be filtered

2Declare is one of the most referenced and used declaratiar&iages in the context of
BPM.
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Figure 1.3: Contribution overview: Selecting the desieabshriability of a declarative
model.

considering flexibility and robustness concerns (cf. Chif)t That filter is per-
formed regarding how the set of plans manages the input tamar in such a
way that flexibility and robustness are optimized. Spedlficthose alternatives
which are too strict (i.e., not robustpink 1978 Cicerone et a).2012 de Haan
et al, 2011) or which only withstand an extent of the uncertainty whhlready
withstood by another alternative (i.e., do not contribaténe flexibility of the fi-
nal solution Reichert and WebeP012 Golden and PowelR00Q Schonenberg
et al, 20089), are discarded. Therefore, the variability of the souteelarative
model is reduced to a set of relevant plans where most of thedesirable al-
ternatives are removed (cf. Figuie3 (3)). In this way, the proposed approach
manages both flexibility and robustness at designdjrag motivated in Section
1.2

Typically the relevant plans which are kept after such fitigprocess share
many commonalities since they are created from the samardégk specification
and optimize the same objective functions. For this theeturapproach suggests
to build upon established techniques, i.e., configurableni&félels Rosemann
and van der AalsR007 Rosa et al.2012 der Aalst et al.2006 Hallerbach et a.

3Note that flexibility can be managed by: (1) design, i.e., edigh-time some control-flow
patterns which allows one to consider different alterretife.g., OR structures) are included in
the model or (2) flexible PAISs, i.e., at run-time severalvities of a flexible BP model (e.g., a
declarative model) are enabled to be executaddhert and WebgP012). Since this approach is
focused on the process design & analysis phase, flexibilityratime is out of the scope of this
Thesis.
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Figure 1.4: Contribution overview: Run-time individuaimon of configurable BP mo-
dels.

20104 Sun and Alellg200§ Gottschalk et a.2009. Such models can be created
by merging all these plans (cf. Figute3(4)). The goal of creating configurable
BP models in the current Thesis is twofold:

1. Supporting the analysts in the management of the set ohized plans.

2. Helping the analysts understand what the different ptduase, what their
differences are, and why and how these differences oc¢eosgmann and
van der Aalst20079.

To enable configurable BP models being configured by domaeréxin such
a way that these experts incrementally reduce the numbermogps variants to
be executed, the automatic generation of questionnairesgequences of ques-
tions each one created for configuring a part of the relatefigiarable BP model
(La Rosa et a).2009) is proposed. While the usage of questionnaires for indi-
vidualizing configurable BPs is not news Rosa et a).2008 Rosa et a}.2009,
existing works require that analysts manually create tlestjonnaires which con-
figure the configurable BP model. In addition, such a configumas done at
configuration time (i.e., before process execution staats) hence premature de-
cision may unnecessarily be taken. To overcome such drdsp#us Thesis
Dissertation proposes a method for (cf. Figlré):

1. Automatically generating the questionnaires for indiilizing the config-
urable BP model.

2. Incrementally individualizing the configurable BP modeking run-time
using the automatically generated questionnaires.

For this, using the generated configurable BP model (cf. rei@gu (1)) to-
gether with a set of well-defined relevant business proge(tie., properties that
can be measured within each variant and which are undeedtnidy the domain
expert, cf. Figurel.4 (2)), a questionnaire is automatically generated without
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involving the analyst. Such a questionnaire consists oktjmes related to the
business properties written in the business language (gtiré1.4 (3)). There-
after, the domain expert interacts with the questionnaireonfigure the config-
urable BP model herself during run-time. This way, the getegl questionnaire
allows to narrow down the variants of the configurable BP rhodan incremen-
tal way during run-time, i.e., guiding the execution of tlemfigurable BP model
by answering the questionnaire (cf. Figurd (4)). Therefore, the BP model is
partially created (cf. Figurd.4 (5)) and thus, it is possible to execute already
configured parts. In addition, as users often do not have dargtanding of the
overall process, they can focus only on the part of the cordlga BP model to
be configured, which may help them to take decisions.

Note that the proposed approach is appropriate for managegarios which
present certain requirements, i.e., scenarios which:

1. Present high variability.
2. Pursue the optimization of some objective functions.

3. Are subject to changes (e.g., company best practiceshehiange due to
the customers feedback).

4. Have a well-defined set of business properties which caxtracted for a
variant (e.g., the property ‘completion time’ of a variaaincbe related to
the opening and closing time’ of the business).

5. Highly rely on domain expert’s skills (i.e., decisionfluence business per-
formance) and thus, decisions can not be predefined.

As an example of such a scenario, the suitability of the cilippeoposal has been
validated through a real scenario (cf. Chager
The main contributions of the current Thesis Dissertati@n a

1. The consideration of temporal, data and resource contsttagether with
stochastic attributes for the declarative BP specification

2. The management of the uncertainty of the scenario thrdeagitility and
robustness, at the same time as the optimization of mulbipjective func-
tions is considered.

3. A questionnaire-based application to enable the select an optimized
enactment plan from a declarative specification duringtnne-without in-
volving the analyst.



10

1.4

CHAPTER 1. INTRODUCTION

Structure

The rest of the document is organized as follows:

Chapter2 includes background related to the areas which are addrésse
the current Thesis Dissertation, i.e., (1) Planning ance8aling, (2) Cons-
traint Programming, (3) Business Process Management4ahthtertainty
Management.

Chapter3 details the constraint-based approach which is used for th&S
BP activities so that multi-objective optimized enactmglans are genera-
ted from a declarative specifications.

Chapter4 describes how the resulting set of multi-objective optiexiBP

enactment plans can be used to guide the optimal executdetlarative
model through automatically-generated questionnairesaddition, both
flexibility and robustness concerns are dealt to managathg uncertainty
of the scenarios.

Chapters describes a wide empirical evaluation which has been chotig
to evaluate the effectiveness and the efficiency of the megpapproach.

Chapter6 presents a critical discussion of this Thesis Disserta®mvell
as its limitations.

Chapter7 summarizes the main conclusions which were obtained during

the development of this Thesis.

Lastly, Chapter8 shows some future work which is intended to be ad-
dressed.

1.5 Publications

During the development of the current Thesis Dissertasome research works
have been published in different Conferences and Jourithlsse publicatiorfs
support the validation of the scientific quality of this tises

1.

Andrés Jineénez-Raimez, Irene Barba, Barbara Weber, Carmelo del Valle.
"Automatic Generation of Questionnaires for Supportinggtdsduring the
Execution of Declarative Business Process Models”. 17tartational

4The publications has been chronologically ordered sftiom the most recent publications,
and ending with the oldest publications.
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Conference on Business Information Systems (In press) PBIS}, Ran-
ked as B in ERA and CORE Conference Rankings)2014.Awarded as
Best Paper.

. Andrés Jineénez-Raimez, Barbara Weber, Irene Barba, Carmelo del Valle.

"Automatic Generation of Questionnaires for Managing Cgunfable BP
Models”. 6th International Conference on Agents and Arafimtelligence
(In press) (ICAART 2014Ranked as C in ERA and CORE Conference
Rankings), 2014.

. Irene Barba, Barbara Weber, Carmelo Del Valle, Aédidingénez-Rarfmnez.

"User Recommendations for the Optimized Execution of Bes&Processes”.
Data & Knowledge Engineering, Volume 86, Pages 61-84, ISSNLG9-
023X, 2013

. Andrés Jingnez-Raifmez, Irene Barba, Carmelo del Valle, Barbara We-

ber. "Generating Multi-objective Optimized Business Processidment
Plans”. 25th International Conference (CAISE 20R3nked as A in ERA
and CORE Conference Ranking$, Springer LNCS Volume 7908, Pages
99-115, 2013

. Irene Barba, Carmelo del Valle, Barbara Weber, Aasidinénez-Rafnez.

"Automatic Generation of Optimized Business Process Meftem Constraint-
based Specificationdhternational Journal of Cooperative Information
Systems, Volume 22, Issue 02, Pages 59, ISSN 1793-6264.3

. Andrés Jingnez-Raifmez, Irene Barba, Carmelo del Valle, Barbara We-

ber. "OptBPPIlanner: Automatic Generation of Optimized Busgesocess

Enactment Plans”. 21th International Conference on In&iitom System

Development (ISD 2012Ranked as A in ERA and CORE Conference

Rankings), Building Sustainable Information Systems, Pages 429-442,
ISBN 978-1-4614-7539-2012

. Andrés Jineénez-Raiimez, Irene Barba, Carmelo del Valle, Barbara Weber.

"Generating Multi-objective Optimized Configurable Busss Process Mo-
dels”. 6th International Conference on Research Chalemghmformation
Science (RCIS 201Ranked as B in ERA and CORE Conference Rank-
ings), Pages 1-2 , 2012

. Andrés Jinénez-Raiimez, Rafael M. Gasca, Angel Varela-Va¢g&ontract-

based Test Generation for Data Flow of Business Processsg G@sns-
traint Programming”. 5th International Conference on Rede Challenges
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in Information Science (RCIS 201Ranked as B in ERA and CORE
Conference Ranking3, Pages 1-12, 2011

9. Angel Varela-Vaca, Rafael M. Gasca, Aadidinénez-Rarmnez.”A Model-
driven Engineering Approach with Diagnosis of Non-confanoe of Secu-
rity Objectives in Business Process Models”. 5th Inteoral Conference
on Research Challenges in Information Science (RCIS 2Rafked as B
in ERA and CORE Conference Rankingg, Pages 1-6 , 2011

1.6 Research Projects

The development of the current Thesis Dissertation hasfoaered in and funded
by some research projeets

1. Técnicas para la diagnosis, confiabilidad y optimizaéin en los sistemas
de geston de procesos de negocioMinisterio de Ciencia e Innovacion
TIN2009-1371417/04/2010 - ..)

2. OPBUS: Mejora de la calidad de procesos mediante tecnol@as de op-
timizacion y tolerancia a fallos.Consejeria de Innovacion, Ciencia y Em-
presa(17/04/2010 - 12/01/2011)

5The research projects has been chronologically ordergthstérom the most recent projects,
and ending with the oldest projects.



Chapter 2

Background

This Thesis Dissertation combines aspects of Planning &@&daing (P&S), and
Constraint Programming to support users during the exatofiBPs. In a related
way, Section2.1 gives an overview of Planning & Scheduling, Sect2 de-
scribes the constraint programming paradigm. Se@iBprovides backgrounds
regarding BPM, and Sectidh4 states different mechanisms for dealing with un-
certainty.

2.1 Planning and Scheduling

Planning (cf. Sectior2.1.2 and scheduling (cf. Sectiok.1.]) are two rather
related areas, and hence many actual problems involve lhthtlerm (cf. Section
2.1.3. However, these areas also present some differences.tiBogimilarities
and the main differences are discussed in the current sectio

2.1.1 Scheduling

The area of scheduling3(ucker et al, 2006 Pinedq 2009 includes problems
in which it is necessary to determine a schedule for a set tfitaes related
by temporal and resource constraints. A schedule stateth¢l3tart and end
times of the activities to be executed and (2) the resourdehnwib assigned to
perform each activity. Since different activities may requhe same resources,
they may compete for limited resources (i.e., resourcetcanss). In general,
the objective in scheduling consists of, given a set of ds, finding a feasible
plan which satisfies both temporal and resource constrdRe&source constraints
lead to establish a specific ordering between the activiti@ish share the same
resource, providing the problem with NP-hard complexiia(ey and Johnson
1979. In scheduling problems several objective functions aeally considered

13
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to be optimized, in most cases related to temporal measoregnsidering the
optimal use of resources.

In scheduling, an activity refers to a task which needs todeew@ted during a
specific amount of time units, usually without interrupti@e., preemptive sche-
duling), and using certain specific resources.

A quite general scheduling problem is called Resource-Cained Project
Scheduling Problem (RCPSP, &rucker and Knus(2006). RCPSPs are speci-
fied by a set of activities which are related by precedencstcaints. Moreover,
for the execution of each activity, several units of manpueses may be required.
An extension of RCPSPs is the Multi-mode Resource-ComsidaProject Sche-
duling Problem (cf.Drex| and Gruenewal(lL993). This problem is a RCPSP in
which the activities can be executed in more than one opgratiode, each one
potentially using different resources, and usually prasgrdifferent values for
certain properties, e.g., duration or cost of the activity.

In many scheduling problems, the activities are organizeplos, i.e., se-
guences of activities which establishe precedence reabetween the activities
so that an activity can start only when all its predecessave been executed.

Many variants of scheduling problems exist. Some of thenlisied as fol-
lows (cf. Figure2.1):

e Job Shop (cfBrucker and Knus(2006); Pinedo(2009): Each activity can
only be executed using a specific resource.

e Flow Shop (cf. Brucker and Knus(20009): It is a special case of the job
shop problem in which each job is composed by exactly the sameer
of activities (which is equal to the number of resources)this way, each
job contains exactly one activity to be executed using easburce, and
hence each job uses each resource exactly once. Moredyehsalise the
resources in the same ordering.

e Flexible Job Shop (cfBrandimartg(1993): Many job centers exist, each
one containing the same number of resources. In this wayctanty can
be executed in any job center using the suitable resource.

e Cumulative Job Shop (cfNuijten and Aart19960): It is a generaliza-
tion of the Job Shop in which the resources have a finite cgpand the
activities may require several unities of several kindsesburces.

e Open Shop (cfPinedo(2009): Unlike in job shop problems, in open shop
problems the jobs do not have a predetermined fixed route.

I»Activity a precedes activity b” means that activity b canstart before a is finished.
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Figure 2.1: A representation of a job shop problem.

There are many typical objective functions to be consideredheduling pro-
blems. Some of them are listed as follows:

Makespan: It refers to the time in which the execution of elivaties have
finished.

Tardiness: It refers to the delay of all jobs or activitiega®ling a specific
due date.

Total Weighted Tardiness: It consists of a generalizatich®@tardiness, in
which ¥ ;¢ j0psWj x Tj is minimized, wherew;j usually refers to an impor-
tance factor related to joj e.g., holding cost per unit time, afigrefers to
the delay of jobj regarding a specific due date.

Number of Tardy Jobs: It refers to the number of jobs which dbmeet
their due dates.

Total Weighted Completion Time: It consists on miNiMIzifige jopsWj X
Cj, wherew; usually refers to an importance factor related to joBndC;
refers to the completion time of jop

Objectives related to the use of the resources by the aety#.g., balanced
use of resources.

2.1.2 Planning

In a wider perspective, in Artificial Intelligence (Al) plamg (Ghallab et al.
2004), the activities to be executed are not established a pherice it is nece-
ssary to select them from a set of alternatives and to estedti ordering. In most
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cases, the specification of planning problems includesiibialistate of the world,

the goal (i.e., a predicate representing a set of possitdédtates) that must be
reached, and a set of operators (i.e., actions) which capfiled to one state in
order to reach another state. In general, the objectiveamhg consists of, given
a set of available activities, generating a schedule byseteand ordering a set
of activities in a way that the resulting plan reaches a giyeal. Furthermore,

in planning problems, usually the optimization of certabjeative functions is

considered.

Taking the goals to be achieved into account, differentmtanstrategies can
be used for representing and reasoning about planning rsegna.g., Classi-
cal Planning {ikes and Nilssonl1977; Lekavy and Navrgt2007), Hierarchical
Task Network Erol et al, 1994, Decision-Theoretic Planningdshi et al.2017),
Case-based Planningl§émmond 1990 and Reactive Planning-¢rnandes et gl.
1983.

In order to reuse the same algorithms for solving differentl& of problems,
and to solve the same problem using different algorithmssgdéinains for repre-
senting the problems, and (2) algorithms for solving théfmms are specified in
a separated way (domain-independent planning). For spblvispecific problem,
a domain-independent planner takes as input the probleifispéion and the
domain information.

The first strategy which was proposed for representing aasloréng about
planning scenarios was Classical Planningi€¢s and Nilssoil971; Lekavy and
Navrai 2007). The basic idea of Classical Planning consists of findingopence
of actions which will modify the initial state of the worldtma final state where
the goal holds. The specification of Classical Planning lgrol is composed by:

e A set of literals from the propositional calculus which cam gositive or
negative and which represent the goal to be achieved.

e A set of literals from the propositional calculus which cam fositive or
negative and which represent the initial state, also knosvimigéial condi-
tions.

e A set of actions which are characterized by STRIPS operatoSTRIPS
operator is a parameterized template used for stating af getssible ac-
tions. Each action is composed by:

— A set of preconditions: set of positive or negative literatich must
be true for executing a specific action.

— A set of effects: set of positive or negative literals whigtbme true
after the execution of the action.
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As mentioned before, for executing an activity, all therhds included in the
precondition of the activity need to be true. Therefore aahestage, there is a set
of possible activities to be executed which depends on terls which are true
in that moment (state of the world, i.e., a set of atoms ordltethat define how
the objects of the model relate to each other and their ptieger Each time a
specific activity is executed, the set of literals which ateetchanges, and hence
the set of possible activities to be executed also changdbid way, the state of
the world evolves.

A solution for a planning problem is determined by a sequericactivities
which reaches the final state from the initial state.

In such context temporal analysis is typically applied dierresulting sched-
ules to figure out the temporal slack of the activitiesucker and Knust2006
Gueorguiev et a).2009, i.e., to calculate which activities can delay or advance
their execution without affecting the completion time oé tbchedule. In this re-
spect, different techniques such as CPM, PERT or Ganttcfiasgtt{ 1913 can
be used to perform this analysis in order to calculate theterent plan (cf. Def-
inition 1) related to a specific schedule. The same enactment planecaeidbed
to different schedules, as shown in Figréd.

Definition 1. Anenactment planP = (pid, Actg is identified by pid and is com-
posed of a set of activities aet Acts which are executed without preemption.
Each activity act is a tuplecactid, Pred, dur, es, le, reswhere: actid is an
unique identifier in the enactment plan, Pred is the list®pitecedence activities
(i.e., those activities which must be executed before dat)js the estimated du-
ration of act, es is the earliest start time (i.e., the sootiest the activity act can
start), le is the latest end time (i.e., the latest that thevéty act can finish), and
res is the resource which performs the activity act in thenpla

Such definition is provided to formalize the concepts whitkaay exist in
the literature related to that term.

2.1.3 Integrating P&S

Planning and scheduling are rather related areas sincelbathvith the temporal

planning of activities. The main difference between botmaris that in schedu-
ling the activities to be planned are known and that it alwayslves the resource
perspective, while in planning the activities which will becluded in the plan

need to be determined and resource constraints are notsabeagidered.

Note that, since activities are executed without preemgaied the same resource cannot be
used to perform more than one activity in parallel, therdramicit precedence relations between
the activities which are executed by the same resasinze the current approach does not allow a
resource doing multiple activities in parallel



18 CHAPTER 2. BACKGROUND

Many works which combined P&S can be found, since severabhptoblems
involve both of them. A problem involving P&S is charactexzby: (1) there is
a goal to be reached through the execution of a sequenceiwtiastwhich are
unknown a priori (planning), and (2) each of these actigitias a specific dura-
tion and requires a specific resource to be executed, soetimgioral constraints
exist between the execution of activities, and certain gi@mal) objective function
needs to be optimized (scheduling).

Some of the extensions to scheduling that have been coadidarch as alter-
native resources and process alternatives, lead to mddlsite closer to plan-
ning, as problems involving choice of actions are often réga as planning pro-
blems Emith et al, 2000).

Some planning techniques are not able to represent or re@doresources,
metric quantities or continuous time. Moreover, planniaghhiques do not ty-
pically consider optimization. Therefore, there are marmyks which extend
Classical Planning techniques in order to deal with resmi(crabble and Taie
1994 Laborie and Ghallapl1995, metric quantitiesKoehler, 1998 Penberthy
and Weld 1994, and optimization criterions/(olfman and Weld 1999 Vossen
et al, 1999. Furthermore, there exist works which extend planningnégues in
order to allow working with continuous time and temporal swwaints Penberthy
and Weld 1994 Smith and Weld1999.

2.2 Constraint Programming

In such context, constraint programming (CRpgsi et al.2006) (cf. Figure2.2)
supplies a suitable framework for modeling and solving f@ots involving P&S
aspects $alidg 2010. In order to solve a problem through CP, it needs to be
modelled as a constraint satisfaction problem (CSP) (cfinien 2).

Definition 2. ACSPP = (V,D,Ccsp) is composed of a set of variables V, a set of
domains D which is composed of the domain of values for eathbla var €V,

and a set of constraints{gpbetween variables, so that each constraint represents
a relation between a subset of variables and specifies tlosvatl combinations

of values for these variables.

The given definition is provided to formalize the conceptsohlalready exist
in the literature related to CSP.

A solution to a CSP (cf. Definitio8) consists of assigning values to CSP
variables.

Definition 3. AsolutionS=< (vars,val), (varp,val),...(var,valy) > fora CSP
P=(V,D,Ccsp is an assignment of a value yaldom to each variable vare V.
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Figure 2.2: Schema of Constraint Programming.

A solution isfeasiblewhen the assignments variable-value satisfy all the cons-
traints, i.e., a goal state is reached. In a similar way, a (S3€asible if at least
one feasible solution for this CSP exists. From now 81 refers to the value
assigned to variablear in a solutionS.

Similar to CSPs, constraint optimization problems (CORs,Oefinition 4)
require solutions that optimize an objective function.

Definition 4. A COP R = (V,D,Ccsp0) related to a CSP P= (V,D,Ccsp) is a
CSP which also includes an objective function o to be opéthiz

A feasible solutionS for a COP isoptimal when no other feasible solution
exists with a better value for the objective functimn
Once a problem is modelled as a CSP, several goals can beefduesg.:

e Finding any feasible solution for the CSP.

Finding several feasible solutions for the CSP.

Finding all the feasible solutions for the CSP.

Finding the optimal (or optimized) solution for a COP.

Finding a set of optimal (or optimized) solutions for a COP.

Example 1. A classic problem which can be modelled as a CSP is the map col-
oring problem. This problem consists of coloring a map whsctiivided in a set
of regions so that a color need to be assigned to each regakimg into account
that regions sharing a boundary line do not have the samer@ld only specific
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Figure 2.3: Map coloring problem.

colors can be used. The modelling of this problem as a CSP demwathat each

region is a CSP variable, the domain of each variable is coseddy the set of
allowed colors, and the constraints establish inequaktiations between the va-
riables which represent adjoining regions. Figu2e3 shows an example for this
problem in which there are 4 regionsgRRy, R; and Ry, and 3 allowed colors,

red (r), green (g) and yellow (y).

Constraint programming allows to separate the models flmmatgorithms,
so that once a problem is modelled in a declarative way as a £§é€neric or
specialized constraint-based solver can be used to olftainequired solution.
Furthermore, constraint based models can be extended itueahway, main-
taining the solving methods. Several mechanisms are &laitar solving CSPs
and COPsRossi et al.2006, which can be classified as search algorithms (i.e.,
for exploring the solution space to find a solution or to prthet none exists) or
consistency algorithms (i.e., filtering rules for removingonsistent values from
the domain of the variables). In turn, search algorithmsheaalassified as:

e Complete search algorithms. Such algorithms (which are eddled sys-
tematic algorithms) guarantee that a solution will be foifnoine exists,
and can be used to show that a CSP does not have a solution aind &
optimal solution in COPs.

The possible combinations of assignments of values to tHe ®iables
lead to a space state which can be represented by a tree & ggaph.
Each node of the search tree represents a partial assiginealues to
a set of variables. The root node of the search tree repsetinicase in
which any variable is instantiated, while the leaf nodesesgent the cases
in which all the variables are instantiated.
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There are many systematic search algorithms, most of therbased on
chronological backtracking{ouhoub et al.2003.

e Incomplete search algorithms. Incomplete search algostbonsist of ex-
ploring only certain regions of the state space so that, meg#, the reach
of a (optimal) solution can not be guaranteed. They are widséd due to
the complete search usually requires a high cost. Locabeohsastic search
algorithms are examples of incomplete algorithms.

Local search algorithms typically start generating a fiodtison of a given
problem instance (in a random or a heuristic way), which mayniteasi-
ble, suboptimal or incomplete. This initial solution isragvely improved
so that the value for the objective function is optimizedia tase of COPs,
or the number of inconsistencies are reduced in the caseB$.CI8 most
cases, these algorithms finish after certain tries or iterathave been com-
pleted, or when the required solution is found.

A wide scope of local search algorithms can be found in therdture,
e.g., genetic algorithms/itchell, 1999, simulated annealing{(rkpatrick

et al, 1989, taboo searchlover, 1989, and Greedy Randomized Adap-
tive Search Procedure€o and Resend®989 1995. Different local search
algorithms vary in the way in which improvements are achigaad in par-
ticular, in the way in which situations are handled when meatiimprove-
ment is possible.

Moreover, some algorithms combine systematic and locateéachniques,
e.g, Large Neighborhood Searchginger and Ropke010).

In this work P&S is applied to generate different possiblacment plans
from the same constraint-based BP model through an incaenpkarch algo-
rithm.

Since actual problems typically involve multiple conflraji objective func-
tions, multi-objective constraint optimization proble(O-COPs, cf Definition
5) are considered in the current work. The reader is referoeditrgott and
Gandibleux(2003 for a review of the literature on MO-COPs.

Definition 5. AMO-COP MRB = (V,D,Ccsp OFs) related to a CSP P- (V, D, Ccsp)
is a CSP which also includes a set of objective functions @Hset optimized
(maximized or minimized).

Such definition is provided to formalize the concepts whitkaay exist in
the literature related to that MO-COP.

In multi-objective optimization problems, usually no ungoptimal solution
exists, but a set of Pareto optimal solutions (cf. Definipoan be found.
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Definition 6. Let Sols be the set of all the solutions of a MO-COPyMRich
includes n objective functions, i.e, OEsSOF,...,OR,. Then, a solution sele
Sols isPareto optimalif Asob € Sols such that’OF € OFs: solgF is better
or equal than quF , 1.e., for obtaining a feasible solution which improves one
objective functions, at least another objective functieeds to be deteriorated.

Since many MO-COPs present NP complexitya(ey and Johnsgri979),
Pareto optimized solutions are considered (cf. Defini@ipn

Definition 7. Let Sols be the set of all the solutions of a MO-COP,MRd let

Sols C Sols be the subset of the solutions already explored atioeitae. Then,
a solution sof € Sols is Pareto optimizedf it is Pareto optimal regarding only
the subset Sojsi.e., if #sob € Sols such thatvOF € OFs: solgF is better or

equal than sdf*.

To solve multi-objective optimization problems there drasically, three ap-
proaches:

1. Defining a new objective function by combining the oridioljective func-
tions, e.g., trough weighted-sum functidre(tmann 1977 Zeleny, 1987
Chankong and Haimgd983. However, these approaches does not nec-
essarily guarantee that the final solution will be neitheeatable {oski,
1985 Stadler 1995 Athan and Papalambrp$996 Das and Dennisl997%
Messac et a) 2000 nor Pareto optimizedi{as and DennisL997).

2. Working with stochastic algorithms like genetic, sintathannealing or ant
colonies algorithms to obtain a set of Pareto optimizedtanis. For ex-
ample, previous works applied the simulated annealingnigcie Gmith
et al, 200§ Sumarn) 2004 and evolutionary multi-objective optimization
algorithms Deb and Kalyanmaoy2001; Shukla and Deji2007) for solving
multi-objective optimization problems.

3. Optimizing one of the objective functions while constiag the other ones
(e.g.,e-constraint method-{aimes et al.1971)). These methods are based
on optimizing only one of the objective functions while diktothers ob-
jective functions are used to state additional constraiiiere, the main
challenge is to select the proper bounds for the objectivesiware not op-
timized. Each approach typically solves this issue witlows method. In
general, each single-objective problem is solved severast by varying
the value of the bound. The complete set of Pareto optimatisolks can be
figured out if the bounds are adequately varied (manns2006).

In this work, thes-constraint method-{aimes et a].1971) is applied since it
appeared well suited for the purposes of this Thesis anddifpiprovides good
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results.In addition, in a previous approachifienez-Ramirez et 220139, such

a technique was applied and it achieved good results. Funtive, the base al-
gorithm to be used in the-constraint method were developed and analyzed in
previous approache&frba et al.2013h2a) and results showed its effectiveness
for improving performance. However, other promising mobjective optimiza-
tion techniques (e.g., stochastic algorithms) could be apgplied.

2.2.1 Constraint Programming for Planning and Scheduling

Scheduling problems have been successfully addressedwateascope of ap-
plications using constraint-based techniques. Most ddé¢hpyoblems can be mo-
delled in a natural way, so that, since the actions are sagblas are chosen to
correspond to the temporal unknowns (mainly start and enddj or to the or-
dering of tasks, and constraints gather precedence angroesconstraints{eck
and Fox 1999. Typical CSP modelings for the job shop problem states tidue s
times of the activities as the variables of the CSP, and thetcaints are divided
in two groups:

e The precedence constraints are a set of inequalities imgpthie variables
corresponding to the start times of the activities of theesgoh or related by
precedence relations, and taking into account the duatbthe activities.

e The resource constraints may be defined as disjunctionsbatthe start
time of the activities using the same resource. Howevegrapproaches
have been used, as representing the use of each resourtéheyeaitivities
with global constraints, which may allow more efficient filtey algorithms.

Moreover, CP has been used in several recent Al planfmers=(ek et al.
2005 Vidal and Geffner20046 Tu et al, 2007 Gabriel and Grandcolag2009
Bao et al, 2017), since this paradigm is at the core for combining plannind a
scheduling techniques.

On the other hand, many constraint-based proposals fangdR&S problems
exist in the literature, e.g.limpe (2002); Liu and Jiang(2009; Gomes et al.
(2009; Garrido et al(2008; Moura et al.(2008; Garrido et al(2009. Further-
more, several filtering algorithms for specialized schedutonstraints have been
developed. Specificallgeck and FoxX2000 andBartak and Cepe(2010 model
scheduling problems which include alternative and oplitasks respectively, to-
gether with their filtering rules. Moreover, the wodartak and Cepef2009
proposes filtering rules for both precedence and dependmmstraints in order
to solve log-based reconciliation (P&S) problems in dasalsa In those studies,
the precedence constraints signify the same as in P&S pnsblehile the de-
pendency constraints are given between optional acswtigich can potentially
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be included in the final schedule. The warkborie et al (2009 introduces new
types of variables (time-interval, sequence, cumulatvel state-function varia-
bles) for modelling and reasoning with optional scheduéingjvities. In addition,
Lombardi and Milanq2010) presents a set of filtering rules for cumulative cons-
traint propagation when solving an extension of the resseonstrained project
scheduling problem which includes time lags and uncertannded activity du-
rations. Furthermoreéylonette et al(2009 includes a constraint-based approach
for the Just-In-Time Job Shop Scheduling, i.e., each agthas an earliness and
a tardiness cost with respect to a due date. This approatidexa filtering
algorithm which uses a machine relaxation to produce a Itwend, and dedi-
cated heuristics. This work also includes pruning rulescWwhipdate the variable
bounds and detect precedence constraints.

2.3 Business Process Management

Nowadays, there exists a growing interest in aligning imfation systems in a
process-oriented way\(eske 2007) as well as in the effective and flexible mana-
gement of business processes (cf. Defini@piiReichert and Webgp012). Or-
ganizations need to adapt to the new commercial conditaswell as to respond
to competitive pressures, considering the business emmieat and the evaluation
of their information systems.

Definition 8. A Business ProceséBP) can be defined as a set of related struc-
tured activities whose execution produce a specific seorgeoduct required by

a particular customer. These activities can be manual &ats; other BPs, or
even pieces of software.

In order to use and manage business processes, busingsgsanakd to spe-
cify the BPs through BP models (cf. Definiti@) by using a BP modelling lan-
guage.

Definition 9. A Business Process modebnsists of a set of activity models and
execution constraints between themeGke2007).

In the literature, a wide spectrum of paradigms for BP maalglare pre-
sented, each one entailing different levels of accurachénBP elicitation, e.g.,
declarative and imperative paradigms. Such BP models predlly specified by
hand using imperative languages like EPC or BPNIN[{IN, 2011). This way,
a precise activity sequence which establishes how a giveof setivities has to
be performed is defined. These imperative models can beigedigtrepresented
using a BP graph (cf. Definitioh0). The graph definition is introduced fosa
et al.(2012.
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Definition 10. A Graph G = (gid, N,Edges is identified by gid and consists of a
set of pairs of nodesa N, i.e., Edges. Eacbdgedenotes a direct edge between
two nodes in the graph. A nodeaN is a tuple< nid,l,t > where nid is an
unique identifier of a node in the graph, | is its label, and it$stype.

With relation to planning and scheduling, since there averse parallelism
with BPM, an enactment plan (cf. Definitidh) can be represented as a graph.
The activities of an enactment plan which are not precedeahlygyother activity
are called initial activities. In a similar way, the actie which do not precede
any other activity are called final activities. Thereforegarding the precedence
relations between the activities (stated by Bred attribute, cf. Definitionl)
and the parallelism that exists between activities whiehexiecuted by different
resources (stated by thres attribute, cf. Definitionl) the schedule can be re-
presented as a graph. In such graph, both a start node wlachdas all of the
initial activities and a final node which is preceded by a#l final activities are
additionally included (cf. Exampl2).

Example 2. Figure 2.4 (a) shows two schedules related to how to prepare a hol-
iday where the activitiebook a hotelselect the clotheand prepare the luggage
are considered. Since both schedules include the saméi@stiwhich are execu-
ted by the same resources and also in the same order, thdyirethe same enact-
ment plan. As can be seen in the Gantt diagram related to theterent plan (cf.
Figure 2.4 (b)), the activityBook hotelpresents 1 temporal unit of slack. In addi-
tion, Figure2.4(c) shows the related graph using BPRIN'his graph consists of
the following 7 nodes (cf. DefinitidlD): <1, start,event-, <2, AND, gateway>,
<3,book activity>, <4, selectactivity>, <5, AND, gateway-, <6, pack activity>
and<7,end event>; which are paired (cf. Definitiod0) as follows:(1,2), (2, 3),
(2,4), (3,5), (4,5), (5,6), and(6,7).

Such definition of graph allows one to represent an impezatodel (i.e.,
an enactment plan, cf. Definitidl) in many different languages, e.g., BPMN or
EPC. As an example, the types of nodes (i)gn BPMN language{PMN, 2017)
are 'activity’, 'event’, or 'gateway’. A node of type 'gatey’ allows labels (i.e.,
) '"AND’, 'OR’, 'XOR’, etc., while 'event’ nodes allow ’startand 'end’ labels
(cf. Figure2.5).

However, declarative BP models (e.g. constraint-based &g, cf. Section
2.3.7) are increasingly used and their usage allows the user tafgpehat has to
be done instead of having to specify how it has to be done. Sxa®ples of BP
models are shown in Fig2.7and2.8which are explained later.

3For simplicity, role information is shown inside the actjvboxes in the BP graph. IRosa
etal.(2012), ageneral solution for managing role information and oitea-control-flow elements
is shown.
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Figure 2.4: Relations between schedules, enactment fkamgt charts and graphs

The modelling of the processes plays an important role ioteeall manage-
ment of BPs (Business Process Management, BPM, cf. Defidifip(Davenporf
1993 Georgakopoulos et al1995. In the current business world, the economic
success of an enterprize increasingly depends on its eHeetss in the manage-
ment of its BPs, and hence BPM is an interesting researchvanez is being
widely analyzed nowadays. In a related way, BPM Systems[@effinition 12)

BPMN Elements

Start Event Q i End Event O

|
|
Exclusive |
DaiaBased | Famel 4
Gateway ! y

E:] Activity A

Figure 2.5: Basic elements of BPMN.

are software tools that support the management of the BPs.

Definition 11. Business Process Manageme{@PM) can be seen as supporting
BPs using methods, techniques, and software to designt, @satrol and analyze
operational processes involving humans, organizatiopgliaations, documents

and other sources of informationgn der Aalst et a).2003.
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Process Design
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System
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Process
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Figure 2.6: Typical BPM Life Cycle.

Evaluation

Definition 12. A Business Process Management SystéBPMS) is a generic
software system that is driven by explicit process repregems to coordinate
the enactment of business proces$gs{kg2007).

Such management generally follows a strict methodologynsuee the qual-
ity of the information systems which are created. Trad#ioBPM Life Cycle
(Weskeg 2007 (cf. Figure?2.6) includes four phases which are related to each
other. These stages are organized in a cyclical structurehvainows the logical
dependencies between them:

e Process Design & Analysis: In this phase, BPs are identifedewed, va-
lidated, and represented by BP models, so that the inforfRaddscription
is formalized using a particular BP modelling notation. Tsteps are con-
sidered to create a BP model: (1) draw an initial BP model,(2hanprove
this initial model by simulation or BP redesign techniquésaditionally,
this phase is mostly a human activity. In some cases, progedsls can be
verified against inconsistencies and errors(Dongen2007).

e System Configuration: In this phase, BP models are implegaey con-
figuring a BPM system. There are different ways to do so, bygstating
a set of policies and procedures. Service-oriented aathites as well as
web services for their implementation have gained increggopularity for
BPMSs implementations recently. Moreover, data-drivgsr@g@ches to the



28 CHAPTER 2. BACKGROUND

flexible enactment of BPs are considered for enactment ofanumterac-
tion BPs using data dependencies to control process enaictme

e Process Enactment: After completing system configurati@ase, BP ins-
tances can be enacted. In this phase, the BPMS controlsehateon of BP
instances as defined in the BP model. As execution procdexlsnactment
information must be analyzed due to the possible appeacinoexpected
events.

e Evaluation: In this phase, information regarding the BPcémant is eva-
luated in order to identify and improve the quality of the BBdal and their
implementations. Traditionally, enactment logs are aredyby using BP
activity monitoring and BP mining techniques.

After the Evaluation phase, BP models are corrected andoweprin the BP
Design & Analysis phase if necessary by considering theuaw@n information,
and hence closing the cycle which shows the logical depaneleetween the
phases of the BPM life.

In this Thesis Dissertation, the BP Design & Analysis phaswidely ana-
lyzed since this phase plays an important role in the BPMdyfele for any im-
provement initiative, and it greatly influences the remagnphases of this cycle.
Specifically, constraint-based BP models (cf. Sec#idhl) and configurable BP
models (cf. SectioR.3.2 are analysed.

2.3.1 Constraint-based BP Models

Recently, constraint-based approaches have receivesbsen interest/tinder-
feesten et aJ.2008 Pesi¢ 2008 Westergaard and Magg2012 Montali et al,
2013 since they suggest a fundamentally different way of desayi BPs which
seems to be promising in respect to the support of highly siyniparocesses/n-
derfeesten et gl200§ Pesig 2009. Irrespective of the chosen approach, require-
ments imposed by the BPs need to be reflected by the process.riibds means
that desired behavior must be supported by the process mehig¢ forbidden
behavior must be prohibited¢sic et al.2007 van der Aalst et a).2009 Mon-
tall, 2009. While executable process models specify exactly howgthimave to
be doné, declarative process models focus on what should be dotiee kurrent
approach, declarative BP specifications are considered,sas stated, the speci-
fication of process properties in a declarative way is an @b step towards the

4With the term executable models it is referred to imperatieglels which are rather strict and
which represent only one enactment plan (or at most only feistbn points are included).
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flexible management of BPMs/{n der Aalst et a/.2009. In the literature, se-
veral rule-based and constraint-based languages forrdée&BP modeling are
proposed (e.gvan der Aalst and Pes{20063; Dourish et al(1996; Wainer and
De Lima Bezerrg2003); Lu et al.(2006). This Thesis Dissertation uses the lan-
guage Declare (also known as ConDee}¢i; 2008 Pesic et a}.2007) for the BP
control-flow specification. Declare is considered to be table language, since it
allows the specification of BP activities together with tlo@straints which must
be satisfied for correct BP enactment and for the objectivieet@chieved (cf.
Definition 13).

Definition 13. Thegoal of a BP is specified through the constraints which must
be satisfied during the BP enactment.

Moreover, Declare allows to specify a wide set of BP modelgoied nature,
flexibility and complexity in a simple way. In addition, Dacé has been widely
referenced in the past years in the context of BRs( al, 2008 Montali, 2009
Lamma et al.2007 Chesani et a)2009. Declare is based on constraint-based BP
models (cf. DefinitioriL4), i.e., including information about (1) activities thainca
be performed as well as (2) constraints prohibiting uneéegarocess behavior.

Definition 14. A constraint-based BP mod&M = (A,Cgp) consists of a set of
activities A, and a set of constraintgg prohibiting undesired execution beha-
vior. Each activity ac A can be executed arbitrarily often if not restricted by any
constraints.

Such definition is provided to formalize the concepts whitkaaly exist in
the literature related to constraint-based BP model.

Constraints can be added to a Declare model to specify fdebidehavior,
restricting the desired behavior. For this, Declare prepan open set of tem-
plates which can be divided into 4 groups:

1. Existencetemplates: unary relationships concerning the numbemoégi
one activity is executed, e.g., Exactly(N,A) specifies thabust be execu-
ted exactly N times.

2. Relation templates: positive binary relations used to impose thegmee
of a certain activity when some other activity is performedy., Prece-
dence(A,B) specifies that to execute activity B, activity @eds to be exe-
cuted before.

3. Negationtemplates: negative relationships used to forbid the di@tof
activities in specific situations, e.g., NotCoexistenc8( specifies that if
B is executed, then A cannot be executed, and vice versa.
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Constraint-based Model IWI Legend
Activities A ExactlyN
A A must be executed exactly
N times.
A B C A Precedence

B | To execute activity B, activity A
needs to be executed before.

Constraints C A ” B NotCoexistence

A and B cannot co-occur in
any trace.

C1 c B Execution Traces
|7| 0, = <A, B, A> Satisfied
A c4 0, = <A, A, C> Satisfied
0, = <A, B, B, A> Satisfied
C3 C 0, =<A, A, A> C1 Violated

o, = <B, A> C2 Violated
0, = <A, B, C> C4 Violated

Figure 2.7: Simple constraint-based model for a set of itietsv

4. Choicetemplates: n-ary relationships expressing the need olugixecac-
tivities belonging to a set of possible choices, e.g., Byattoice(N{A,B,C})
specifies that exactly N activities of the 4ét,B,C} must be executed.

In Declare, while unary relationships describe constsaiatated to one ac-
tivity (e.g., existence constraints), binary constraséscribe relationships bet-
ween activities (e.g., precedence constraints). Binanptates are composed by
a source activity (cf. Definitiod5) and a sink activity (cf. Definitiord6), which
correspond to the beginning and the end of the arrow relatéukt specific tem-
plate in the graphical notation of Declare, respectively.

Definition 15. A source activity of a binary template is an activity whiclpeprs
in the first parameter of the template. For templates whielesprecedence rela-
tions between activities, a source activity is a predeaeastvity.

Definition 16. A sink activity of a binary template is an activity which appe
in the second parameter of the template. For templates wétate precedence
relations between activities, a sink activity is a successtivity.

Figure2.7 shows a simple constraint-based model which is composed-by a
tivities A, B, andC, and constraint€1 (ExactlyN(A)),C2 (Precedence(A,B)¥3
(Precedence(A,C)), art¥ (NotCoexistence(B,C)).

In Declare, binary constraints can be extended by definiagdired templates,
as described iResic(2008. The branched templates for the binary templates can
be established between several BP activities in the foligwiay:
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e The branched constraint is established between sevenraksactivities and
one sink activity, so that the relation is given betwedneastone of the
sources and the siRk

e The branched constraint is established between one sottigityaand se-
veral sink activities, so that the relation is given betwdensource andt
leastone of the sink&

In Declare (an der Aalst and Pesi20069, the fact of considering atomic ac-
tivities is recognized as being a major problem. Similar exare, the languages
ConDec++ [lontali, 2009 (an extension of Declare) and Satufre(meyer et a).
2010 are constraint-based workflow definition languages baseldTa which,
unlike Declare, consider non-atomic activities that carstaeted, completed or
cancelled at a later time, and overlapped with other aavit

Once a BP is modelled through a constraint-based modeblinguage, the
BP can be executed. As the execution of a constraint-baseelmpooceeds, in-
formation regarding the executed activities is recordednrexecution trace (cf.
Definition 17).

Definition 17. Let S= (A,Cgp) be a constraint-based process model (cf. Defini-
tion 14). Then, atraceT =< ey, e,...e, > is composed of a sequence of starting
and completing events regarding activity executiongi& A, i.e., events can be:

1. start(a,t,r), i.e., the i-th execution of activity a is started at time ttbg
resource rc Res.

2. compa;,t), i.e., the i-th execution of activity a is completed at time t

A process instance (cf. Definitioh8) represents a concrete execution of a
constraint-based model and its execution state is reflégtdlde execution trace.

Definition 18. Let S= (A,C) be a constraint-based process model with activity
set A and constraint set C. Then:pfocess instancé = (S o) on S is defined by
S and a corresponding traae

A running process instandeis in statesatisfiedif its current partial tracey
satisfies all constraints stated@n Furthermore, an instance is in staielated,

SThese branched templates consider only the disjunctionmditions related to the sources,
since the conjunction can be obtained by including the datmtnon-branched template between
each source and the sink activity.

6These branched templates consider only the disjunctioronfliions related to the sinks,
since the conjunction can be obtained by including the datgmtnon-branched template between
the source and each sink activity.
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Valid traces: Invalid traces:
Precedence
a) Declarative model A o B <AB><AAB><ABAB>, <BA><BB><BAAB>,...
precede B <ABB>, <A>,
b) Imperative model A B <AB> <A> <B> <BAB>, <BA>, ...

Figure 2.8: Increased flexibility of declarative modelssier executable models

if the partial trace violates all constraints state€iand there is no suffix that can
be added to satisfy them (cf. Exam3e

Considering a constraint-based model and a specific repatadss instance,
only certain activities are enabled to be executed nexOefinition 19, Example
3).

Definition 19. Let S= (A,C) be a constraint-based process model with activity
set A and constraint set C, andH (S,0) be a corresponding process instance
with partial traceo. Then: An activity aof instance | issnabledat time T iff a
can be started and the instance state of | is not violatedaégls; i.e., foro =<
e1,€,...6, >, it is obtainedo] =< ey, e, ...y, start(a;, Rjs, T) > afterwards and
instance(S,d’) is not in state violated.

Example 3. Figure 2.7 includes examples of traces of satisfied and violated ins-
tanceg for a constraint-based model. For the partial trace of Figure2.7, B is
enabled, while A is not enabled due t@,@nd C is not enabled due taiC

Due to their flexible nature, there are different ways to exe@ constraint-
based BP model in such a way that all constraints are fulfiiled the process
goal is reached (cf. Definitioh3and Examplel).

Example 4. Figure 2.8(a) shows a constraint-based BP model where tréces
<AAB>, <AB>, <ABAB>, <ABB>, <A> are some of the valid ways of ex-
ecuting such model, while tracesBA>, <BB>, <BAAB> are invalid since A
must precede B. In contrast, Figu2e8(b) shows an executable model where there
is only one valid execution trace,AB>.

The different valid execution alternatives related to ac#fpeconstraint-based
BP model, however, can greatly vary in respect to their ggalie., how well
different performance objective functions (cf. Definitid@) can be achieved.

"For the sake of clarity, only completed events for activitg@utions are included in the trace
representation.

8For the sake of clarity, traces represent sequences oftatiy.e., no parallelism is conside-
red in the examples. Moreover, only completed events faviacexecutions are included in the
trace representation.
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Definition 20. The objective functionof a BP is the function to be optimized
during the BP enactment, e.g., minimization of overall cletign time.

Many real scenarios require the optimization of multiplgegcbve functions.
Thus, the automatic generation of a multi-objective optedi configurable BP
model from a constraint-based BP model by applying comgtpgogramming for
Planning and Schedulin@&S) the BP activities is suggested.

2.3.2 Configurable Business Process Models

Typically, different BP models (cf. Definitio®), also calledvariants can be
performed in scenarios which entail high variability, elguman resource ma-
nagement, clinical guidelines and financial accounting.m&enterprise sys-
tem vendors manage that variability through general rafaxrenodels, also call
configurableBP models, which cover all the different variants. Gengraibn-
figurable BP models allow analysts to understand what thesatwons share,
what their differences are, and why and how these differ®iceur Rosemann
and van der Aal$22007). Before such a general model can be used, it requires
to be concretized to the individual context of the targetaargation. For this, a
new phase, namelgonfiguration & individualizationis defined in the BPM life
cycle after the process design & analysis phase (cf. FigBe(La Rosa et a.
2009. At configuration-time a domain expert should select thstappropriate
BP model depending on the context (e.g., business regusatabjective func-
tions, etc.) Gotischalk et a).2008. Then, the selected BP model can be enacted
and the remaining parts of the configurable BP model (i.esdlparts which have
not been selected for execution) are not executed.

Basically, there are two ways for creating configurable BRlehs

e By including possible adaptations (e.giding andblockingmethodology)
(Gottschalk and Jansen-vuller2006 der Aalst et al. 200§ Gottschalk
et al, 2009. It can be done from scratch or from an existing BP model.
Some elements of the configurable BP model (e.g., actiatelsdata) can
be set to optional and, therefore, highlighting which camfigions are pos-
sible or not Gottschalk et a).2008).

e By merging some BP models related to the same or similar gehish
already existiRosa et a.2012). In that case, the source BP models need to
be compared and merged, which might result in a tedious;tomsuming
and error-prone process if it is performed by haRd€a et a}.2012). To
overcome these problems, there exist approaches focusmat@matically
merging different BP models in a configurable BP model{a et a.2010
2012.
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(a) Graphs (BPMN) (b) Configurable BP Graph

<
1,0r> =1

1. R R R1
O—> book [>fselectf>] pack 90 <2, and> 15 select

12 R1

R1 merge book
- R1
2. book = z pack —90
R2
pack _O 3 select

R2
select

Figure 2.9: Two enactment plans (a) are merged into a simgifigurable BP model (b)

Configurable BP models can be represented by configurabledgihsg, which
are defined (cf. Definitio21) based oriRosa et al(2012).

Definition 21. A Configurable BP GraphCG = (G, E2l,N2LI) consists of: (1)
a graph, G= (gid,N,Edges (cf. Definition10), (2) a function EI that maps

each edge € Pairs to a set of process graph identifiers (i.e2l Edentifies which

branches of CG belong to each source graph which is mergedin (3) a func-

tion, N2LI that maps each nodeaN to a set of pairs< gpid,| > where gpid is

a graph identifier and | is the label of node n in graph gpid.(iM2LI identifies

which nodes, with the corresponding label, belong to eaaplmvhich is merged
inCG).

In the this Thesis, configurable BP models are created bygukia process
merger tool presented iRosa et al(2012 after being adapted to work with
BPMN. This tool is based on a merging algorithm which anadytbe similarities
of the input models (i.e., the graphs) and creates a new n{odglthe config-
urable BP graph) which includes configuration nodes forg¢hmaints where the
input models are different. Therefore, each branch and nbtlee configurable
BP model can be related either to one or more graphs. To dtese trelations,
each branch/node of the configurable BP graph includesifeeatrelated to the
corresponding plan (i.eE2l function). In addition, nodes also store the asso-
ciated label related to each identifier (i.82LI function). Since a configurable
BP model includes different graphs, it is considered thatrdigurable BP model
includes different BP models (cf. Examg@g

Example 5. Figure 2.9 shows 2 graphs which are merged into a configurable
BP model®. The first gateway in Figur@.9b) is a configurable node which
corresponds to an 'OR’ gateway in the process 1 and an 'ANDRégay in the
process 2.

9As there is not ambiguity, some labels are not shown (i.ey, #e the same as in the branch).
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Questionnaires

Questionnaire models:0sa et a}.2009 are typically created by the analysts to
support the user during the configuration (i.e., individzagtlon) of the config-
urable BP models. The main benefits of using them are: (1)dh&le the userin
such a way that choices are presented in a proper order attteg2avoid invalid
configurations which may lead to errors.

Typically, questionnaires are manually created by an a@halhereby each
question is related to booledactswhich are associated to configuratiactions
(Rosa et a}.2009. Each time a question is answered, an action which confsgure
a part of the configurable BP model is fired. The sequence afenssgiven to
the different questions will individualize the configuraldP model in such a way
that a single variant is selected before run-time to be drecu

Unlike previous approaches which deal with questionnaites Thesis:

e Automatically creates the questionnaires (i.e., definaogdf and actions are
not longer needed).

e The questionnaires which are created are intended to thhlize the con-
figurable BP models during run-time (cf. Chapter

2.4 Dealing with the Uncertainty

When modeling and solving business problems, usually isssiaed that there
is a complete and exact description of the problem, and b®aetis no change
between the initial description of the scenario and the seahario in which the
solution is applied. These two assumptions do not hold fonymaactical ap-
plications since uncertainty is typically present in masdlrscenarios (e.g., the
beauty salon scenario described Sec&d).

The sources of uncertainty can be quite different, e.catedlto the imprecise
knowledge of the system or due to external events (cf. ExaB)pl

Example 6. For example, the full set of jobs to be scheduled in a factary lwe
unknown in advance; the durations of activities may varyftbe initial estima-
tions; there may be resource breakdowns; the availabilityworkers, machines
or raw material, may be not guaranteed; or the weather caodg may affect to
the validity of the initial plan.

Therefore, mechanisms to deal with uncertainty are reddoereal systems.
The main requirements that have been proposed when hamdtimgncertainties
and changes areerfaillie and Jussie(@009:
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1. Tolimitas much as possible the need for successive opitstdem solving.

2. To limit as much as possible changes in the produced soakitvhen the
first approach fails.

3. To limit as much as possible the computing time and ressuticat are
necessary for online problem solving when the first apprdaith

4. To keep producing consistent and optimal solutions.

Different formalisms based in CSP (cf. Definiti@p have been proposed to
represent the uncertainty in their models:chter and Dechigi 989 introduced
dynamic constraint satisfaction problems (DCSP) as a seguef CSP, each
one resulting from small changes from the previous one. 1Ggkiensions from
the CSP framework are the conditional constraint satigfagiroblems (CCSP)
(Sabin and Freudgrl999, the open constraint satisfaction problems (OCSP)
(Faltings and Macho-Gonzalgz005, the mixed constraint satisfaction problems
(Fargier et al. 1999, the probabilistic constraint satisfaction problems $P¢
(Fargier and Langl993, the stochastic constraint satisfaction problems (SCSP)
(Walsh 2002, fuzzy constraint satisfaction problenisi(bois and Pradel993,
or the branching constraint satisfaction problems (BCS®R)v(er and Brownp
2000. In addition,L. Climent and Barbe(2014) an algorithm for solving CSPs
subject to uncertainty which looks for both stable and robokitions.

According to the different frameworks that deal with unaerty, a variety of
solving methods for obtaining solutions have been proposedhe surveys by
Verfaillie and Jussie2005, Brown and Migue2009 andHerroelen and Leus
(2009, awide number of proposals are collected, from both reaetnd proactive
approaches.

In literature {/erfaillie and Jussig2009, two classes of methods have been
proposed to deal with uncertainties and changes:

e Reactive methods, which aim at reusing solutions or reagonlhey are
applied when solutions are not longer valid. They may find seltions
or repair the previous ones that have been invalidated.

e Proactive methods, which aim at producing robust or flexgm&uitions.
They may use knowledge about the uncertainties and changasler to
produce solutions that will resist as much as possible tbleaeges.

In the context of proactive methods, flexibility and robests concerns have
received increasing attention in last yeatssEi and Roy 20104 Stevenson and
Spring 2007 de Haan et aJ.2011; Golden and PowelR00Q Gueorguiev et al.
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2009 Cicerone et a).2012 L. Climent and Barbgr2014), also in the context of
BPs Reichert and WebgR012 Schonenberg et aR0083.

Although flexibility and robustness are typically used talerate techniques or
tools which cope with the natural uncertainty of real scersaditerature related
to adaptability-like topics acknowledges that there is asimple and general
definition for these terms. Some approaches even defineahtfeerms with sim-
ilar definitions Qissi and Roy 201G Golden and Powgl2000), which leads to
misunderstandings. As showndre Haan et al(2011), flexibility and robustness
frequently appear on research articles since 1991. Betwerens of existing
definitions of flexibility and robustness, in this work a repentative set of them
is selected in order to highlight their commonalities arftedences.

On the one hand, flexibility was defined in the 80’s as "theigtalf an organi-
zation to adapt to [...] changes that [...] impact on the oizgtions performance”
(Aaker and Mascarenhat994). It was supported byl{pton, 1994 in the 90’s
which defines flexibility as "an organisation’s ability toarige [...] with little
penalty [...]". A more recent definitiorsChonenberg et 220089, which applies
this term to BPs, defines it as "the ability to deal with [. hlaoges, by varying or
adapting those parts of the business process that areeaffiegtthem, whilst re-
taining the essential format [...]". In accordance withichert and Webg2012);
Schonenberg et 820083; Golden and Powel2000; Upton(1994); Aaker and
Mascarenhagl994), the term flexibility is defined as follows (cf. Definitid®):

Definition 22. Flexibility is the capability to adapt a plan to external events in
order to achieve a goal (i.e., to change the original plan tmew plan which
generally has a different performance but achieves the gpab.

Note the active feature of the vedaapt- the flexibility is an active ability
(cf. Example?).

Example 7. A person who is going to the cinema wearing summer clothea whe
it is sunny but the forecast is uncertain increases the fiyilbaking a foldable
raincoat in a handbag. This way, taking a raincoat makes aalign to the
weather possible, and hence, the flexibility is increasede(that changing the
clothes is necessary only if it rains).

On the other hand, robustness was defined in the 70’s as "tlitg slorespond
successfully to unforeseen environmental changespb(nk 1979 19, which was
recently supported bye Haan et al(2017). In P&S, Jenser(200]) states that
"robustness means that the schedule is still acceptabhesl slelays happen du-
ring schedule execution”. In addition, similar definitiaz@n be found in complex

10Actually, instead of robustness, the warkpink (1978 uses the terms "passive” or "internal”
flexibility.
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systems which defines robustness as "the maintenance of desired system
characteristics despite fluctuations in the behavior otds\ponent parts or its
environment” Carlson and Doylg2002). In the area of project management,
Gueorguiev et a(2009 considers that "a highly robust project is one with a lot of
built-in flexibility; 'slack’ capacity that can be taken up an emergency”. There-
fore, the term robustness is defingéi(sen2001, 2003 Gueorguiev et a) 2009
Cicerone et a).2012 Eppink 1978 de Haan et aJ.2011 Carlson and Doyle
2002 as follows (cf. Definitior23):

Definition 23. Robustnesss the capability of a process to withstand external
events in order to prevent undesirable impacts (i.e., civapthe plan is not re-
quired, and hence, the same performance after the occugrehthe events is
reached).

In contrast to flexibility, robustness is considered a pasability (cf. Exam-
ple 8).

Example 8. The same person of Exampleincreases the robustness wearing
mid-season clothes instead of summer clothes since theeagbn clothes can
withstand good and bad weather, and hence, the robustnessresased (note
that, unlike in Exampl@, in this case changing the clothes is not required).

Typically, increasing the robustness decreases the pesfwre, e.g., although
the mid-season clothes can withstand both sunny and raimthee summer
clothes and raincoats perform better under sunny and rangitons respec-
tively. However, flexibility and robustness are not oppo&zahsen2007) but can
be increased in a coordinated way, i.e., the flexibility camnereased by conside-
ring different alternatives while the robustness can bee@sed by providing such
alternatives with the capacity of withstanding a higherartainty.

As shown above, definitions given in literature for both tewhffer depending
on the researchers in such a way that no formal definitione baen standard-
ized. For this, this Thesis proposes quantitative defingimr both flexibility and
robustness to measure how a system deals with the uncgrtdirgal scenarios
(cf. Chaptend).






40

CHAPTER 2. BACKGROUND



Chapter 3

From Constraint-based BP Models
to Multi-objective Optimized BP
Enactment Plans

3.1 SDeclare 1.0: Extending Declare by Including
Resource Reasoning, Temporal and Data Cons-
traints

To specify the processes in a declarative way, Declarsi(; 2009 is used as
basis (cf. Sectio2.3.1). Motivated by requirements described in literatuyre (-
tall, 2009 Westergaard and Magdg2012) as well as the necessities of the case
studies we have conducted (cf. Chapdrin this chapter a first extension of
Declare is defined, resulting in the first version of the SBexlanguage (such
language is further extended in Chapter 4). Besides exigrideclare with re-
source reasoning and estimates for activity durationsglwvare partially covered

in Barba and Del Vall2017)), SDeclare supports activities with an open set of
attributes and alternative resources (cf. Definitaai), and choice, temporal and
data constraints.

Definition 24. A S-Activity SAct = (a, Res, Atts) represents a S-Activity a (cf.
Definition 14) which can be performed by any resource included intRead
which has a set of attributes associated Atts (e.g., dunadiod profit). The set
Atts is composed of tuplesatt, value-.

1This allows activities to be performed by alternative reses, whereas in previous works (cf.
(Barba and Del Vallg2011)) only one resource can be assigned to each activity.

41
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One important aspect when modeling using SDeclare is thafetiSity in
SDeclare represents multiple executions of it. Therefoustiple process instan-
ces are allowed if not restricted by constraints over thelivdies. In a SDeclare
process model (cf. DefinitioB5), all the previously stated extensions are consi-
dered (cf. Exampl®).

Definition 25. A SDeclare process mod8DM = (SActs, Data, gp, AVRes, OFS)
related to a constraint-based process model CM = gh)Jcf. Definition 14)
is composed of (1) a set of S-Activities (cf. Definit#) SActs= (a, ResAtts)
related to each & A, (2) problem data information Data (which is the infornwati
which influences the process execution), (3) a set of SOeckanstraints gp
(which relates activities included in Acts and/or the dateluded in Data), (4) a
set of available resources AvRes (which is composed ofsuptde, #role> which
includes for each role the number #role of available resedts; and (5) a set of
the objective functions OF s to be optimized (cf. Definigon

Example 9. Figure 2(A) shows a simple SDeclare mod@f. Definition 25)
where: SActs- {(A, <Rl >, << att;,2 >, < atty,6 >>), (B, < R2>, << att;,2 >
,<att),2>>),(C,< RLR2 >, << atty,2 >, < att),3>>), (D, < RLLR2 >, <<
atty, 3>, < atty,2>>)}; Data={}; Cgp= { exactly1,A), exactly2,B), successi-
on(A,B), respons@A B), negate- responséB,C), precedencC,D) }; Res=
{(R1,2), (R2, 2)}; and OFs= {OF, OR,} .

The basic SDeclare templates, extending the Declare téaslan der Aalst
and Pesig20069, together with its formal specification through consttsiand
some examples of valid and invalid traces are listefippendix A.

3.1.1 Resource Reasoning

To support the direct reasoning with resources (which igpossible in Declare)
Declare is extendeded by including: (1) alternative resesifor executing each
S-Activity (cf. Resin Definition 24), and (2) the set of available resources (cf.
AvResn Definition 14). In this way, SDeclare directly supports the most common
workflow resource pattern, i.e., the role-based distrdsufRussell et al.2009),
which also supports the cases study. This pattern modebhihty to specify at
design-time one or more roles which will be assigned to teaimces of an activity

at run-time. Note that, besides the role-based distribypiattern, SDeclare is
open to support further resource patterisi{sell et a}.2005 by including the
related constraints in the proposed CSP model (cf. Definit). However, as

2The role-based allocation patteffi(ssell et a].2009 is considered.
3We extend Declare tool(eclarg 2017) (i.e, a workflow management system that can be used
to specify Declare models) to allow specifying SDeclare sisd
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Input Dat
dur= 7 A dur=timed B nput oala OFs
cost=10 | R, R, cost= 5 R, timeB= 6 1) Minimize
availableActs= {A,B} sum of cost
) e . Resource Availability] ) Minimize
choice.options < availableActs sum of dur
R,=1
R,=2

Figure 3.1: Example of SDeclare process model.

mentioned, this work is focus on the role-based distribbugattern, which is the
one required for modelling the considered case study.

The information related to resource availabilities can blenown until start-
ing the BP enactment. Since this information is independetiite BP-Activities,
it can be changed without affecting the specification of tbvdies, and vice
versa. This is not a problem for the current proposal siregcgnformation (i.e.,
the control-flow and resource constraints) is complemewigad more changing
information (i.e., the estimates), and finally the most dagitainformation (i.e.,
information about resource availabilities) is included.this way, with the cur-
rent approach, the configurable BP model can be automatigelerated just
before starting the BP enactment by considering the actlaés of the resource
availabilities and estimates.

3.1.2 Temporal and Data Constraints

To support increased expressiveness of Declare tempiategxtended by con-
sidering temporal and data constraints. In this way SDedélows to specify
temporal constraints in a similar way agdntali, 2009 Westergaard and Maggi
2012, i.e., all the Declare constraints have been extended gpastitemporal
modifiers, e.g., the SDeclare constraftecedence(A, B, [5, 10Btates that for
starting the execution of activity B, activity A needs to badhed between 5 and
10 time units before. Furthermore, Declare is extended bliding data cons-
traints in a similar way as\(ontali, 2009).

Therefore, input data can be related to (1) activity attebye.g., in Figura.1,
the duration of the activiti is specified by the input data, (2) resource availability,
i.e., the number of available resources of a role, and (3c&econstraints, e.g.,
in Figure 3.1, the selection of the choice constraint depends on the idatat
availableActs
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A:{nt:1},B:{nt:1}, C:{nt:2},D:{nt:1}
//15tand 2% sched. activities
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Figure 3.2: Generating Optimized Enactment Plans from &Dedlodels
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3.1.3 Representing the SDeclare Model as a MO-COP Model

3.2 Generating Multi-Objective Optimized Enactment
Plans

To generate optimal (or optimized) execution plans for &gjgeSDeclare model,
the current Thesis proposes a constraint-based approae& fthe BP activities.

This includes: (1) the modelling of the problem as a MO-C@¥p,the use of

global constraints implemented through filtering rulesngpiove the modelling
of the problems and to efficiently handle the constrainte@stearch for solutions,
and (3) a search algorithm for solving the MO-COP.

Given a process modeled as a SDeclare model (cf. DefinggrFigure
3.2(A)), it needs to be represented as a MO-COP (cf. DefinBidrigure3.2(B)).
Regarding the proposed MO-COP model, S-Activities (regeaictivities in the
MO-COP model, cf. Definitior26), which can be executed arbitrarily often if not
restricted by any constraint, are modelled as a sequencptioinal scheduling
activities (cf. Definition27). This is required since each execution of a S-Activity
(i.e., a scheduling activity) is considered as one singligicwhich needs to be
allocated to a specific resource and temporarily placedarettactment plan, i.e.,
stating values for its start and end times.

Definition 26. A repeated activityra = (a, ResAtt,nt) is a S-Activity SAct
(a,ResAtts) (cf. Definition24) which can be executed several times. It defines a
CSP variable which specifies the number of times the S-Acisvexecuted (i.e.,
nt).

Definition 27. A scheduling activitysa= (st, et, res sel) related to a repeated
activity ra= (a,ResAtt, nt), represents a specific execution of ra, where st and et
are CSP variables indicating the start and the end times @#ittivity execution,
respectively, reg Res is a CSP variable representing the resource used for the
execution, and sel is a CSP variable indicating whether ar the activity is
selected to be executed (i.e., equal to 0 in the case thatatiexecuted and equal

to 1 otherwise).

For each repeated activitytuax* scheduling activities exist, which are added
to the CSP problem specification, apart from including aaldent.

Moreover, additional CSP variables representing the ¢ibgefunctions to op-
timize are also included in the MO-COP (cf. Figl®&(B)). In this way, the SDe-
clare modelSDM = (SActsData, Cgp, AVResOFs) (cf. Definition 25) is trans-
formed into a MO-COM?, = (V, D, Ccsp OFs)(cf. Definition 5, Figure3.2(B))
where:

“ntyax represents the maximum value for the initial domaimiofcf. Fig 2(B)).
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1.V = {nt(a),a e SActg U{st(a),et(a),resa),sella), i € [1.. ntyax(a)],
ac SActg UOFs

2. D is composed of the domains of each CSP variable whereUB(var)
andLB(var) represent the upper and lower bounds of the domawaaf
respectively (cf. Exampl&0).

Example 10. In the example of Figure 2, the domain [0..2] is used for nt
since 2 is the maximum cardinality for the BP activities dbished by
existence relations in the constraint-based model). Thweaio [0..26] is
used for et and st since 26 would be the completion time ifialstheduling
activities were serially executed taking the maximum ceatitly for the BP
activities into account.

3. Ccspis composed of the resource constraints, the global contstram-
plemented by the filtering rules, cf. Secti8rR.1) related toCgp, and the
constraints which are inherent to the proposed model:

(a) Vae SActsVi : 1 <i < nt(a) : et(a) < st(aj+1) (i.e., a specific exe-
cution of a repeated activity precedes the next executidghetame
activity).

(b) Yae SActsvi: 1 <i<UB(nt(a)):sel(a) ==nt(a) >=i (i.e., thent
variable of the repeated activity is directly related to sleévariables
of the associated scheduling activities).

Resource constraints are not explicitly stated since nwsitcaint-based sys-
tems provide a high-level constraint modeling specific toesiling which in-
cludes an efficient management of shared resources. Bebelesle-based allo-
cation pattern, the CSP variables which are included in théetcan be also used
for specifying further resource constraints.csell et al.2009.

3.2.1 Global Constraints and Filtering Rules

Many constraint-based approaches for modelling and spR&S problems have
been proposed~ossi et al.2006. Moreover, several proposals exist for filter-
ing rules related to specialized scheduling constraints,(é.aborie et al, 2009
Bartak and Cepgl2010). Filtering rules lead to important performance improve-
ments, facilitate the specification of the problem, andeask the efficiency in the
search for solutions=@arba and Del Vallg2011). Therefore, the considered pro-
blem could be managed by adapting existing constraintebagproaches.



3.2. GENERATING ENACTMENT PLANS a7

Tenpor al Precedence(A B, [min, max]) ->
If LB(nt(B)) > 0 then
nt(A) <- nt(A) - {0}

If LB(et(act(A 1))) + min > LB(st(act(B,1))))then
LB(st(act(B,1)))) <- LB(et(act(A 1))) + nmin

If UB(et(act(A 1)) - max > UB(st(act(B 1))) then
UB(et(act(A 1))) <- UB(st(act(B,1))) - max

Figure 3.3: Propagator for Temporal Precedence Templ&®#actlare

However, some SDeclare templates entail complex reas@bogt several
combined innovative aspects, such as the alternating ggaswof activities to-
gether with the varying number of times which these acésitire executed. There-
fore, specific global constraints have been implementexuitir innovative filter-
ing rules to facilitate the specification of the problems &mdncrease the effi-
ciency in the search for solutions. In this way, the constsastated in the SDe-
clare specification (cf. DefinitioB5) are included in the MO-COP model through
the related global constraints (cf. Figure 2(B)). In the DO, initial estimates
are made for upper and lower bounds of variable domains, lsegktvalues are
refined during the search process by the developed filteuileg.r

In this Thesis Dissertation, filtering rules related to th&eSlare constraints
have been developed, i.e., choice, temporal and data aerist{cf. Example
11). In turns, the filtering rules associated the the basic &eatonstraints were
previous developed irB@rba and Del Vallg2011). °

Example 11. As an example, the TemporalPrecedéicB, [min,max) rule is
shown in FigureA, where the propagator that describes the pruning of domains
appears after symbok. This constraint means that between min and max units
of time before the first execution of B, at least one execuatidnmust be executed.

3.2.2 Solving the MO-COP

Once the problem is modeled as a MO-COP (cf. Definibprseveral constraint-
based mechanisms can be used to obtain the solutions to the®®)i.e., multi-
objective optimized enactment plans (cf. Definitibn Since the generation of
optimal plans presents NP-complexitydrey and Johnspi979, it is not pos-
sible to ensure the optimality of the generated plans fothallcases. However,
the developed constraint-based approach allows solviengdhsidered problems
in an efficient way as empirically demonstrate later in theecstudy.

The proposed constraint-based approach includes a nijéictive optimiza-
tion search algorithm which is based on #ieonstraint methodaimes et al.

SA detailed description of the developed basic SDeclarerifigerules can be found at
http://regula.lsi.us.es/MOPl anner/FilteringRul es. pdf.
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Algorithm 1: Generation oEnactmentPlanfom aMO — COP
input : MO-COPPy
output: SekEnactmentPlan plans

1 Map<ObjectiveFunction, Rangeranges= calculateRegion§Y);

2 SekRegion> regions- divide(Py, ranges;

3 SekEnactmentPlan planswith.dominated solveRegionst, regions;
4 plans= removeParetoDominatgal@nswith_-dominated;

1977) (cf. Section2.1). This search algorithm solves a number of single-objectiv
COPs optimizing one of the objective functions and consingi the remaining
objective functions. Specifically, given a MO-C®pP= (V,D,Ccsp OFs) with N
objective functions (i.eQFs= {OF,..,ORy}), the proposed algorithm (cf. Alg.
1) follows four steps:

1. For each objective functio®F € OFs the related range (i.e., tentative
maximum and minimum values that can be obtainedd8y) is calculated
(line 1 of Alg. 1) by using the algorithneal cul at eRegi ons (cf. Alg. 2).

At the beginning of Alg.2 an empty set of enactment plans is created for
storing the solutions which are being generated (cf. lineAlg. 2). More-
over, a solver which is in charge of finding solutions (i.@eaement plarfy

for single-objective COPs is created (i.sglverat line 2 of Alg. 2). For
eachOR, a COPP = (V,D,Ccsp OF) which includes the same variables,
domains and constraints th&nbut which only optimize®©F is generated
(lines 4-6 of Alg. 2). Then, an incomplete complete search algorithm is
used to find one optimized solutiddo| for such problem within a given
time limit (cf. line 7 of Alg. 2). The solution is then stored in the s#tls

(cf. line 8 of Alg. 2). All the solutions which are store isolsare then
used to calculate a range of tentative maximum and minimurnegafor
each objective functio@F (cf. lines 9-13 of Alg.2). This is performed by
calculating the maximum and minimum values which are a@ddur each
OF in all the solutions stored isols(cf. Examplel2).

Example 12. For a MO-COP with three objective functions and sels
{(OFL =10,0F,=5,0R=4),(OF =9,0R,=6,0FR=1)(OF =2,0R =
4,0F; = 8)}, the maximum (minimum) value for each O&enoted as
OFM (OF™), is: OFM = 10,0F = 6 and OR = 8 (OF" = 2,0F" =

6In the proposed approach the schedules (i.e., the raw sotutif the considered COPSs) are
directly transformed to enactment plans. Therefore, ferdhke of simplicity, the solutions of
such COPs are considered enactment plans.
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4 and OF" = 1.). Then, rang€OF;) = [2,10], ranggOF,) = [4,6] and
range{OFs) = [1,8].

Algorithm 2: cal ul at eRegi ons method: Calculate the range of values for
eachOb jectiveFunction

input : MO-COPPy
output: Map<ObjectiveFunction, Rangeranges

1 SekEnactmentPlan sols«+ 0;
2 COPSolversolver= createSolver();
3 foreach OF in P).ORK do

o N o o b

9
10
11
12
13

f

COPP= createCOP();

R.(V.D,Ccsp= Po.(V.D,Ccsp);

P .OF=OF;

EnactmentPlasol=solversolve@, Best TIME_LIMIT);
solsaddSo));

oreach OFi in p0.OFsdo

Ranger=createRange();
r.max=maximumValuefpls OF);
r.min=minimumValuegols OF);

| rangesput(OFR, r);

2. With the goal of obtaining an uniformly distributed set swlutions for

Po, the solution space (i.e.,M-dimensional space) is divided into smaller
N-dimensional regions (cf. line 2 of Alg. 1) by using tidevi de al-
gorithm’/ A region of a solution space witN objective functions con-
sists of N sub-ranges, each one related to one objective functionhdn t
di vi de algorithm, each range which is calculated for each objedtimc-
tion in the step 1rangegOFR), is divided into a given numbdIV of non-
overlapped sub-ranges, i.eange(OFR) Vj = 1...DIV. Each sub-range
rangeg (OF) of a rangerangg/OF ) has the same size than the other sub-
ranges related to the same objective functidR, with the exception of
the first and the last sub-ranges, i¥2 < j < DIV —1: rangg(OFR) =
[OF™+(j —1) x [ranggOR)|/DIV, OF™+ j x [rangg OF)|/DIV], where
rangg(OF)| refers to the size ofanggOR), i.e., OFM - OF™. Regar-
ding the first and the last subranges, since the solutioresigawot totally
explored in step 1 (since the search algorithm stops whemae limit is

"Due to its triviality, unlike the other algorithms, thevi de algorithm is not formally shown

in algorithm shape.
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Figure 3.4: Solution space with two objective functionsethis divided into nine regions.

reached) the absence of solutions out of the calculatedesaognnot be
ensured. Therefore the minimum value of the first sub-ramgletlze max-
imum value of the last sub-range are not fixed with the goalvoiding
missing some potential solutions. In this wegnge (OF) = [, OF™+
Irange(OR)|/DIV], andrangeyy (OF) = [OR™+ (DIV — 1) x [rangg OF)|
/DIV, +oo]. Then, the sub-ranges related to each objective funct®oanm-
bined with the sub-ranges related to all the other objeftinetions with the
goal of obtaining different region®&,, wherev e NN is a vector which con-
tains the indices of the sub-ranges which belongta.e,rangg (OF) € R,
ifand only ifv[i] = j,V1<i <N, V1< j<DIV (cf. Examplel3).

Example 13. Figure 3.4 depicts a solution space which is divided in nine
regions (i.e., R1, Ry, .., Ry 3) for a MO-COP with two objective func-
tions (i.e., O and OFR) whose ranges are divided in tree sub-ranges (i.e.,
rangey(OFy), range(OFRy), .., rangg(OR)).

3. Inorder to look for a uniformly distributed set of soluig) each region is in-
dependently managed (line 3 of Alg. 1) by using the algoristhhveRegi ons
(cf. Alg. 3).
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Algorithm 3: sol veRegi ons method: Generat&nactmentPlandy sol-
ving theCOPsrelated to eachegion

input : MO-COPPy

SekRegion> regions

output: SekEnactmentPlans plans

1 SekRegion> dominatedk— 0;
2 foreachregion in regions by regiocountDominatingRegiorigegions

© 00 N o o b~ W

11

12
13

14

descdo

if lIdominated.contains(regiohen
SekEnactmentPlan sols<« 0;
foreach OF in Py.OFsdo
COPPR,j= createCOP();
Ri.(V,D,Ccsp) = Po.(V.D,Ccsp);
R,i.OF=OF;
foreach OR in Py.OFsdo
L P.i.Ccspadd('OR € regionget(OFR).getRange()”);

B sols=solversolve@,;, Anytime, TIME_LIMIT);

f—

Isols.isEmpty(jhen
dominatedaddAll(calculateDominatedRegiomsgions
region));
plansaddAll(removeParetoDominatedSolutios®g);

Initially, an empty set of dominated regions is created (ofe 1 of Alg.
3). This set is created with the goal of storing all the regiarfsch are
dominated by others. Since only the Pareto optimized swiatare consi-
dered, the order of solving the regions influences the efffigiesince some
calculus can be saved by applying a proper ordering. Thissathorithm
solves the aforementioned problefg (i.e., a problem which optimizes
the objective functiomin the regionR,) starting with those problems which
belong to the region which dominates more regions (line 2lgt 8). A
regionR, dominatesR, if and only if V1 <k < N: v[k] > V[k] (beingN the
number of dimensions), cf. Exampld.8 If a solution is found in a region,
all the COPs related to the regions which are dominated byottmeer do
not need to be solved (line 3 of Al@) since all their solutions are Pareto
dominated by any solution which belongs to the former region

8For the sake of clarity, the maximization of each objectivection is assumed. The problem

of minimization is analogous.
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Example 14. In Figure 3.4, region Ry 3 dominates Ry, R>1,Ri2 and R 1,
region R 3 dominates R»> and R, 1, and so on.

Therefore, for each regidR, which is not dominated, an empty set of solu-
tions is created (cf. line 4 of AlgB) to store all the enactment plans related
to such region. In additiod COPsR,; = (V,D,C,,OF) are generated (cf.
lines 5 and 6 of Alg3), whereC, = CcspU (OR € rangg(OR),v1 <1 <

N) (i.e., which only optimize®OF and where all the objectives functions
are constrained to be in the related sub-rarzgege,; (OR); cf. lines 7-10

of Alg. 3). Unlike step 1, in order to generate a wide set of solutians,
anytime optimization algorithrfZilberstein 1996 is used which is an in-
complete search algorithm which updates the best solutldohns found
during the search. Then not only the best solution (cf. liheflAlg. 3) but
some intermediate solutions are returned.

If at least one solution is found within a regi®y (cf. line 12 of Alg. 3),

the regions which are dominated By are included in the setominatedo

avoid the search for solutions in that dominated regionl{cé 13 of Alg.

3). In addition, the solutions which are obtained witlRpare filtered by
removing the solutions which are Pareto dominated (cf. liheof Alg. 3

and Examplel5).°

Example 15. For a MO-COP with two objective functions and a solution
space divided in nine regions, FiguB5 shows the different solutions ob-
tained within each region, where no solutions are found gioes R 3 and
Rs 3, and where R1 and R 1 are eliminated (i.e., the COPs related to them
are not solved) since some solutions are found in regigs Wnich domi-
nates R 1 and R 1. In Figure 3.5, each cross represents a solution which is
Pareto dominated by another solution in the same region.

. After all the COPs are solved (i.e., a diversified set afisohs is obtained),

solutions which are dominated by solutions from a differegfion are re-
moved (cf. line 4 of Alg.1). Then a distributed set of Pareto optimized
solutions is obtained (cf. Exampié).10

Example 16. In Figure 3.5all solutions which are dominated by any solu-
tion which belongs to a different region are depicted by asimside a box,
and all the Pareto optimized solutions are depicted by a sgjua

%In a general case, the complexity of the Pareto dominanceritidg is O(n?) wheren

is the number of solutions [referecia]. Then, the fact ofihgwall the solutions divided in
non-overlapped regions (i.e., the solutions are clusjereglices the complexity sin€@(n®) <
O((n/m)?) x m, Ym > 1 wheremis the number of regions.

10The complete set of Pareto optimal solution is not the go#heforoposed algorithm, but a
representative and distributed set of Pareto optimizadisois.
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OFM
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Figure 3.5: Set of solutions for a 2-objectives MO-COP whbaePareto optimized so-
lutions are depicted by squares, solutions which are Pdmtonated by solutions from
the same region are depicted by crosses, and solutions \ehéicRareto dominated by
solutions from other regions are depicted by crosses irsshtex. Dominated regions are
indicated with a big cross.

3.3 Other applications of the Optimized BP Enact-
ment Plans

3.3.1 User Recommendations for the Optimized Execution of
BPs

Introduction

In order to support the users during process execution imaphg performance
goals (e.g., minimizing the overall completion time), trengration of optimized
enactment plans was proposed (cf. SecBa?). Recommendations on possi-
ble next steps are then generated taking the partial trast¢h@optimized plans
into account. Replanning is supported if actual tracesaderom the optimized
enactment plans (e.g., because estimates turned out tadminate).
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Figure 3.6: Overview of the proposal for generating optadizxecution plans at build-
time and generating recommendations at run-time.

Generating Recommendations on Possible Next Execution &

As stated, constraint-based processes offer much fleyibiliypically, given a
constraint-based process model and a certain partial, tnaees can choose from
several enabled activities which activity to execute nestich is a challenging
selection in most cases. In order to address this challémngedction proposes an
approach to assist users during process execution in @guigperformance goals
like minimizing the overall completion time. Specificallysers are supported du-
ring process execution by a recommendation service whiohiggs recommen-
dations on how to proceed best with the execution. Herelgag@nmendation (cf.
Definition28) is composed by one or more enabled activities (cf. Definitig) to
be executed next, together with their resource allocatsomse both control-flow
and resource perspectives are considered.

Definition 28. A recommendationRec is composed by a set of pa{es, R jx)
suggesting to start the i-th execution of activity a usirgpace Rjj!1.

1Ry refers to the k-th resource with roje
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For example, the recommendatien(As,R01), (B2, R1p) > suggests to start
the first execution of activityA using resourc&0; and the second execution of
activity B using resourc®1,.

The recommendation service is based on optimized enactphems which
are already generated during build-time (cf. Sec8d) by P&S all BP activities
and further optimized during run-time. At specific timeslu process execution,
the recommendation system generates the recommendatiamnbidering: (1)
the optimized enactment plans, (2) the partial traces (cgfirition 17) of the
process instances to be optimized, and (3) the resourckalaiities. In order
to determine the recommendations, different strategiasbeaused (which will
be described later). Thereby, the recommendation serviseres that not only
single process instances get optimized, but the whole seistdnces which is
planned to be executed within a certain timeframe, henosvall for a global
optimization.

At run-time, process instances (cf. Definitit8) are executed by authorized
users & in Figure3.6). At any point during the execution of a process instance,
the user can select from the set of enabled activities (cfinien 19) what to
do next. However, to guide the user to optimize the overaltess goals, recom-
mendations (cf. Definitio28) are provided by the recommendation servicen(
Figure3.6). Note that the user is not obliged to follow the recommeiothat but
she can select any of the enabled activities, i.e., all txéiléy of the declarative
specification is kept. To provide recommendations, themguendation service
proposes the most suitable activity to execute next, irepgses the recommen-
dation with the highest quality?

Algorithm 4 shows how the recommendations are generated. As input data
some information is required: (1) the SDeclare specificatibthe problem (cf.
Definition 25) and (2) the initial optimized enactment plans (cf. Defontil)
generated during the build-time phase. As stated, for acpdat timeframe a BP
enactment plan for a set of instances (cf. Definitl@his generated. Algorithm
starts at the beginning of such a timeframe and lasts uhtit@planned instances
have completed (line 15 in Algl).

Algorithm 4 continuously generates recommendations (line 11) on h@noto
ceed with process execution considering (1) the best dkainactment plard(
in Figure 3.6) meeting the constraints imposed by the constraint-bgsecifeca-
tion (e in Figure3.6), and (2) all events that occurred during process execution
(i.e.,allEvent9. This includes (1) the current partial traces of the pregestan-
ces € in Figure3.6), and (2) the current information about resource availésl
(c in Figure3.6), e.g.,('Rjk, T) means that k-th resource with role j becomes un-

12As multi-objective optimization is considered in this Thseshe value of the quality is calcu-
lated from the values of the objective functions.



56 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

Algorithm 4: Provide Recommendations
input : SDeclare Specificatiocr
sekEnactmentPlan plans

Recommendatiorec;

SekEvent> allEvents« 0,

Sek Event- newEvents

int T < currentTime);

repeat

if eventnewEventsT) then
allEvents« allEventsunewEvents

L plan <« updatécr, plans allEvents;

0w N o o B~ W N B

9 if optimizerPlaricr, plans allEventg! = null then
10 L plan <« optimizerPlaricr, plans allEvents;

11 rec < generateRecommendatignians allEvents;
12 if rec! = null then
13 | sendrec);

14 T < currentTimé);
15 until !CompleteTracgr, allEvents;

available at timél'. In the case that a recommendation is suggested (line ¥), th
recommendation system sends it to the user (line 13).

As execution proceeds, the BP enactment and the resouritebdites are
monitored { in Figure3.6). If there are new events at tinfg(line 6 in Alg. 4), i.e.,
activities get started/completed or resources becomdaal@iunavailableq in
Figure3.6), then the set of eventdl|Events which includes both the partial trace
and the resource availability events, is updated (line 7Igm A). By doing this,
the proposed approach is able to deal with uncertainty wegbli.e., inaccurate
estimates, unexpected changes in resource availahilitielsuser deviations).

Whenever events are updated the Replanning Module Figure 3.6) ana-
lyzes the optimized plans (n Figure3.6) as well as the events. In particular, it
checks if the current execution traces match with any of fiterozed enactment
plans (and if a recommendation can be made) or whether gpdtiee execution
plans are needed (n Figure3.6). In general, updates of the execution plan can
become necessary due to deviations (line 8 in Algi.e., (1) the execution trace
is not part of one of the optimized enactment plans (e.g.ut® is not always
following the recommendations), (2) estimates are inabrfe.g., when activity
executions take longer/shorter than estimated, or moressrihstances than ex-
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pected get executed), or (3) resource availabilities chdng., resources become
unavailable).

Moreover, the Replanning Module is continuously searcliomg better plan
by considering the event log during BP execution, provided the current plan
is not optimal. In this way, plan updates are conducted wiamhe replanning
module finds a solution which is better than the current opgch plans (lines 9
and 10 in Alg.4). If plan updates are required, the Replanning Module n&eds
access the extended constraint-based specification ofdbegsK in Figure3.6)
to generate new optimized plans considering both the estg@and the constraint-
based specification. If necessary, the replanning, i.e.gémeration of new opti-
mized enactment plans, is carried out by applying a comgtkeised approach for
P&S the BP activities (cf. Sectiddi2).

Despite the NP-complexity of the considered problems, mega replanning
is less time consuming than initial planning, since mosthefinformation about
previous generated plans can usually be reused, and CZBlearalues become
known as execution proceeds.

3.3.2 Automatic Generation of Optimized Imperative BP Mo-
dels

Introduction

To support process analysts in the definition of optimizednBilels a method
for automatically generating imperative BP models usinglahning techniques
from constraint-based specifications is suggested. Inrhygosed approach, the
static part of the input declarative model (i.e., controlsfland resource cons-
traints) is expected to be useful on a long-term basis sinembraces informa-
tion which is not supposed to change often. The base degkmnatodel (i.e.,
only including the static part) is complemented with infation that is less sta-
ble and which is potentially unknown until starting the BReextion. From this
extended model, the proposed approach is in charge of detaginow to satisfy
the constraints imposed by the declarative specificati@hadrthe same time to
attain an optimization of certain objective functions (grginimization of com-
pletion time). For this optimization, scheduling is doneaoshort-term basis by
considering the optimization of a set of instances.

Unlike conventional proposals, in this approach each ge#edmodel is crea-
ted and deployed for a specific planning period, consideairagnging information
such as the number of process instances which are beingtesesithin a spe-
cific timeframe. For the next executions of the declarativedetl, new models
will be generated considering the specific values which sengor the changing
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Figure 3.7: Al P&S techniques for the generation of optirdiB® models.

information. Since planning is done on a short-term bakes generated models
are less prone to change.

Figure3.7 provides an overview of this section. Taking the constrhaded
specifications as a starting point (cf. Fig&&(1)), enactment plans can automa-
tically be generated (cf. FiguR7(2), Sectior3.2).

The generated enactment plans are then automaticallyatad$nto a BPMN
model GPMN, 2017 (cf. Figure3.7(3)), which can be then further improved by
a business analyst, where necessary. In most cases, BPMlswaah be trans-
lated into an execution languag@i(yang et al.2006, such as BPELKPEL,
2007, which enables BP designs to be deployed into BPMSs andhéat ins-
tances be executed by a BPM engine. To provide for an inaleféesability the
BPMN model can be dynamically adapted during run-time bygiseplanning
(cf. Figure3.7(4)).

Note that the BPMN model is generated with the goal of makiregdecla-
rative model automatically executable by a BPMS by considethe specific
values of the changing information which are given just befstarting the exe-
cution the process. In this way, application of decisioredwd patterns is auto-
mated Reichert and Webg2012), i.e., the role of the BPMS is rather focused
on enabling control and ensuring compliance (decisionsatematically made
by the BPMS). Regarding decision deferral patterns, thjg@gch belongs to
the late modelling and composition pattern, i.e., allowiogmodelling and au-
tomatic composition of a process model just before stattiimgexecution of a
branch of process instances. Therefore, this approache&maimed within dy-
namic process-based composition (i.e., completely crg#tie executable process
model dynamically at run-time), which constitutes an exEngd the automated
variant of the late modelling and composition pattern.

In this way, the automatic generation of BP models simplifiresBP design
phase by facilitating the human work in most cases, prengtisilures in the de-
veloped BP models, and enabling better optimization to tzered in the enact-
ment phase. Furthermore, imperative BP models can dyn#yniagenerated
from static constraint-based specifications just befagisg the BP enactment,
once some values for the enactment parameters, e.g., cesaailabilities, are
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known. Moreover, the automatic generation of BP models eah\dith complex
problems of great size in a simple way. Therefore, a wideystiideveral aspects
can be carried out, such as those related to the requirerhezgaurces of diffe-
rent roles, or the estimated completion time for the BP enant, by generating
several kinds of alternative specifications. In additiorgrider to address run-time
flexibility the proposed approach allows decisions to beadetl at run-time by
using complex late-planning activities, and the BPMN mdddbe dynamically
adapted during run-time using replanning.

From Optimized Enactment Plans to Optimized Business Proes Models

Section3.2 has described how optimized BP enactment plans can be getera
from SDeclare specifications. This section describes how B model which
includes the same activities to be executed in the sameiogdmnd also using the
same resources can be generated from the optimized enagiizen

For each role in the BP enactment plan, a BPMN pool (cf. Dé&hini29) is
created, which contains as many lanes as number of avareddeirces for that
role.

Definition 29. A BPMN pool BPMNPool= (role,#role) is a pool of a BPMN
model, which is composed #fole lanes.

Moreover, for each scheduling activity in the BP enactmdah m BPMN
activity (cf. Definition30) is created. Additionally, one start activity and one end
activity are included in the BPMN model.

Definition 30. A BPMN activity BPMNAct= (pool,lane dur,st) is an activity
of a BPMN model placed in the lane named lane of the pool namoetl with
duration dur and start time st.

One of the most important aspects to be considered for therggon of op-
timized BPMN models are the precedence relations betweeBRMN activities
(scheduling activities). For establishing these preceeealations the values for
the start and the end times of the scheduling activities enetilactment plan are
considered. These precedence relations are then used asddvagenerating
BPMN models (cf. Definitior84) from BP enactment plans. Some related defini-
tions are given below:

Definition 31. In a BP enactment plan regarding a CSP solution S, a scheglulin
activity a is apredecessoof another scheduling activity;ba; € predecesso(®;),
if the relation $'@) < Sbj) holds due to resource or template relations.
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Definition 32. In a BP enactment plan, a scheduling activitysaa direct prede-
cessorof another scheduling activity;ba; € DP(b;), if & € predecessof®;) A /
Jeg € predecesso(®;) | a € predecessofs).

Definition 33. In a BP enactment plan, a scheduling activityssanindirect pre-
decessoof another scheduling activity,pag; € IP(b;j), if aj € predecessof®;) A
Jeg € predecessof(®;) | a € predecessofs).

Definition 34. A BPMN model BPMN = (Pools Activities SequenceFlows
ParallelM) related to a SDeclare process model ERActs Data, Cgp, ResOFs)
(cf. Definition25) and to a solution S (cf. Definitiod) of the related CSP (cf. Def-
inition 2) is a BP model specified through the BPMN language, where:

1. Pools= {BPMNPoolrole,#role), (role,#role) € Reg.

2. Activities= {BPMNAc(role(a), S dur(a), @), (a,role,dur) € Actsi €
[1..9M@)} U {start=BPMNACc{ Py, Lo,0,0)} U {end=BPMNACc{ Py, Lo, 0,

ma)fa,role,dur)eActs,i €[1..9m@)] Set@) ) }

3. Let the set Predecessors be:

| {(start,a) | (arole,dur) € Acts i € [1..S"®], @) = 0} U

Il {(agu@,end) | (a role,dur) € Acts Ab;, i € [1..S"P)], (b, roley, dur,) €
Acts aque € predecessold;)} U

I {(bi,cj) | i€[1..S"D)], (b, roley,dur,) € Acts j € [1..S™9)], (c,rolec, dure) €
Acts b € DP(cj)},

Then:

(a) SequenceFlows {(bi,c;) | (((b,rolep,dur,) € ActsA i€ [1..S"P)]) v
bi = start) A (((c,rolec,dure) € Acts A j € [1.S"O]) v ¢ =
end) A (bi,cj) € Predecessors. |{d,(((d,roleq,dury) € ActsA
k€ [1..SM9)]) v dy = start), (d,cj) € Predecessorig = 1)}.

(b) ParallelM= {(Sourcesc;j) | (((c,roleg,dure) € ActsA j € [1..SM°)))
Vv cj=end) A Sources= {by, (((b,rolep,dury) € ActsA i< [1..nt(b)])
V bj = start) A (bj,cj) € Predecessofs A |Sourceg> 1}.

In this way, through the sd®redecessorshe precedence relations between
activities are stated so that (1) the start activity is peedsor of all scheduling
activities whosest value is equal to 0, (2) the activities which are not predeces
of any other activity, are predecessor of the end activitg €) in general, one
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activity bj is predecessor of another activity iff b is direct predecessor @f
(cf. (3) in Definition34) . The setPredecessorss represented in the BPMN
model by BPMN sequence flows between a source actyignd a sink activity
¢j, in the case thal; is the only predecessor of (cf. (3)(a) in Definition34),
or by a parallel merging gateway between a set of sourceitesiourcesand
a sink activitycj in the case that; has more than one predecessor (cf. (3)(b)
in Definition 34). Note that parallel merging gateways (i.e., parallel wyates
which have several sources and only one sink) need to becgikpincluded in the
resulting BPMN model, since they do not have the same measisgveral binary
sequence flows from several sources and one sink. Howewveal|gbasplitting
gateways (i.e., parallel gateways which have several @inklsonly one source)
do not need to be explicitly included in the resulting BPMNduabsince several
binary sequence flows between one source activity and $ewekactivities have
the same meaning as a parallel splitting gateway in the BPAfyuage.

In order to develop the algorithms to generate the BP modeis the opti-
mized enactment plans, certain related types are stateshoa@ in Figure3.8
(UML diagram). Note that at this point of the process the C8Rables are ins-
tantiated, and hence all the information is known Yariable for each BP activity,
st variable for each scheduling activity, resource in whicbhescheduling acti-
vity is executed, etc). The types which appear in the UML diagare as follows:

e OptimizedPlafactsr,t): This represents the generated optimized enact-
ment plan. Moreover, it contains the information relatedht® input pro-
blem. Specifically, this type contains properties regay@irset of roles, a
set of repeated activities (SDeclare activitias)s and a set of constraints
which relate the repeated activities

e RepeatedActole,dur,actsnt): This represents the SDeclare activities. Each
repeated activity contains information about the requicdel (i.e.,role), the
estimated duration (i.edur), the set of scheduling activities which repre-
sent the execution of each BP activity (i.act9, and the number of times
this repeated activity is executed (i.Bt).

e Rolgresource$. This represents a role, and it is composed of the set of
resources available for this role.

e Resourcéacts: This represents a resource. This type contains properties
regarding a list of scheduling activities which are exedutethat resource,
ordered by the start time.

e Constrain{name: This represents the high-level relations which are given
between the repeated activities. Two specializationsrari@ded to allow
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the relations between one source and several sinks (ConSirks), and
between several sources and one sink (ConstraintSotitc@g)e method
includePredof a template updates the information of the BPMN model
by including the precedence relations which are impliedhat template
(more details are given later in this section during the gmé&stion of the
algorithms). For the generation of the BPMN model, the aansts are
considered for the connection of the BPMN activities.

P& SAct(st, et,res): This represents each execution of a repeated activity.
This type contains properties regarding the start and tlletiemes of the
activity, together with the resource used by the schedudictity (st, et
andresrespectively). Since each P&SAct is related to a specific BPM
Act in the resulting BPMN model, the P&SAct type provides thethod
toBPMNACctin order to obtain the related BPMNAct from a P&SAct (cf.
Figure3.8). This method is formalized as follows, where the symbols
used to specify the output paramet@BPMNActa: P& SAc) — BPMNAc(
areslanepool,a.reslanea.dur,a.st).

BPMNMode( pools acts segFlowsgateg: This represents the BPMN model
that is generated. This model is composed of a set of pomdss a set of
BPMN activitiesacts a set of sequence flovgegFlowsand a set of gates
gates It contains the functiomreateBPMN) — BPMNMode(0,0,0,0)

(i.e., this method returns an object of type BPMNModel in ethall pro-
perties are empty sets).

BPMNACc( pool,lane dur,st): This represents a BPMN activity. This type
contains properties regarding the pool and the lane wheradtivity is allo-
cated (i.e.poolandlanerespectively), together with the estimated duration
dur and start timest. It contains the following functions (cf. Figui&8):

(1) createBPMNAdta: P& SAc) — BPMNActa.reslane pool,a.reslane
a.dur,a.st), which creates a BPMNAct from a P&SAct, and @2¢ateBPMNAdt
p: Pooll : Lanedur:int,st:int) — BPMNAci p,l,dur,st).

Pool(lanesrole): This represents a BPMN pool. Each pool is associated to
a specific object of type Rolmle, and is composed of a set of objects
of type Lanelanes It contains the functiorcreatePoo(role : Role) —
Pool(lanesrole), wherelanes= J;esrole resourceCreateLanéres), i.e., for
each resource of that role, a related lane is created andliexdtlin the pool.

I3Note that both ConstraintSinks and ConstraintSourceseaséd for specifying binary cons-
traints.
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e Langres): This represents a BPMN lane. Each lane is associated to-a spe
cific resourceres It contains the functiorreateLanées: Resource —
Langres).

e Gate This represents a BPMN gate. In order to consider paral&bmg
gateways, a specialization, named ParallelM, is developed

e ParallelM(sourcessink): This represents a parallel merging gateway, to-
gether with the related input and output connections of titewgay. This
type contains properties regarding a set of inmagrces and one output
sink It contains the functiortreateParallelM| : Set< BPMNAct>.a:
BPMNACcYH — ParallelM(l,a).

e SequenceFloga,b): This represents a precedence sequence flow between
two BPMN activitiesaandb. It contains the functionreateSequenceFIgw
a: BPMNAct b: BPMNActH — SequenceFloga, b). Note that the con-
nections between a BPMN activity and a gateway are statedrallBIM
objects.
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Figure 3.8: UML Diagram of Types for the Optimized BPMN Geaten.
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Algorithm 5: Construct an Optimized BP Model from an Optimized BP
Enactment Plan
input : SortedSekP&SAct> acts ordered byst
SekConstraint- ¢
SekRole>r
output: BPMNModelbp

bp <+ createBPMN);

bp.pools«+ {createPoo(role) | role € r};

bp.acts«+ {createBPMNAdta) | a € acts};

BPMNAct start «— createBPMNAGiPy, Lo, 0, 0);

BPMNAct end<«— createBPMNAdPy, Lo, 0, MaXcactsA.€t);
bp.sequenceFlows- {createSequenceFId@gtart,ini) | ini €
bp.actsini.st= 0};

Map<P&SAct,SekP&SAct >> pred <« CreateDependenciéactsc,r);

o O~ W N P

~

8 foreach psact in actglo

9 if pred(psact).size == then

10 P&SActaPred<«— pred(psact.get(0);

11 bp.sequenceFlows- bp.sequenceFlows

| createSequenceFI¢mBPMNActaPred),toBPMNAct psach));

12 else

13 SekBPMNAct> inputs«+ {toBPMNActa) | a € pred(psact};
14 bp.gates«—

| bp.gatesucreateParallelMinputstoBPMNAct psac));

15 SekBPMNAct>
finals< {toBPMNActa) | a € P& SAct —3b € P& SActac pred(b)};
16 if finals.size == 1then
17 BPMNAct final < finals.get(0);
18 bp.sequenceFlows-
bp.sequenceFlows createSequenceFIdwinal,end);

19 else
20 L bp.gates« bp.gatesJ createParallelM finals, end);

21 return bp;

In Algs. 5, 6, 7, 8, T<P> represents the generic type T with the generic
parameter instantiated to P. These algorithms are explaieew.

The main algorithm, Alg5, constructs a BPMN model from an optimized BP
enactment plan (cf. Definitioh) and a SDeclare model (cf. Definition refdefsde-
clareprocessmodel). From the enactment plan and the SBeuladel, the input
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parameters of Alg.5 can be stated, i.e., a sorted set of scheduling activities or
dered by start time (i.eact9; a set of the constraints which relate the repeated
activities (i.e.,c); and a set of the considered roles (ifg., Algorithm 5 starts

by creating an empty BPMN model (cf. line 1). Moreover, a pasdociated to
each role is created, together with the corresponding lImes2). In a similar
way, a BPMN activity associated to each scheduling actigitgreated (line 3).
The start and end activities of the model can be associatadytgool, which

is represented b in Alg. 5, and to any lane, which is represented lyin
Alg. 5 (lines 4 and 5 respectively). In line 6, a sequence flow betvike start
BPMN activity and each BPMN activity whose estimated siaretis equal to O is
created through thereateSequenceFlomethod (cf. Figure3.8). As explained,
thecreateSequenceFlomvethod contains the parametersdbf typeBPMNACct

and (2)b of type BPMNACctas input, and createsSequenceFlowbject which
states a BPMN binary precedence relation starting and ending irb. After
that, the mappred associates a set of direct predecessors (cf. Defing®)rio
each scheduling activity by using the methioeateDe pendencigsf. Alg. 6,
explained later in this section) in order to generate the BRibdel (line 7).

Lines 8-14 establish the sequence flows and gateways betiheeBPMN
activities in the following way: if the BPMN activity has gnbne direct prede-
cessor, a sequence flow is included (lines 9-11); otherwiteiBPMN activity
has several direct predecessors, a parallel merging gatewacluded through
the createParalleIMmethod (lines 12-14). As explained, tbheeateParallelM
method contains the parameters (1f type List < BPMNAct>, and (2)a of
type BPMNActas input, and createsRarallelM object which states a BPMN
parallel merging gateway (also including all the relatedrerctions) with con-
tains all the BPMN activities of as input and the BPMN activityt as output. In
line 15, all the final activities are selected to be directpassors of the end ac-
tivity. These activities are related by either a sequenaeg flothe case that there
is only one ending activity (lines 16-18); or by a parallelrgieg gateway, in the
case that there are several ending activities (lines 19Nx@Xe that, as mentioned,
parallel merging gateways (i.e., parallel gateways whivelseveral sources and
only one sink) need to be explicitly included in the restBPMN model, since
they do not have the same meaning as several binary sequensdrtbm several
sources and one sink. However, parallel splitting gateWiag's parallel gateways
which have several sinks and only one source) do not need exjteitly in-
cluded in the resulting BPMN model since several binary saeqga flows between
one source activity and several sink activities have theesam@aning as a parallel
splitting gateway in the BPMN language.

14The generic typ&ap < T1, T2 >, which associates an object of type to an object of type
T1, is used.
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Algorithm 6: CreateDependencies
input : SortedSetP&SAct> actsordered byst
SekConstraint- constraints
SekRole> roles
output: Map<P&SAct,SekP&SAct >> directPredecessors

Map<P&SAct,Sek P&SAct >> allPredecessors- 0;
foreachr in rolesdo
foreachres in r.resourceslo
List<P&SAct> actsRes— resacts
foreachiini:1..actsRes.size-do
L allPredecessor@ctsRes 1) «+ {actsReg;

o O~ W N P

foreach c in constraintsdo
L c.includePredecessofallPredecessons

Map<P&SAct,SekP&SAct >> indirectPredecessors- 0,
10 foreachact in actsdo

11 directPredecessofact) <— allPredecessorsct);

12 foreach p in allPredecessors(actjo

o

©

13 directPredecesso(act)
directPredecesso(act) \ allPredecessor®);
14 indirectPredecessofact) <

indirectPredecesso(act) UallPredecessor®);

15 allPredecessor@ct) «
| allPredecessor@ct) UindirectPredecessofact);

16 return directPredecessors

As stated before, one of the most important aspects to bedsed for this
model generation are the precedence relations betweealtbdiding activities of
the plan, which are managed by Alg). As mentioned, these precedence relations
are due to (1) resource constraints, i.e., the activitiestocated in the resources
in a specific order in the generated enactment plan, and (BLIS8® constraints
related to precedence between activities. Algorithgenerates a map in which
each scheduling activity is associated to a set of scheglalitivities that are its
direct predecessors (cf. Definiti@2). For this, three maps are managed in this
algorithm: (1)directPredecessorsvhich associates each scheduling activity to
the set of its direct predecessors, if#}irect Predecessorsvhich associates each
scheduling activity to the set of its indirect predecesgofsDefinition 33), and
(3) allPredecessorsvhich associates each scheduling activity to the set atfsall
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direct and indirect predecessors. In ARy.first, the precedences required due to
the use of the same resource are included (lines 2-6). Skcdnel precedences
required due to the high-level relations (i.e., SDeclarest@ints) between the
repeated activities which are stated in the model are irduldrough the method

I ncl udePr ed of each constraint (lines 7-8). Typically, unlike resoupcecedence
relations, precedence relations due to SDeclare conttreamnot be easily ob-
tained. To this end, each SDeclare template presents a dwthioh is in charge
of determining the precedence relations which are givewédxst the scheduling
activities related to the repeated activities which arelved in that SDeclare
template. The mentioned method for some representativel8@eemplates is
detailed in Algs. 7 and 8. Lastly, the indirect predecessors are removed from
the mapdirectPredecessors order to avoid redundant connections, by taking
into account that the sorted smttsis ordered byst, and hence, the scheduling
activities are managed from minor to magtin the external loop (lines 9-15).

Algorithm 7: i ncl udePr ed method for thePr ecedence template with se-
veral source activities and one sink activity

input : Map<P&SAct,SekP&SAct >> pred

output: Map<P&SAct,SekP&SAct >> pred

1 SekP&SAct> meet« {a; | a € this.sourcesa;.et < this.sink;.st};
2 P&SActsel«+ argmingemeef a.€t);

3 pred(this.sink;) <— pred(this.sink) Usel

4 return pred;

With respect to thé ncl udePr ed method, some representative templates are
selected for illustration purposes (other templates canldseribed in a simi-
lar way). In Alg. 7, the template regarding the branchieckcedence tem-
plate with several source activities and one sink activigy (it is modelled by a
ConstraintSourcesbject, cf. Figure3.8) is shown. The location of a precedence
template between several sources and one sink impliedinétst execution of at
least one of the sources must finished before the start ofreteekecution of the
sink. In line 1, the set of scheduling activities which coynith the Precedence
template (i.e, the first executions of the sources which esidrb the start of the
first execution of the sink) are included in the sstet At least one scheduling
activity will be included in this set since the Precedencegkate is satisfied, how-
ever it may be possible to find more than one. In order to gémarBPMN model
which is compatible with both the optimized enactment plad the SDeclare
specification, as is the purpose of the current approachs@mgduling activity of
the seimeetcan be selected to be the predecessor of the sink in the BPMM¢Imo
One scheduling activity of the seteetis then selected to be the predecessor of the
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sink. Specifically, the scheduling activity which presemisre slack is selected
(line 2) in order to construct a robust BPMN model. In linel3 selected pre-
decessor is included in the map, and is associated to thegessbrs of the first
execution of the sink. The fact that an activigycan start after another activity
has finished (ES, default option), is stated by includiig the setpred of B (line
3) of Alg. 8.

Algorithm 8: i ncl udePr ed method for theAl t er nat ePr ecedence Tem-
plate with several source activities and one sink activity

input : Map<P&SAct,SekP&SAct >> pred

output: Map<P&SAct,SekP&SAct >> pred

1 SekP&SAct> meet« {a; | a € this.sourcesa;.et < this.sink.st};

2 P&SActsel«+ argmingemeef a.€t);

pred(this.sink) <— pred(this.sink) Usel,

4 foreachiin 2..this.sink.ntlo

5 SekP&SAct> meet« {a; | a < this.sourcesj €
1..ant,this.sink_z.et < aj.stA a;.et < this.sink.st};

6 P&SAct

sel<«— argmaxemeef (&.St—this.sink_j.et) + (this.sink.st— a.et));
pred(sel) «<— pred(sel) Uthis.sink_1;

8 pred(this.sink) < pred(this.sink) Usel

w

9 return pred;

Allowing for Run-time Flexibility

The execution plans generated in Sec8aprovide an optimal way for executing
the source SDeclare model assuming certain estimatedsvaheeall decision to
be goal-based. Even though these assumptions are validitaircenvironments
(e.g., certain web service settings) estimates might matyed be accurate or some
decisions might depend on run-time information. For this,approach described
in Sections3.1and3.2is extended in this section to allow decisions to be deferred
at run-time, and to allow the BPMN model to be dynamically@dd during run-
time.
Late-planning Activities

Executing a SDeclare model usually entails dealing withgies related to
(1) how many times one activity is being executed, and (2)ptider of execution
of the activities. This approach assumes that at least tbisides related to the
order of execution of the activities are goal-based. Howean-goal-based deci-
sions (e.g., user-based decisions) are considered, iedesgharding the number
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of executions of a particular activity. Related to thesaslens, in turn, in Declare
one activity can be executed arbitrarily often if not reted by any constraint.
However, there are some Declare templates which constrainumber of execu-
tions of the activities, resulting either in a specific valaay., A must be executed
exactly twice), or in a range (e.g., A must be executed eithee or twice). The
number of times one activity should be executed can be statezhe specific
constraint (e.g., Exactly(A,2)), or by the combination e¥eral constraints (e.g.,
the combination of Exactly(A,2) together with ChainSusies(A,B) implies that
B should be executed exactly twice). To be able to deal withisitens related to
the number of times certain activities are being executadiwdre not goal-based,
this approach proposes to encapsulate these activitigst(ter with the relations
in which they are involved) in a complex declarative latarpling activity when
specifying the SDeclare model, i.e., the use of hierartincalels is proposed. In
declarative models the activities included in a complewagtshould be such that
they can be executed in isolation from the top-level pro¢gssal et al, 2012).

Encapsulating decisions which are not goal-based in a feagjailows dealing
with each sub-process (i.e., complex activity) as if it wetgdack box, and there-
fore, the current approach can be directly applied (evehlergamultiple instance
optimization). Therefore, when creating the optimizedotment plans from the
SDeclare specification (cf. Secti@12), each late-planning activity is treated as
an atomic activity, and it is managed as a repeated actieftyDefinition 26). In
this way, when generating the BPMN model (cf. Sectdipthe complex activi-
ties are then integrated into the BPMN model by substitutirgBPMN activity
related to the complex activity by the associated impeedtagment. For sake of
clarity a description of how constraints, resources , anatitans are managed is
included:

e Constraints

The BPMN fragment associated to a specific complex actigityenerated
as follows:

1. Generating all possible combinations of declarative @®th such a
way that all different possibilities fart (i.e., number of times) for each
activity are covered. This is done by stating Exactly caists for all
the possible values for the number of executions for all dt&vidies
which belong to the complex activity. Specifically, for eaddtivity A
whose number of executions should be in a range [Min..M&xe]| ge-
nerated models should cover all the possibilities (i.eady(A,nt),
vnt € [Min..Max]) in combination with all the possibilities for the
other activities. Note that the maximum number of executiores
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for each activity belonging to a complex activity needs toek&abli-
shed, otherwise, the possibilities are not finite.

2. Foreach declarative model which is generated, relatiohize@d enact-
ment plans are created (i.e., local optimization for eacssitde fea-
sible declarative model is addressed) through the proposestraint-
based approach (cf. SectiBrR).

3. These optimized plans are then translated to BPMN fratgiaesrstated
previously in this Section.

4. These fragments are then linked by using existing mergligorithms
(e.g., Rosa et al.2010). Note that the resulting fragment will include
XOR gateways when necessatry.

When generating the different combinations of declaratieelels (i.e., step
(1)) it is possible that some unfeasible combinations existhese cases,
no related optimized enactment plan is generated, andftiner¢he related
BPMN fragment is not considered when merging (cf. Exanipgle

Example 17. Figure 3.9 shows an example of the complete process over a
fragment which includes 5 BP activities (A, B, C, D and E) arexiStence
relations (i.e., all activities should be executed at masta) together with
5 binary relations (i.e., (1) ExChoice(A,C), implying tlether A or C (but
not both) must be executed, (2) ExChoice(B,D), implying ¢ither B or
D (but not both) must be executed, (3) Response(A,B), ingptiiat after
the execution of A, B should be eventually executed, (4)eBerce(C,D),
implying that before the execution of D, C should be execuated (5) Suc-
cession(D,E), implying that after the execution of D, E $tidne executed
and before the execution of E, D should be executed). Gietaétlarative
specification, there are 3 feasible scenarios, i.e., 3 fbssvays to execute
the specification ensuring that all constraints are satifie

1. Aiis executed once; C is not executed due to ExChoice(B,S)exe-
cuted once after A due to the Response(A,B) constraint; Dtisxe-
cuted due to ExChoice(B,D), therefore also E cannot be ¢zdaue
to Succession(D,E).
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2. Cis executed once; A is not executed due to ExChoice(B,S)exe-
cuted once; D is not executed due to ExChoice(B,D), thezedtso E
cannot be executed due to Succession(D,E). In the relat@ahiapd
enactment plan, both options (B succeeding C or C succe&)iage
feasible. For this example, the option B succeeding C isidersd
more optimized than C succeeding B (note that for each flEasde-
nario only the most optimized plan is selected for the mergas ex-
plained in the step (2) of the process).

3. C is executed once; A is not executed due to ExChoice(A)O}p
executed once; B is not executed due to ExChoice(B,D). Sirise
executed, E should be also executed due to Succession(D,fBe
related optimized enactment plan, C should precede D duedoeP
dence(C,D), and D should precede E due to Succession(D,E).

In this example, some unfeasible combinations for nt eistexample, the
scenario in which A is executed once and D is executed onageasible
since 2 relations (i.e., Response(A,B) and Precedencég)@rB violated.

In Figure3.9, the different BPMN fragments (related to the optimizedatna
ment plans) which are obtained from the 3 feasible scen&r@we been

merged using the tool presented ifuGa et al.2010). For the sake of clar-
ity, in Figure3.9information related to resources and durations of ac#siti
has been omitted.

Note that optimization is locally applied within each comphctivity since
for each declarative model which is generated (i.e., fohgaassibility)
optimized enactment plans are generated.

e Resources

For each complex activity, required resources need to lhedstahen in-
cluding this activity in the SDeclare model. When all thenattes which
belong to the same complex activity require resourcesaelad the same
role, the complex activity will also require that role, are tproposed ap-
proach can be directly applied (cf. FiguselQa), where all the activities
require aresource of role R0). However, when the actiwtieish belong to
the same complex activity require resources related terdifft roles, some
adjustments are required, e.g., encapsulating the deetasab-process in
a complex activity which requires as many resources asrdiffeoles are
included in the sub-process (cf. FigelQb)), i.e., the constraint-based
approach needs to be adapted to allow for activities whighire multiple
resources, resulting in a cumulative scheduling probleémi{en and Aartg
19963.
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Figure 3.11: Flexible execution of BPMN models.

This extension can be easily achieved since most constrased systems
provide a high-level constraint modelling specific to sakied) which in-
cludes an efficient management of shared resources forkwellm sche-
duling problems, which is the case of the cumulative scheduroblem.
When generating the BPMN model, each activity of the sulzgse needs
to be associated to the suitable lane (cf. Figi€). Note that, in the pro-
posed approach, the required resource is considered teebghu®ughout
the duration of the activity.

e Durations

Moreover, for each complex activity, estimated duratioesdto be stated
when including this activity in the SDeclare model. Therastied durations
of the complex activities can be calculated in different sa8.g., as (1) the
average duration of these complex activities in past psoerscutions (i.e.,
by analyzing event logs), and hence, trying to optimize gslting plan

as much as possible although usually more replanning witeeired, or

(2) the maximum duration of these complex activities in gastess exe-
cutions, and hence, the plan is probably less optimizeddsst leplanning
will be required.

Replanning

Since estimates might not always be accurate and resouaiatalities might
unexpectedly change, the generated BPMN model is dynasnaddpted during
run-time by using replanning, and hence allowing for aneased flexibility (cf.
Figure3.11). As can be seen, as execution proceeds, the BP enactmetiieand
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resource availabilities are monitoredi Figure3.11). All new events, i.e., activ-
ities get started/completed or resources become avdilaiateailable, are stored
in an Event Loglf in Figure3.11). Whenever events are updated the Replanning
Module € in Figure3.11) analyzes the optimized plad {n Figure3.11) as well
as the events. In particular, it checks if the current exeauhatches with the op-
timized enactment plan or whether updates of both the erattptan { in Figure
3.11) and the BPMN modelyin Figure3.11) are required. In general, updates can
become necessary due to (1) deviations, i.e., estimataa@weect (e.g., when
activity executions take longer/shorter than estimated)2) resource availabi-
lities change (e.g., resources become unavailable). Matenbt every deviation
requires replanning due to the slack of some activities engihactment plan. If
plan updates are required, the Replanning Module needs&ssthe SDeclare
specification of the procesk (n Figure3.11) to generate a new optimized plan
which considers the actual partial execution of the probgassing the proposed
constraint-based approach (cf. Sect®f). The generated optimized plan is,
in turn, translated to an optimized BPMN model which is usadupdating the
current BPMN model in a way that the part which has been ajreadcuted re-
mains unchanged, and the part which remains to be executepléased. Despite
the NP-complexity of the considered problems, in geneeplanning is less time
consuming than initial planning, since most of the inforim@gbout previous ge-
nerated plans can usually be reused, and CSP variable \@@gesme known as
execution proceeds.

Note that changing a deployed BPMN model and migrating mgpmstan-
ces to a new schema can be quite challenging since respebawges must not
violate process model correctness and proper instanceitexedreichert and
Weber 20129). However, in the current approach, the proposed modeltatiop
and instance migration can be handled properly as detaildekifollowing.

On the one hand, in process model evolution it is necessalgdok that the
new model is (1) correct, i.e., it meets the structural priperequired by the pro-
cess modelling language used, and (2) sound, i.e., it orepepcompletion and
absence of dead activitieB€¢ichert and Webgf012). In the current approach,
the generated BPMN model is correct since the automatedgereguarantees
that the new model meets the structural properties reqbyedePMN. Moreover,
it is sound since the model is automatically generated frdeaaible enactment
plan which meets all the constraints imposed by the deealarapecification and
reaches the specified goal. Since the generation of the nelgles not manual
but completely automated, no errors can be unintentionatiigduced.

On the other hand, once a new correct and sound model is aehlihe BPMS
must properly deal with corresponding process instanoes,drocess instances
which were started and partially executed on the previousahdut have not yet
been completed~eichert and Webg2012). In this way, in addition to struc-
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tural properties, the BPMS needs to consider the state ad@ps instance when
adapting its process modek¢ichert and Webgi2012), i.e., depending on the
current state of a process instance, certain changes dhealtbwed while others
must be prohibited (e.g., it must not be possible to change#st of a process
instance). Specifically, the running process instance ldhoel state compliant
with the new process model. A process instance is state camplith an up-
dated process model (i.e., can therefore be migrated fdi@ iexecution trace of
the instance is producible on the new model as well. In the o&shis Thesis,
there is only one running instance (which comprises the i@t of all instan-
ces which were planned within a specific timeframe) whichtbdse migrated to
the new model version. This is not problematic in the curegrdroach since the
new model is generated through replanning from the panted@tion trace of this
instance. Therefore, this trace will be always produciliidl® new model, i.e.,
everything which has been done before can be done in the nelglmdowever,
for migrating this instance to the new process model versiotivity states might
have to be adapted to enable proper continuation of insexemition afterwards.
As an example of instance state adaptation, it might becauessary to imme-
diately enable or disable certain activities before cantig with the execution
of the process instanc&¢ichert and WebgR012). Using selected commercially
available state-of-the art BPMSs (e.g., AristaFlow BPM&iristaFlow, 2009)
respective changes can be accomplished.

3.4 Related Work

This chapter significantly improves and extends the Dedtarguage by conside-
ring multi-objective optimization, choice’¢sig 2009, temporal {/ontali, 2009
Westergaard and Mag@012) and data constraint&/ontali, 2009 Montali et al,
2013, and alternative resources. Hence, more realistic pnabland more ex-
pressive specifications can be managed. In fact, SDecldrasisd on the time
extension defined in\(ontali, 2009 where it is possible to define time lags over
the different Declare constraints. The same time-awarensiin is considered
in (Westergaard and Magdg2012 where, additionally, a deep reasoning based
on a finite automaton is performed to warn the users to avowhgestates. Fur-
thermore, a data-aware extension has been recently papogelontali et al,
2013. Such extension is considered in the current approacheieless, unlike
the current approach)/ontali et al, 2013 is based on Event Calculus and it is
focused on monitoring and operational support.

This Thesis is not aware of any other approaches for gengraét of enact-
ment plans from declarative specifications. However, tlexist some further
proposals which could be extended in such directiors(c 2008 Montali, 2009
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Krogt et al, 201Q Lu et al, 2009 Rychkova et a].2008 Hummer et al.2013.
Specifically, Pesic 2009 proposes the generation of a non-deterministic finite
state automaton from constraint-based specificationsharejoresents exactly all
traces that satisfy the constraints. However, the big deatage following such
an approach would be that the process of generating the atdarfrom the decla-
rative specifications is exponential with respect to the eizhe formula{lontali

et al, 2010, and, unlike the proposed approach, no heuristic is useldlitidan-
ally, CLIMB (Montali, 2009 could be used to generate quality traces from de-
clarative specifications, and calculate its values foredgéht objective functions.
Then, the best traces could be selected. Unlike the propagcbach, [(lon-
tall, 2009 does neither consider optimality nor resource availaedi Therefore,
these would only cover the planning part of the current psapdut not the sche-
duling aspects. In a related way, the woik¢gt et al, 2010 plans and schedules
tasks considering resources and the optimization of orextbg function through
an integer constraint-based specification. Althougin(t et al, 2010 presents
a similar constraint-based approach, it misses dealinly muitlti-objective opti-
mization, and does not support high level constraints. kheg in (u et al,
2009, a constraint formalization is proposed to generate tiaria of an ad-hoc
BPMN sub-processes. In a similar wal,(chkova et al.2008 proposes the spe-
cification of processes based on a first-order logic langaagddranslates them to
an imperative language. In turn, related to BR (hmer et al.2013 provides a
model-driven approach which produces an imperative peoggscification from a
declarative specification. Unlike the current approach,«t al, 2009 Rychkova
et al, 200§ Hummer et al.2013 do not consider the optimization of any objec-
tive function.

Several filtering rules for specialized scheduling comstsahave been deve-
loped. Specifically,fartak and Cepgl01G Laborie et al,. 2009 model schedu-
ling problems which include alternative and optional tastspectively, together
with their filtering rules. The proposed model and propamyetor the optional ac-
tivities in the current work are very similar to the propopegsented inl(aborie
et al, 2009. However, unlike Bartak and Cepek01Q Laborie et al. 2009,
to efficiently manage SDeclare constraints complex andvatinve filtering rules
are developed which are related to the alternating exatsitbbrepeated activities
together with the variable number of times which these dws/are executed.
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Chapter 4

Guiding the Optimized Execution of
Constraint-based BP Models subject
to Uncertainty through
Questionnaires

4.1 SDeclare 2.0: Extending SDeclare 1.0 by Inclu-
ding Stochastic Estimates

As stated in SectioB.1, to specify the processes in a declarative way, Declare
(Pesic 2009 is used as basis. In this chapter, the second version ofDeel&re
language is proposed by considering stochastic estimates.

Stochastic Estimates

As mentioned, to allow the specification of certain inputenmginty in the de-
clarative BP models which are designed, Declare is extebhgedcluding the
stochastic attributes for certain parts of the model (i.e., S-Activity attributes
data and temporal constraints, and resource availabilBgtimates can be ob-
tained by interviewing business experts or by analysing paxess executions.
Moreover, both approaches can be combined to get moreleebabmates.

Since estimating values can be quite challengiagui 2011), SDeclare al-
lows specifying any discrete value of the model in a stocbasty by using prob-
ability mass functionsRMFsin the following) which are functions that give the
probability of a variable taking a certain value. These PM&s be associated
to any input data (cf.Datain Definition 25) of the SDeclare model. Thus, the
Data property of a SDeclare model consist of tupteiNamedValuéddPMF>,

81
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Figure 4.1: Example of SDeclare process model

meaning that the da@Namecan be associated to a fixed valu®/élug or to a
PMF (dPMF) (cf. Examplel8).

Example 18. In Figure 4.1, a SDeclare process model related to how to prepare
a holiday is depicted. To prepare a holiday three activinegd to be performed,
select the cloths, pack them, and book the flights betwednstapover. The ob-
jective is to minimize the planning time and, additionaiyminimize the use of
a second resource. Therefore, SActdBook SelectPack}, OF s= {minimize
sum of dur minimize time ofR,}, AvRes ={<Ry,1>, <Ry, fro>} (i.e., the num-
ber of available resources of,Rs defined by the PMFg$), Data=<so,2> and
Csp={Response(Select ,Pack), Exactly(1, Select), Exactlydk)PExactly(so,
Book)} (i.e., the number of repetitions of Book is defined by thetidjata so).
In addition, {Book SelectPack} are three S-Activities (cf. Definitio24) where
Book=<Book {R1,Rx},{<dur, fg>} >, Select=Select{Ry,Ro},{<dur, fs>} >
(i.e., its durations are defined by the PMFRs &nd k), and Pack=<Pack {R; },
{<dur,10>} >. Note that there is uncertainty related to the duration offeSt
i.e., itmay last 5, 10 or 15 units of time and 15 is the most pbdé value.

Using PMFs, the estimates reflect the business realitylgtteuRizk et al,
1994). There are extensive studies focused on patterns of PMiEsdpresent the
uncertainty bestAbouRizk et al, 1994 Fente et al.200Q Maio et al, 200Q Back
et al, 2000 that are not discussed here since it is out of the focus effthesis
Dissertation.

4.2 Generating Configurable BP Models

In this section, the generation of a configurable BP modekdagned. This
includes: (1) the sampling of the stochastic propertiehef3Declare model to
obtain a set of non-stochastic models (cf. Secddnl), (2) the generation of
optimized enactment plans for such non-stochastic modélsSection4.2.2,

(3) the definition of two properties to measure how well theuinuncertainty is
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managed by the plans (i.e., flexibility and robustness, etctisn4.2.3, (4) the
filtering of non-desirable enactment plans (cf. Secddh4), and (5) the merging
of the resulting plans in a configurable BP model (cf. Seciéhg.

4.2.1 Sampling the SDeclare Model

As stated in Sectiod.1, stochastic properties can be included in the SDeclare
model (e.g., S-Activity attributes, data properties oprgse availabilities). These
properties represent the input uncertainty that is consdm the scenario and it
is used to evaluate the flexibility of the configurable BP m@uae the robustness
of the optimized enactment plans included in the model, ptagmed later.

For managing the uncertainty of the SDeclare model whenrgéng the re-
lated optimized enactment plans, the different stochgsbperties are sampled
(cf. Definition 35) by considering their associated PMFs.

Definition 35. Let SDM= (SActsData, Cgp ,AvResOFs) be a SDecare model
with n stochastic properties prap., prop,. Then: asampleis a set of n tuples
< prop, val >,i = 1..n which indicates the fixed value yvdhat the property
prop takes in such sample. The valuejvalrandomly selected considering the
PMF related to prop(i.e., fprop)-

Each sample is used to create a non-stochastic model (chifmfi36) from
a SDeclare model by assigning a fixed value to each stochasperty (cf. Ex-
amplel9). In the proposed approach, multiple samples are geneiratader to
obtain a representative set of non-stochastic models. Bawetstochastic model
is, in turn, transformed to a MO-COP.

Definition 36. A non-stochastic SDeclare modé& a SDeclare model in which
all properties are defined by fixed values.

Example 19. Regarding the SDeclare model of Figutel, a possible sample
could be:{< fS10>,< fB,7 >,< fR2,0 >}. Applying the sample to the SDe-
clare model, the non-stochastic SDeclare model of FiguPes obtained.

4.2.2 Generating Multi-objective Optimized Plans

The SDeclare mod&@DM = (SActsData, Cgp, AvResOFs) is initially modified
by the samples which are considered in such a way that onstechastic model
is generated for each sample. For generating the multetigeoptimized enact-
ment plans, the approach stated in Chapter 3 is applied to maw-stochastic
model. Then a set of BP enactment plans are obtained.
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Figure 4.2: A non-stochastic SDeclare model resulting femplying the sample of Ex-
ample 7 over the SDeclare model of Fig4ré&.

4.2.3 Quantifying the Flexibility and the Robustness

In this section definitions for both flexibility and robussiseare proposed in order
to measure how the generated models deal with the uncert&nth definitions
are based on related literature, which is introduced ini&e&.4. In the BP
field, flexibility and robustness can be treated as quamntaitributes related to
a specific process model. In the context of this Thesis, tolegs and flexibility
are quantified over enactment plans (cf. Definitipand configurable BP models
(cf. Definition21) respectively.

As mentioned in Sectio®.3.2 a configurable BP model includes different
enactment plans sice there exists a one-to-one relatiorebatgraphs and enact-
ment plans. Each enactment plan which is included in suchetadts its own
level of robustness against a specific variable which ptesercertainty (cf. Def-
inition 37). This uncertainty is defined through the related PMF whsanc¢luded
in the SDeclare model (cf. Definitidzb).

Definition 37. Let R be an enactment plan (cf. Definitidy); let v be a variable
related to some attribute of; Rnd which is defined in the domain(\p) with a
PMF f,:D(v) — [0..1], 3 xep(v) fv(X) = 1; and let W(R, v) be the set of values of v
which R withstands, i.e., Rolerates scenarios where v takes any value ifiP\\W)
without changing its performance (e.g., without changitsgabjective function
values, cf. Definitior20). Then: therobustness o againstv, Rol{R,v), is
the probability of the variable v taking a value that Withstands. When v is
a discrete variable, then ROB,V) = Y ycw(p v fv(X). When v is a continuous
variable, W(R,, v) is considered as the non-overlapped ranges of values od.y (i.
[[rLinf,r1sup, [F2int,  2sug---]) which R withstands; then Rdl®,v) = > xew(R ) (
Jeue £y (x)dx).

In this way, theobustness against a variabikeapplied over single alternatives
(i.e., single enactment plans) of a configurable BP model.c@ytrast the term
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flexibility (cf. Definition 38) is applied over configurable BP models (cf. Example
20).

Definition 38. Let P be a configurable BP model which contains different enac
ment plans P= P; and let v be a variable related to some attribute of P andolvhi
is defined in the domain @) with a PMF {,: D(v) — [0..1] , Y yep(v) fu(X) = 1.
Then: theflexibility of P againstv, FlexP,v), is the probability of the variable
v taking a value that P withstands by adapting its workflow gy af its alter-
natives .. When v is a discrete variable, then F(Bx) = Y xeUp cpW(PLY) fu(Xx).

When v is a continuous variable, (R, V) is considered as the non-overlapped
ranges of values of v (i.€[r Lint, I 1sug, [F 2inf, I 2sup -..]) Wwhich R withstands; then

Flex(Pv) = ereUp,EpW(P.,V)( frr)zi‘rjﬁpfv(x)dx).

When the variable follows a flat distribution, the robustness and the flexibil-
ity can be expressed &R, v) = |W(R,v)|/|D(v)| andFlex(P,v) = [ Upcp W(
B, Vv)|/|D(v)| respectively.

Example 20.Consider the two enactment plans depicted in FiguB{a), and the
two probability mass functions shown in Figute3 (b) (i.e., & which is related

to the number of available resources with rol2 &d fs which is related to the
duration of the activity Select, i.e., S). Then, some meastan be calculated (cf.
Figure 4.3(c)). The robustness of the enactment plam&ainst S, Rof;, S), is
equal t00.15 since AL only withstands that activity Select takes 5 units of time.
However, the robustness ofLRgainst R, Ro(P1,R2), is equal tol since AL is
valid for any availability of R (note that R is not used in B). In a similar way,
the robustness against these 2 variables is calculated&or 2. Considering the
last column of the table Robustness, it can be concludedheagnactment plan
P2 manages the uncertainty better that Ria related way, once a configurable
BP model is created by merging these two enactment plans thieeflexibility of
such model can be calculated as stated in Defini88n Therefore, Fle{, R2)

is equal tol, since P includes plans which can withstand any value ZfaRd
Flex(P,S) is equal t00.5, since the value 15 for S is not withstood by any plan
of P. Considering both variables together, F(BXR2 A S) = 0.325which means
that the 32.5% of the input uncertainty is properly managgdh® configurable
BP model.

4.2.4 Selecting the Relevant Plans

In order to select the relevant plans from the set of optichieeactment plans
(denoted byPSfrom now on) a two-steps algorithm is proposed:

1. Considering that the uncertainty of the scenario is $igeadver the stochas-
tic variables (i.e.vp) associated to some properties of the SDeclare model,
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(a) Enactment Plans (b) Uncertain variables
P1. |Pred |dur |st/If |res Availability of R2:
Book1 [} |5 [0/5 [R1
Book2 [{§ |5 |510 |R1 fr2(0) = 0.5
fr2(1) = 0.5
Select | {} 5 10/15 | R1
Pack |{S.} [10 |15/25 |R1 Duration of Select:
Enactment Plan P1 fs(5) = 0.15
R{ Bookt | Book2 | select |  Pack fs(10) = 0.35
R;
P2. |Pred |dur |st/If |res (c) Measures
Book1 | {} 5 5/10 |R1 Robustness:
Book2 |{} |5 |0/5 |R1 i | 7 ; ;
plan S R2 R2AS
Select | {} 5 0/10 |R2 P1 15 110 15
Pack |{S.} |10 |10/20 |R1 2 15 |5 o5
Enactment Plan P2
Flexibility (of a configurable BP model
R7 Bookt I . I . ] resulting of merging plans 1 and 2):
fs fra fr2ns
Rﬁ Select 5 1 32;2A
I —— - -

Figure 4.3: For two different enactment plans (a) generfitad the SDeclare model of
Figure4.2, and considering two uncertain variables (b), the robsstrod each plan and
the flexibility of the related configurable BP model are chdted (c).

a set of properties are calculated for each enactmentflarPS(cf. Ex-
ample2l):

¢ Withstood values for each uncertain variable: For egglhe range of
withstood values are calculated (i./(P,vp)). Note that calculating
the withstood ranges of the S-Activity attributes or of thaikabil-
ity of resources might be trivial. However, when the undettais
specified over data properties which affect a constraiftutating the
withstood ranges may require more elaborated calculus.

e Robustness for each uncertain variable: The robustnesssagach
uncertain variablep (i.e., Rol(R,vp)) is calculated as stated in Defi-
nition 37.
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Table 4.1: Variable$ andR, which are defined by the PMHAs and fr, respectively.

S fg‘Rz fro

5 0150 0.5
10 0351 05
15 05

Table 4.2: Properties which are calculated for the set oftement plans of Figurd.3.

Enactment Plans Measures
Plang sumdur timeR|W(R,S) W(R,R;) RoKR,S) RohR,Rz) RokP)
P1 25 0 [5] [0, 1] 0.15 1.0 0.575
P2 20 5 [5, 10] [1] 0.50 0.5 0.5

e Average robustness: Finally, the general robustness oam (le.,
Rol(R)) is calculated as the mean of the individual robustnessaif ea
stochastic variable.

Example 21. Table4.2shows a set of 2 optimized enactment plans (cf. col-
umn Pland) generated from the SDeclare model shown in Figufiewith

two uncertain variablessfand R (cf. Table4.1and its associated objective
function values (cf. columns sumdur and timg. Rloreover, regarding the
domains that each plan withstands againsand v (cf. columns WP, v1)

and W(R,,v») respectively), the value of the robustness against these va
riables can be calculated as stated in Definiti®n The values of the ro-
bustness are depicted on columns B®lv;) and RoljR, v2) respectively.
Furthermore, the value of the general robustness (cf. coli®olR)) is
calculated as the mean of R@h,v1) and Rol§R,, v).

2. In this step, the relevant plans are selected. For thisettiifferent policies
can be considered:

(a) All plans are kept: No plan is removed. In this case, the desirable
variability is not reduced.

(b) The plans which present the highest robustness are Kégtenact-
ment plans are ranked by its average robustness. Then, enpage
of plans which present the lowest robustness are remove&xeim-
ple 22). The goal of this policy consists of creating a configurdbife
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model composed by the most robust plans to the detrimenedfdk-
ibility, i.e., this policy is not intended to cover the inputcertainty as
much as possible.

Example 22.In Table4.2the plan 2 presents an average robustness
which is significantly lower than the robustness of the ofilens, and
then it would be removed if this policy is followed.

(c) The plans which provide for the highest flexibility argpkeThe min-
imum set of plans which covers the maximum input uncertamse-
lected (i.e., the minimum set which maximizes the union efhth-
stood domains, cf. Examp3). The goal of this policy consists of
creating a configurable BP model which provides for the hsgHex-
ibility, i.e., which embraces plans which cover as much utadety as
possible typically to the detriment of the robustness oféhglans.

Example 23. When following this policy, in Tablé.2 the plans R
and P2 would be selected since they are not totally overlapped.

In this way, this second step removes some enactment plgasdtess of
their objective function values. Therefoggodplans (i.e.pptimizedplans)
which were calculated in Alg.l are removed here, and then, only those
plans which areelevant(i.e., the plans which are selected according to a
policy) remain. This way, only the plans which are both good eelevant
are kept.

The proposed approach could be easily adapted to conseleobstness as
an additional objective function when generating the setpimized enactment
plans. However, in that scenario non-optimal solutionsldie included since a
new dimension would be considered in Alg.i.e., the robustness.

4.2.5 Mergingthe Relevant Plans into a Configurable BP Model

As stated in SectioR.3.2 an adaptation of the Process Merger téob§a et al.
2012 is used to create the configurable BP model out of the selgdéms. The
enactment plans to be merged are identified by a labelpigkattribute (cf. Def-
inition 1, columnPlan.id in Table4.2, Figure4.4 (a)). The generated config-
urable BP model has special nodes called configurable nokliet wepresent the
variation points of the model (cf. Figu#4 (b)). In addition, each arc of the
configurable BP model has a reference to the labels of the péewhich the arc
belongs. The variant to be executed is selected from thegroafile BP model
before the run-time phase regarding (1) the actual valuérgeaincertain variables
of the scenario, (2) the robustness of the plans which vatigssuch actual values,
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(a) Graphs (BPMN) (b) Configurable BP Graph
1.

R R1 R R1 <1,0r>
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Figure 4.4: Two different BPMN Graphs (a) related to the émaat plans of Figurd.3
merged into a configurable BP model (b).

and (3) the values of the objective functions. Just in casdléxibility which is
obtained becomes insufficient (i.e., none of the enactmlenspvhich are in the
configurable BP model withstands the actual values of themaio variables),
replanning becomes necessary and new optimized BP enaqgitaes will be ge-
nerated by considering the actual values of the uncertaiablas instead of the
PMFs and then a new configurable BP model will be created.

4.3 Run-time Individualization of Configurable BP
Model

In this section, a method for automatically generating tjoaesaires from a de-
clarative model and its usage for supporting the user duhiegxecution of such
model is described (cf. Figu#e2). Such a method uses a configurable BP model
as starting point with can be generated as detailed in Seétib Then, the BP
execution starts and advances until a configurable nodBé&mition21) is found

in the configurable BP model (cf. SectidiB.1, Figure4.5(1)). Thereafter, a de-
cision tree related to such configurable node is createdS@ftion4.3.2 Figure
4.5(2)) as an intermediate step for generating the questiomaasociated to this
configurable node (cf. Sectiagh3.3 Figure4.5(3)). Whenever the user answers a
guestionnaire (i.e., a decision is taken, cf. Sectidh4 Figure4.5(4)), the vari-
ants of the configurable BP model are narrowed down basedeangwers given.
This method is iteratively applied from step 1 to step 4 umdilmore individual-
ization is needed (i.e., until only one single variant ramsan the configurable BP
model).
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[ Business Properties }

Configurable BP Model
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1. Execute until 511,14
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4. Answer a guestion to individualize the model

Figure 4.5: Automatic generation of questionnaires foiiadializing a configurable BP
model.

4.3.1 Execution the Configurable BP Model

As stated in Definitior21, all variants which are included in the configurable BP
model are labeled (cf. Examp2s)).

Example 24. The running example of Figu#.6(a) comprises four BP models,
each one labeled with an integer. Furthermore, a group opprties for each BP
model is provided (cf. Figurd.6 (b) where time (T), benefit (B) and risk (R) pro-
perties are provided for each model). Such properties alated to the business
language, e.g., T is related to the opening hours of the legsinThe configurable
BP model associated with the BP models which are depictedguwré&4.6 (a) is
shown in Figure4.6(c). In this model, 4 different configurable nodes are deguict
with a bold diamond. In the first configurable node, labeled asvo alternatives
are possible. The lower branch comprises BP Model 4 (i.eerevlactivity A is
not executed), and the upper branch comprises BP Models Ivt&re activity
A is executed).

The configurable BP model can be executed from the beginmitiaucon-
figurable node appears, i.e., until a decision must be talfeifrigure4.5(1)).

Note that the selection of a valid variant is guaranteedesthés approach
building upon previous work which generates valid variaherging them pre-
serves these variants and the same happens with the decesgen
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Figure 4.6: a) 4 different BP models. (b) Properties of eaPhni®bdel. (c) configurable
BP model related to the BP models of (a). (d) Classificatien for node 1.

ode1
@What time would you close the office?

In more than 5 h. |J In 5 h. or less |

@What is the maximum ‘Risk’ affordable”
ICan be over 10]]  [Must be lower or equal to 10 ||

Figure 4.7: (a) Questionnaire for Node 1. (b) The resultingfigurable model after
removing Variants 2 and 4.

4.3.2 Generating Decision Trees

When a configurable node is encountered the current appeggites a method
for generating a prediction system (i.e., a model that ptedhe value of a target
variable based on several input variables)e(man ) for predicting which
outgoing branch corresponds to a given assignment of psopalues. Specifi-
cally, for each configurable node, a classification tree eéated (cf. Figurel.5
(2)) using the property values of the variants as input éemand the outgoing
branches as target variables (cf. Exaniie

Example 25. Figure 4.6(d) shows the classification tree which comes of using the
CART algorithm ) ) when using the table of Figu#.6(b) as input
variables and the strings lower and upper as target variablds can be seen,

in the resulting classification tree, the variants for whith> 5 correspond to the
upper branch. In contrast, the variants for which<I'5 correspond to the upper
branch if R< 10, or to the lower branch otherwise.

4.3.3 Creating Questions

A set of questions is then created for each decision treeFiglure 4.5 (3)). To

create such questions according to the business languag,cd well-defined
business properties must be provided. This way, one queistiautomatically
generated for each intermediate node of the tree. The pessiswers for such
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guestion are the different labels which are written on thgoing branches of this
node. The text of the questions is automatically generated the information of
the provided business properties (cf. Exan8g As stated, these questionnaires
are in charge of narrowing down the variants of the configer8® model.

Example 26. A simple questionnaire related to the decision tree of Fegu6(d)

is shown in Figured.7(a). Since this decision tree has two intermediate nodes
(i.,e., T and R), two questions are created. Moreover, siraad @iode has two
branches, each question has two options. Initially, onky guestion related to

T is enabled. Considering that the well-defined businesgesties stated that T

is related to theclosing timeof the office, the generated question would look like
What time would you close the officé?The second question has to be answered
only if the user selects the second option of the first queséti®.,In 5hrs. or lesk
which is related to the branch ¥ 5 of the decision tree.

4.3.4 Incremental Configuration

Whenever a questionnaire is answered, the configurable BRelnm narrowed
down by removing the variants that do not belong to the edigetsal in this con-
figuration step. Thereafter, the proposed method contiai&ep 1 (cf. Figure
4.5) considering the narrowed configurable BP model and cominine execu-
tion from the last executed activity.

Such method is repeated until only one variant remains iconégurable BP
model, i.e., the configuration has finished (cf. Exaniie

Example 27. Supposing that the user selects the first answer of the fiesttoun
of the questionnaire of Figu#.7(a) (i.e.,In more than 5hr3, Variants 2 and 4 are
removed from the configurable BP model since they have a tiopegy "< 5.
This results in the configurable BP model of Figdr&(b). Note that the second
and forth configurable node of Figu#.6(c) are not depicted in Figurd.7(b)
since Variants 1 and 3 share the same outgoing branchesésethodes, i.e., the
upper branch. However, the third configurable node requsegcting one of the
two branches, and hence, a new questionnaire is generated.

4.4 Related Work

The Declare language’¢sic 2009 has previously extended in Chaptr In
this chapter, as a major contribution of SDeclare 2.0 reggrelxisting proposals

Note that, the semantic of the generated questions higlplgrets on the information provided
for the business properties. Such information can be use@ke the questions more user-friendly.
No depth details are given since it is out of the scope of thissis.
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(Westergaard and Magge2012 Montali et al, 2013 Montali, 2009, it allows
specifying the input uncertainty of real scenarios by usitaghastic values.

In addition, none of the approaches which can be used to gienienperative
models from declarative specificatioris=Gic 200§ Montali, 2009 Krogt et al,
201Q Lu et al, 2009 Rychkova et al.2008 Hummer et al.2013 considers the
uncertainty of the scenario through stochastic attributes

As mentioned, several approaches exist for dealing witlibiky issues (Ci-
cerone et a).2012 Aissi and Roy 2010, even in the context of BPREichert
and Weber2012 Schonenberg et §20089. However, in this chapter as a novel
contribution, it proposes quantitative definitions forbobvbustness and flexibil-
ity which allow an analyst to measure how the uncertainty ofa scenario is
supported by an enactment plan and by a configurable BP mesfsctively.

In literature, different approaches deal with the variapof BPs (Schnieders
and Puhlmany2006 Hallerbach et a).201Q Rosa et al.2011; Kumar and Yag
2012 Rosemann and van der Agl&2007 Schunselaar et al2012. In PE-
SOA (Schnieders and Puhimar2009 and C-EPCRosemann and van der Aglst
2007 Rosa et a].2017) configurable BP models are used as basis. Variation points
are either defined by a set of annotations of activitiesh(iieders and Puhlmann
20069 or by including configurable BP nodes¢semann and van der Agl2007,
Rosa et a].2017). In turn, the work Rosa et al.2011) improves the C-EPC
language by incorporating both resource and data notatitimei C-EPC models.
Unlike C-EPC and PESOA, Provopléllerbach et a).2010 and RULE umar
and Yaq 2012 consider a base process model which is configured using a set
of predefined change operatiorisa(lerbach et a).2010 or applying some bu-
siness rules{umar and Yap2012. Furthermore, there are other approaches
which mix declarative specifications with configurable BPdals, e.g., ConfDe-
clare Gchunselaar et a2012) presents a declarative language in which activities
can be hidden and constraints can be omitted. Regarding bofigarable BP
models are created, essentially, there are two ways: migrarad automatically.
On the one hand, the manual creation of configurable BP madegisbe car-
ried out from scratch by manually specifying the variati@mns (Schnieders and
Puhimanpn2006 Hallerbach et a).2010 Kumar and Yap2012 Rosemann and
van der Aalst2007 der Aalst et al. 2006 Gottschalk et a).2008§. The main
problems of the manual creation is that it is typically a vinye consuming task
and requires deep skills on the modelling language. On ther ¢tand, an auto-
matic method has been proposed to generate a configurableoBé&l,im C-EPC
language, from a set of BP models by analyzing the simiéwitif the source BP
models and including variation points where they diffen¢a et a}.2010 2012).

The main problem of the automatic creation of configurablenBRlels is that it
requires a family of BP models independently specified. &thés chapter pro-
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poses to automatically create configurable BP models, thierdiapproach builds
upon these techniques.






96 CHAPTER 4. UNCERTAINTY, FLEXIBILITY AND ROBUSTNESS



Chapter 5

Empirical Evaluation

5.1 Introduction

To evaluate the approach which is detailed in this Thesisddiation, in this chap-
ter a wide empirical study over a real scenario is performiéds way, this chapter
includes the description of the real scenario where theuatiain took place (cf.
Section5.2) as well as the case study which was followed to carry out sweh

luation (cf. Sectiorb.3).

5.2 A Real Example: A Beauty Salon of Seville

This section introduces a real example related to a bealy $laat is used to
validate the proposed approach in the considered case Spdgifically, in Sec-
tion 5.2.1the selection of the considered scenario for carrying ceietmpirical
evaluation is motivated, Sectidn2.2explains how the proposed approach is in-
tended to be used for improving the current situation, $adi2.3 details the
considered scenario, SectibrR.4includes the SDeclare specification of the con-
sidered scenario, and, finally, Sectisr2.5explains how the proposed approach
can be used in the considered scenario.

5.2.1 Motivation

The considered business has grown considerably in thedas$ ylt has expanded
from a small salon with three employees to more than six aclddied additional
facilities to be able to offer additional services. In aduif the uncertainty re-
garding different aspects of the business has become antempproblem, e.g.,
the arrival time of the clients or the availability of somasaerces during the day
(e.g., due to a resource who feels sick at the beginning adalyebut not enough

97
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to leave the salon). These changes, including the quicktgraygether with the
complex constraints which need to be obeyed, resulted iplgmts related to the
management of the salon. In particular, long waiting timecfeents and missing
schedules for employees are causing problems, affectstgmer satisfaction and
profit of the business.

Furthermore, such scenario has been selected since:

1. It faces a complex problem which goes far beyond a toy praldince it
presents several challenges that can also be found in abheaids (i.e., it
highly depends on the managers skill to take decisions rtaingy is inherit
to the business and the declarative language ameliorgieatfecation).

2. Unlike more common scenarios, this kind of business habe®n widely
supported by previous research and thus, it is consider@thamative ap-
plication.

3. Access to the data was possible in that scenario and there¢he analyst
was able to collect data for a long period of time for the exion.

5.2.2 Goal of the Business

The goal of the business is to improve the current situahoough the optimiza-
tion of some business objective functions. Since our ambrg&nerates an opti-
mized configurable BP model, a set of optimized schedulesrfgloyees can be
suggested each one facing a different possible uncertamasio, and therefore,
the aforementioned problems can be overcome. Moreovee sinulti-objective
optimization is considered, several important object{ves, minimizing waiting
times for clients and maximizing profit) can be optimized.rtRarmore, due to
the high expressiveness of SDeclare, all the constrainishwdre given in the
scenario together with its uncertainty can be specified.

5.2.3 Scenario details

The beauty salon offers various serviddike dye, clean&cut, manicure and fa-
cial services. It requires its clients to make appointmefis¢o know how many
clients are coming as well as the booked services. Thereeaesa full-time em-
ployees, e.g., Amparo (A), Rosa (R), Lisset (L) and Marta.(EBch employee
has different skills, and hence some activities can be pedd by certain em-
ployees only. For all activities which are performed in tlados, the manager

For the sake of clarity, the depicted scenario is a subsdteofittual beauty salon, i.e., the
salon offers more services and has more employees.
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knows the average estimated duration, the profit which iginbtl after their exe-
cution, and the employees which can execute that activihe manager of the
salon wants to plan and schedule a working day with seveitsl taking the
following considerations into account:

1. The profit (P) of the resulting working plan has to be maxeudi(objective
function 1).

2. The waiting time (WT) of the clients has to be minimized alistributed
uniformly among all the clients (objective function 2):

WT = \/Zcec((5endT(C)—C-appT)‘(Zbec.servecxt’-eﬁimate)z’ whereC is the set of

clients,sis the considereg'sslzglutios,endT(c) is the time when the client
¢ has finishedg.appT is the appointment time af, c.servedis the set of
services which are applied &q(i.e., included in the plan), arfdestimatas
the estimated duration for servibe

3. The employees can offer some additional services to thatdirectly in
the salon, and the client can accept or refuse. Howevere thegitional
services should only be proposed if this leads to optimizads

5.2.4 SDeclare Specification

Typically, as illustrated in FigurB.1, a client visit starts with the reception in the
beauty salon. After that, the staff applies some servicésdalient and, finally,
the client is charged. Complex activiServicess composed of other activitiés
(e.g., dye, clean&cut, facial and manicure, cf. Figbr8), while Receptiorand
Chargeare S-Activities (cf. Definitior24). For each S-Activity two attributes
are considered: (1) estimated activity duration, and (®jJipwhich is obtained
after executing the activity.Moreover, the set of alternative resources which can
perform the S-Activity is also included (cf. Exam&8).

Example 28. In Figure 5.1, activity Reception has an estimated duration of 1
minute and a profit of 0, and can be performed by A, R, M or L.

Notice that each instance created from the model of Fi§ukreepresents one
client visiting the beauty salon. The current problem dedth N clients (re-
presented by the Existence constraint of Figauk stated by the label N) which
come to the salon at different times and with different bagkiduring a working
day which are specified as data information.

2In a similar way to PSLRSL, 1977, SDeclare allows hierarchical modelling (i.e., complex
activities aggregate activities).

3As can be seen in Figs5.1 and5.2, the profit of the services is associated to one of the
activities of the related services.
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Figure 5.1: SDeclare Model for the Beauty Salon Problem (&oel process)
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The data perspective also appears in Figude The Client-Data includes
all the information which is related to the client bookingsd consists of: (1)
clientName (2) bookedServicesvhich represents the mandatory services that
the salon staff has to cover, and é3) pointmentTimeawhich is the time when the
clientis supposed to arrive at the salon. Through the datgppetive, itis possible
to model that activityRece ptiorcannot start before the client appointment time
(cf. Figure5.1). Moreover, a data constraint is used (in conjunction wité t
choice constraint) to ensure that all the services thetdtias booked are selected,
i.e., the generated plans will always include the bookedses (cf. Figures.2).

5.2.5 Applying the Proposed Approach

Given a SDeclare mod&DM = (Acts Data, Cgp, AvRes OFs) for the beauty
salon problem, wherActs Data, Cgp andAvResare shown in Figsb5.1and5.2,
and OF s are described in scenario details (i.e., maximization ef ghofit and
minimization of the waiting time), the proposed tool gemesamulti-objective
optimized enactment plans. These plans are, in turn, repites as a configurable
BP model by following one of the available policies. Such mlagill support the
manager of the beauty salon in managing the working day inpima@ed way.
In addition, our approach will guide the individualizatiohthe configurable BP
Model through questionnaires.

In this way, the proposed approach provides support to theagex of the
beauty salon by suggesting (cf. Examg®: (1) a resource for executing each
activity, (2) the start and end time of the activities, anytf& services which will
be offered to each client (i.e., services which were not lbddyy the client).

Example 29. As examples, two Pareto optimal plans for serving 10 cliantee
beauty salon are depicted in Figuse3and Figure5.4.
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Figure 5.3: Example of an enactment plans for the beauty gatablem when using 3 resources.
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5.3 Case Study

In this section, the case study protocol for the softwarerezgging field proposed
by (Brereton et al.2008) is followed to improve the rigour and validity of the
study. Such protocol suggests the following sections: tpamknd, design, case
selection, case study procedure, data collection, asafysd interpretation, and
validity evaluation.

5.3.1 Background

In this section, previous research related to the topic isf Thesis is identified.
Different proposals related to (1) the generation of optediBP enactment plans
and the related optimized configurable BP models from datiler specifications,
(2) flexibility and robustness concerns, and (3) the germraff questionnaires for
individualizing configurable BP models are discussed irptieeious chapters (cf.
). In particular, our proposal uses the SDeclare languaghéodeclarative speci-
fication of a BP and generates a set of optimized enactmems plat of it. After
that, a configurable BP model is created using those plangwhore contribute
to the flexibility and robustness. Thereafter, a questioenaautomatically crea-
ted for individualizing the generated configurable BP madeln-time.

In such context, th@urpose of this studis the evaluation of the proposed
approach for guiding the execution of declarative modaisugh automatically-
generated questionnaires. Taking the purpose of the sttmgccount, three main
research question (MQs) are defined (cf. TdhlB as follows:

1. MQ1 checks the suitability of Alg. 1, i.e., evaluates if theabed op-
timized BP enactment plans are uniformly distributed over solution
spacé and if the algorithm performs well when dealing with compjex-
blems. For thisMQL1 is divided in two additional research questions (AQS):

(a) AQL checks whether Alg. 1 finds solutions within the differeegions
in which the solution space is divided.

(b) AQ2 evaluates if Alg. 1 behaves successfully (i.e., finds acumify
distributed set of solutions) when solving problems ofetéint com-
plexity.

2. MQ2 assesses if the current approach can be useful to deal ewitipro-
blems involving uncertainty. For thi8/Q2 is divided into two additional
guestions:

“Note that one of the goals of Algl consists of obtaining an uniformly distributed set of
solutions.
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(a) AQ3 checks whether the solutions which are obtained by outoagpr
improves the actual solutions which are manually obtainethb do-
main expert for the real scenario in terms of their objediirections.

(b) AQ4 evaluates the generated configurable BP models in ternts of i
robustness and flexibility against the input uncertaintgjoh is im-
portant in order to avoid replanning.

3. MQ3 evaluates the proposed method for automatically creafirggtion-
naires for configurable BP models as well as the method faementally
configuring them. For thisViQ3 is divided in four additional questions:

(a) AQ5 checks if the approach behaves properly against configurab
nodes of different sizes.

(b) AQ6 evaluates the suitability of the questions which are geedr

(c) AQ7 is concerned about the performance which is achieved tseng
current approach.

(d) AQ8 checks if replanning can be avoided.

5.3.2 Design

Theobject of studys the approach which is proposed for guiding the executions
of declarative models. For this, three different desigescarried out in this case
study.

1. Afirstembeddediesign EDL in the following) concerning Algl. Partic-
ularly, this first design considers one analysis unit: theegation of opti-
mized BP enactment plans through solving MO-COPs. In thésgehe for
addressingMQL1 (i.e.,AQl andAQ2), a set of different non-stochastic SDe-
clare models are randomly generated leading to differemtpbexities of
the MO-COPs which have to be solved. Note that stochastiahas are
not considered in this design.

2. A secondembeddediesign ED2 in the following) which considers the
generation of configurable BP models from declarative $jgations for
addressincdAQ3 andAQ4. Specifically, the method is applied over diffe-
rent SDeclare models in which stochastic variables areidered for the
appointment time of the clients and for the availability esources. For
dealing with such variables, the sampling step is configtoegenerate 30
different samples (cf. Sectigh2.]).
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Table 5.1: Case study research questions

Id | Research Question

MQ1 | Is Alg. 1 appropriate for finding a uniformly distributed set of Parepti-
mized solutions for SDeclare models of different comphexit

AQ1l | Can Alg. 1 find solutions within the different regions in which the subn
space is divided?

AQ2 | Does Alg.1 behave successfully independently of the complexity ofttee
blems?

MQ2 | Is the proposed approach useful for a business expert?

AQ3 | Can the proposed approach improve the results which areatipiobtained
by an expert?

AQ4 | Can the proposed approach generate an unified artifact vokichves prop-
erly against the input uncertainty?

MQ3 | Is our method appropriate for individualizing configuraBlé models during
run-time?

AQ5 | Canthe proposed method be used to generate questions figurable nodes
of different sizes (i.e., nodes with different number ofriiriaes)?

AQ6 | Are the generated questionnaires appropriate to be andweereal envi-
ronment (i.e., adequate number of questions)?

AQ7 | Isthe business performance improved by using the proposéuloai?

AQ8 | Is the proposed method preventing replanning (i.e., clmanghe variant

which is being executed)?

3. A third embeddedlesign ED3 in the following) considering the creation
of questions for addressinyQ5 andAQ6. In this design, the method for
generating questionnaires from a configurable node (cti@et.3) is con-
sidered as the analysis unit. For this, such method is appirer a set of
configurable nodes of different sizes.

4. A forthembeddedlesign ED4 in the following) which considers the con-
figuration of configurable BP models using questionnairesafswering
AQ7 andAQ8. Specifically, the proposed approach is applied overrdiffe
configurable BP models each one presenting a different aodtpl(i.e.,
different number of activities).

For addressing the desigfD1 andED2, Alg. 1 considers dividing the so-
lution space in 4 regions< (rx € {r1,r2,r3,r4}) and the constraint-based search
algorithm is run until a 5-minutes CPUIME_LIMIT is reached (cf. Algs2 and
3), which is considered a reasonable amount of time for thésn@ss.
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Table 5.2: Quantified variables f&D1

Variable | Description

minW T, minP, | Initial ranges for each objective function, which are cédted in the
MaxWT, initial searches of Alg. 1.

MaxP

%Skx The percentage of SDeclare models in which, at least on¢icolu

is found within region regiomx (rx € {r1,r2,r3,r4}) regarding the
total number of SDeclare models which are considered.

NACtsy Size of the enactment plans which are generated within megip
which is measured as the number of activities.

W Ty, Prx Value for each objective function which is obtained withagionrx.

SAddl Number of additional services per client which are includethe

solutions which are found within regior (i.e., those services which
where not initially booked but are included in the plan)

%P Sy Percentage of Pareto optimized solutions obtained witgonrx
regarding the total number of Pareto optimized solutionglviare
obtained for the considered problem

All the aforementioned designs are run on a Intel(R) Xeor@R)J E5530,
2.40GHz, 8GB memory, running Debian 6.0.3. After carrying the four de-
signs, the generated information (i.e., optimized BP anant plans and ques-
tionnaires) is analyzed to answer the research questitriafge5.1).

As follows, the data which is quantified for each design isaiied. First,
for ED1, the data described in Tal#e2 is quantified (cf. Exampl&0) for each
SDeclare model which is considered.

Example 30. Figure 5.5 depicts the set of solutions which are found during the
search process for a specific problem. As can be seen, JAtijvides the solu-
tion space in 4 regions. In order to state the limits of eadjos (i.e., MinWT,
MaxW T, minP and MaxP), the solutions which are found in the §itep of Alg.

1 (cf. Alg. 2) are used (depicted by squares in Figi.&).

In this example, as only one problem is conside®8F1 = %Sk, = %Sk3 =
100%since at least one solution is found withih, r2 and r3, and%Sk4 = 0%.
As stated in Alg.3, since a solution is found inlrand it dominates4, r4 is not
explored. Note that the solutions which are depicted witdinvere obtained in
the first step.
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Figure 5.5: Solutions which are found for a specific settihthe beauty salon problem

Within the overall solution space, 22 different solutionsf@und. Of these 22
solutions, 9 are Pareto optimized while 13 are dominated@effinition7). From
the 9 Pareto optimized solutions, 2 solutions belonglo4 to r2 and 3 to 13,
which means thatoPS = 22.2%, %PS> = 44.4% and %PS3 = 33.3%. As 14
is not solved, i.e%PS4 = 0%.

For theED2 design, the data described in Tabl8is quantified (cf. Example
31) for the different non-stochastic SDeclare models whiehgemerated for each
considered SDeclare model. In order to mea$iex, MaxRobandminRoh all
plans which are generated for each non-stochastic SDetladel are kept, i.e.,
the "all plans” policy (cf. Sectiod.2.4) is applied.

Example 31. Figure 5.6 shows the set of solutions which are obtained when sol-
ving a specific problem related to the beauty salon scen@sacan be seen, many
Pareto optimized solutions (i.e., squares in Fig&iré) are obtained since the pro-
blem is solved several times because of the uncertaintabias (i.e., different
samples are generated and solved, cf. Sedti@rl). The maximum and minimum
values (i.e., minW T =3, MaxW T =18, minP=350 and MaxP=730)va# as their
average values (i.eWT=10.3 andP=601) are depicted in each axis.

In addition, the real execution plan is depicted by a cireléFigure 5.6. The
difference betweeW T (P) and WT=14.8 (P=515) in the real execution plan is
equal toAWT=4.5 (\P=86). Therefore, applying the proposed approach, the
waiting time has been reduced (i.€AW T =30.4%) in average and the profit has
been incremented (i.€6AP=16.7%) in average.

Finally, as depicted, the real enactment plan is dominatgdsdme Pareto
optimized solutions (cf., arrows in FiguBe6) which means that solutions which
improve both objective functions are found. Therefore, ialy one problem is
considered in this exampl&Dominated= 100%

For the desigrED3, the data described in Tab%e4 is quantified for each
configurable node. In addition, the business manager spediiat answering
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Table 5.3: Quantified variables f&D2

Variable | Description

minW T, minP, | Average of the minimum and maximum values of the objectiviefu
MaxWT, tions (i.e., waiting time and profit) which are obtained bylgmg
MaxP the proposed approach.

WT, P Average values of the objective functions which is obtaiagplying

the proposed approach.

%AWT, %AP | Average values of the percentage of increment of the obgtiiinc-
tions of the plans which are obtained through the proposptbagh
versus the real execution plan.

%Dominated | Percentage of problems whose real execution plan is doedr{af.
Definition 6) by the Pareto front generated by our approach.

Flex Average flexibility (cf. Definition38) of the generated configurable
BP models against the uncertainty provided by the input &bec
model.

minRobk Average values of the minimum and maximum robustness (cf- De

MaxRob inition 37) of the plans which are included in the generated config-

urable BP models.

more than 10 questions would be inefficient and thAQ2 can be answered as
true if #MQ stays under 10 independently of the size of the configuratudie n

Lastly, for the desigrED4, the data described in Table5 is quantified for
each configurable BP model.

5.3.3 Case Selection

For this case study, the beauty salon problem is studieds iShtonsidered a
good and suitable case since it fulfills the following setattcriteria: (1) it has
been created faan actual business(2) the business has grown up and now it has
scheduling problems(i.e., involves resource allocation, complex constraamis
multi-objective optimization), (3) the business perforroahighly relies on run-
time decisions(i.e., the knowledge of the domain expert has a great inflrenc
on the performance), and (4) the problensigject to uncertainty, and such
uncertainty can be measured, i.e., the manager can deéeanhtertainty of the
scenario which can be manually specified in the SDeclare lmode
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Figure 5.6: Solutions which are found for a specific probletated to the beauty salon
problem with some stochastic variables

Table 5.4: Quantified variables f&D3

Variable | Description
OB The number of outgoing branches .
#MQ, #mQ The minimum and maximum number of questions which need to be

answered for resolving the questionnaire associated torsode.

5.3.4 Case Study Procedure

The execution of the study is planned as follows.
1. The business is selected according to the selectiomiarite

2. The selected business is modeled as a SDeclare model byshess an-
alyst. Initially, only the activities and the constraintbiah relate them are
included.

3. A different procedure is performed depending on the cas&yd which is
being carrying out:

¢ In the case of th&D1 design, different data for the SDeclare model
of the Beauty Salon problem (cf. Secti&®) are randomly gene-
rated. Therefore, each generated model includes the samgies;
relations and resources, but differs in the number of di¢N), their
booked services (S), and their appointment times (T). Clensig the
information which is provided by the manager of the salos (there
are normally between 10 and 20 clients per day and a clieidéaip
books one or two services) valués, 1.5, 2 are considered for the
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Table 5.5: Quantified variables f&D4

Variable | Description

#Acts The number of activities of the configurable BP model.

#Q The number of questions which the user actually answerafb |
vidualizing the configurable BP model.

A$ The increment of profit which is obtained by using the curism
proach versus not using it.

%R The percentage of cases in which replanning is avoided mgubke

current approach.

average number of booked services of the clients (N&, and the
values{10, 15, 2Q for the number of clients (i.eN). Based on this
information, to average the results over a collection oficanly gene-
rated SDeclare models, 30 data instances are randomlyageddor
each paiN,NS> by varying S and P.

After that, the optimized BP enactment plans are obtainezpipyying
Alg. 1.

In the other cases (i.eED2, ED3, andED4 designs), the model of
Figure5.1 has been extended to reflect the reality better, i.e., tHe rea
model includes 21 different services and 7 resources. litiadd
some services are related to each other to prevent non-sgasa-
tions, e.g., to avoid performing the cleaning nails senafter the
painting nails service. Furthermore, the number of sesvpsr client

is limited to 4.

In addition, for thee D3 andE D4 designs, the salon manager provided
a set of properties in form of functions (i.e., the well-detirproperties
written in the business language) which can be calculated fach
enactment plan.

As mentioned, this case design considers real data whicbtasned
from the log of the beauty salon. For this, the staff of theubgaalon
manually logged data for a period of 90 days. In particular,each
day they logged: (1) the number of clients (i.d), (2) their booked
services (i.e.d), (3) their appointment times (i.€T,), and (4) the re-
source availability of each dayA¢yRe$. In addition, for each event
that occurs during the day (e.g., when a client arrives, tniycstarts

5The set of problems which are used for the empirical evalnafis available at
http://regul a.lsi.us.es/ MOPl anner/ Cbj ect sBeaut ySal on. zi p.
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or finishes), its time-stamp is recorded by the receptiomsiurn, the
manager of the beauty salon provided some stochastic \esiad-
lated toT (i.e., some unpunctual clients) andAwReqi.e., staff who
probably become unavailable during the day, cf. Exam3@)e These
stochastic variables were defined with flat PMFs (cf. Sectidh

Example 32. Let 14:30 be the appointment time of certain client. The
manager knows that such client used to be unpunctual; thexethe
specifies in the SDeclare model her appointment time throlgflat
PMF appT={14:25, 14:30, 14:35, 14:40° In addition, before start-
ing the day (and before generating the configurable BP modek

of the resources has informed the manager that she doesalotéd;
therefore, the manager specifies her availability throug flat PMF
avR={0,1} in the SDeclare model.

Therefore, for each day, the same SDeclare model is coesidee.,
they have the same activities, relations and estimatesgdeh day
differs inN, S T, AvResand the associated stochastic variables (i.e.,
problem data)’

These problems are grouped considefi@nd the average number
of booked services (i.eNS=|S§/N) in order to enable the compar-
ison with theED1 design. For thisN is divided into three ranges
[8,12], [13/17] and[18,22], andNSis also divided into three ranges,
ie.,[1,1.4],(1.4,1.8],(1.8,2.2].

Then, the configurable BP models are obtained by applyingtbe
posed approach. As mentioned, only the best variants ateatem
generating the configurable BP model.

In addition, for 30 of those 90 days, the salon manager wasastgu
by our tool to manage configurable BP models for @123 andED4
designs. Using such a tool, after the configurable BP modgtine-
rated for each day, the variant which was selected by ther sabm-
ager before starting the execution (i.e., before the fiiehtlarrived)
is logged. In addition, each time a configurable node appga:s
a decision needs to be taken), a questionnaire was prompteshe
answered it. At the end of each day, th@ &nd the selected variant
(i.e., the result of the individualization) were stored.abidition, such
variant was compared with the variant selected beforarsigtie exe-
cution andA$ was calculated and stored for each day. Furthermore, the

8In this example, 5 minutes is considered as the minimum atafitime which can be mea-

sured.

The set of data logged which is used for this experiment isilabla at
http://regul a.lsi.us.es/MOPl anner/ Cbj ect sBeaut ySal onReal . zi p.
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variant which was selected before starting the executianchacked

if could withstand the events logged for that day. In casedtbd
not, it was stored if replanning was avoided by using our epgin,
i.e., %R is stored® The value for %R is calculated as the percentage
of times that our approach avoided replanning against tta nom-
ber of times that replanning was required. To analyze thedeh

of the method against different complexities, the 30 coméigle BP
models (each one corresponding to a day of work) are grouped c
sidering #. In particular 4 groups are consideredQ # [40,60),
#Q € [60,80), #Q € [80,100), and #) € [100,120).

In turn, after the period of 30 days passed, for HB3 design, all
the configurable nodes which appeared in the configurable BP m
dels which were stored were gathered. Specifically, 259 gorgble
nodes were obtained and the current approach was applieth&vage
the questionnaire associated to each node. For each 6&]éimQ
and #MQ were stored. To analyze the behavior of the method against
different complexities, the 259 configurable nodes wer@igea con-
sideringOB. In particular 4 groups were considere@B € [2,5),
OBe€ [5,8),OB€ [8,11) andOB € [11,14).

4. All the relevant information is collected following theltection plan.

5. Finally, the analysis and the interpretation of the @i#ld data is conducted
and the validity of the case study procedure is studied.

5.3.5 Data Collection

Different data collection plans are conducted dependingpercase study design.

1. IntheEDL1 design, for each paiN,NS>, the data related to the quantified
variables (cf. Tablé.2) is collected in three phases while generating the
optimized BP enactment plans from the SDeclare models. Shabkes are
detailed as follows. (1) After the initial searches are peried (i.e., Alg.2
is executed, the solution space is divided into four regiansl the values
of the variablesninW T, MaxW T, minPandMaxP are recorded). (2) After
such divisionr1 is the first region to be solved (note that, as mentioned,
r4 is dominated by 1, cf. Section3.2.2and Example80). Then, the data
related to %Fk1, WT1, Pr1, NActs1, %PS1, and SAdd; is stored. (3)

8Note that cases in which replanning becomes necessary ristyakiough run-time configu-
ration is applied. In such situations, a new configurable BRlehis created ensuring that all the
included variants cover the given situation as discusséddnba et al.20133bh).
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Table 5.6: Quantified variables for tieD1 design (1)

Problem Unconstrained
N NS | mnWT MaxWT minP MaxP

10 1 0.1 29.0 273.3 660.0
10 1.5 1.0 315 3505 7934
10 2 2.1 36.3 492.7 956.3
15 1 3.0 324 360.3 782.0
15 1.5 9.7 43.4 538.4 8915
15 2 8.0 49.6 741.8 1092.1
20 1 15.5 56.3 405.6 859.1
20 15 17.8 59.5 715.6 1108.0
20 2 16.5 59.4 950.6 1252.8

Finally,r2 andr3 are solved. In the case that no solution is foundlijr4
is also solved. Similarly to the previous phas&K,, W T, Px, NACtSy,
%PSx, andSAddl are recorded for such regions. Tab%§, 5.8 5.7, 5.9,
and5.10show the values related to all the quantified variables whieh
involved in the complete data collection plan.

2. IntheED2 design, for each paitN,NS>, once the configurable BP model
is generated, the data related to the quantified variabfes Table 5.3)
is recorded, i.e.minW T, MaxW T, minP, MaxP, WT, P, %AW T, %AP,
%Dominated Flex, minRok andMaxRob The aforementioned values are
shown in Table®.11and5.12

3. In ED3 design, after the period of 30 days has passed, the infamia-
lated to eaclOB is quantified, i.e., thQ and #MQ (cf. Table5.4). Such
values are shown in Tab®13

4. InED4 design, at the end of each day, the quantified variablessodiésign
(i.e., #Q, A3, and R, cf. Table5.5) are calculated and associated to the
#Actsof this day. Tablé.14shows the values which are obtained.

5.3.6 Analysis and Interpretation

The data which is collected is analyzed to answer each @seaestions and to
draw conclusions, as detailed as follows:

1. In order to address questidiQl, sub-question8Q1l andAQ2 need to be
answered (cf. Tables.6, 5.8 5.7, 5.9, and5.10. Regarding the problems
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Table 5.7: Quantified variables for tieD1 design (2)

Problem Region 1

N NS|%Sk; WT1i(m) P1(€) NActs: %PS;: SAdd;
10 1| 742 14.3 479.0 90.1 10.0 2.5
10 15| 63.8 15.2 491.0 98.3 9.2 15
10 2| 67.0 17.6 615.2 145.6 11.5 1.8
15 1| 705 15.8 515.0 116.9 11.1 2.1
15 15| 614 22.3 698.4 154.8 9.6 1.4
15 2| 649 24.2 9184 179.3 9.5 0.9
20 1| 726 29.6 625.0 150.5 10.4 1.2
20 1.5| 59.9 30.9 859.7 172.1 10.5 0.6
20 2| 452 30.1 1105.2 196.0 8.9 1.0

which are solved within each region (i.e., columnSKg), %Sk is lower
than both %k, and %Sk3 sincerl is the most constrained region. In
turn, the low value for %F,4 can be explained by the fact that solutions
are not searched i in the case that at least one solution is foundlin

In addition, as the complexity of the problem increases, (Neand NS in-
crease), %k decreases and thereforeS%y increases. However, $6;2

and ¥6Fk3 keep similar values and close to 100%, which means thatsit lea
one solution can be found ir2 andr3 regardless of the complexity of the
problems. TherefordQ1 can be answered as true as solutions can be found
in all regions.

Furthermore, some differences can be observed when anglir® objec-
tive function values (i.e., columns WT and P). As expectedha comple-
xity of the problems increases, the value of P increaseg sirare services
are included in the generated enactment plans. Moreovén, increas-
ing complexity of the problem the value of WT increases ad siete the
clients are subject to more delays. Note that these colunerslso directly
dependent on the number of activities of the plan (cf. colsiMActs), i.e.,
when NActs increases, P and WT increase too. In genetandr4 in-
clude the most balanced solutions according to the valubstbfobjective
functions, while the solutions with the best values for P &@ belong
to r2 andr3 respectively. This distribution is kept independentlytiod
complexity of the problem. Moreover, for all problems Pareptimized
solutions were obtained (cf. columnsP%y), which means that a repre-
sentative Pareto front can be depicted. Howengicontributes less to the
Pareto front since most of the solutions which were foundhiwit4 are
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Table 5.8: Quantified variables for tieD1 design (3)
Problem Region 2

N NS %SEKE, | WT2(m) P2(€) NActs, %PS, SAdd:

10 1 100.0 19.6 502.4 118.6 38.2 2.7
10 15 100.0 26.2 517.4 128.4 435 1.9
10 2 100.0 26.9 694.8 157.5 440 2.2
15 1 100.0 29.6 521.0 130.0 42.1 2.6
15 15 100.0 34.5 712.4 166.0 39.6 1.8
15 2 96.7 39.7 982.4 181.7 42.3 1.4
20 1 100.0 39.0 621.5 1395 40.8 1.2
20 15 96.2 42.9 902.8 180.6 39.1 0.9
20 2 96.2 49.0 11936 2011 479 1.1

dominated by solutions found withit2 orr3. In turn, %S also presents
low values since 1 is the hardest region to be solved (i.e., the most cons-
trained). Furthermore, in all regionsP&y seems to be independent of the
complexity of the problem. Therefore, although the timengfmy Alg. 1

is only based on th& IME_LIMIT constant, it behaves as intended against
all the different complexities (i.e., 82, %Sk3 and columns BSy are
independent on the complexity of the problems, wki&y andPy values

are directly dependent on the complexity of the problems),llence AQ2

can be answered as true.

Finally, for each problem, a relation among the number ofitamidhl ser-
vices per client (cf. columns SAdd), P and WT exists. Spedlficas the
number of services which are included increases, the pistitiacreases
to the detriment of the waiting time. However, as the prolddsecome
more complex, SAdd decreases in all the regions since it i® mompli-
cated to include more services since more clients and ssrViave to be
considered. Considering these values and Aqlt andAQ2 are answered
as true, MQ1 is concluded as true, i.e., the proposed algorithm is lsigita
for generating a distributed set of Pareto optimized sohgistarting from
a SDeclare model.

In order to address questidhQ2, sub-questiondQ3 andAQ4 need to be
answered (cf. Tablés.11and5.12. As can be seen, the colunT shows
that the solutions provided by our approach are shifteddddtest part of
the range [minWT, MaxWT]. This means that more solutionsafeund in
the region related to that part than in the other regionsurm, the values of
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Table 5.9: Quantified variables for tieD1 design (3)

Problem Region 3

N NS | %Sk3 WTs(m) P3(€) NActss %PS3 SAdds

10 1| 100.0 17.0 340.6 79.5 49.3 1.1
10 1.5| 100.0 145 365.5 80.1 45.4 0.9
10 2| 97.0 15.8 511.3 109.7 42.4 1.4
15 1| 100.0 15.1 394.2 83.4 45.3 1.1
15 15| 96.7 22.1 566.3 129.1 50.1 0.7
15 2| 100.0 215 735.0 162.0 44.9 0.9
20 1| 95.0 26.3 498.7 99.9 46.6 0.8
20 15| 96.2 276 725.9 160.4 46.4 0.7
20 2| 100.0 28.4 997.2 191.8 39.1 0.6

P are more balanced though still being within the lowest pathe range
[minP, MaxP]. To overcome this issue, the solution spacebeadivided in
more regions in order to get more balanced solutions. M@&e&&W T
increases as the complexity of the problems increaseshwimhlights the
benefits of using the proposed approach in real cases. Tlusivppappens
with %AP since the more complex the problem is, the fewer free tims slo
are available to offer more services. Nonetheless, in altdses the values
%AW T and %P show that our approach improves the mean of both ob-
jective functions compared to plans which were manuallptee (i.e. W T
decreases andincreases). Moreover, the solutions which are provided by
our approach dominate the associated real plan in all tresqag column
%Dominated. That means that, regarding these objective functiorg, Al
provides at least one solution which improves both profitwading time
when compared with the real solutions. Therefé&@3 is answered as true.

Regarding the flexibility of the generated configurable BRigls (cf. col-

umn Flex), in most cases it achieves 100%, which means that the uncer-
tainty which was specified by the manager is totally covengthle gene-
rated models. In fact, the value Bfiex is over 83.3% even in the most
complex problem, which represents a very high degree oftikiyi Re-
garding the robustness, as the complexity of the problegreases, both
upper and lower limits of the robustness decrease (cf. aodumnRob and
MaxRob). This is due to the fact that the more activities texighe plan,

the less slack appears. However, these columns preseet gaibd values
since a value of 13.3% of robustness means that the releaedpll avoid
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Table 5.10: Quantified variables for tBD1 design (5)

Problem Region 4

N NS|%Sks WTa(m) Pa4(€) NActss %PSs SAddys
10 1| 2538 19.1 413.2 86.6 2.5 15
10 15| 36.2 250 451.1 89.0 1.9 1.4
10 2| 301 246 515.2 115.2 2.1 1.4
15 1| 295 27.7 435.0 89.3 15 1.3
15 15| 37.0 354 610.4 138.9 3.6 0.9
15 2| 351 36.1 779.7 163.6 3.3 1.0
20 1| 274 315 5254 115.3 2.2 0.9
20 15| 39.1 40.7 775.9 168.7 4.0 1.1
20 2| 528 43.4 1004.5 292.5 4.1 0.8

Table 5.11: Quantified variables for tBe2 design (1)

N NS | minWT MaxWT minP  MaxP| WT(m) P(€) %AWT %AP
8,12  [1,1.4] 0.3 26.3 210 1501 7.1 5742 -26.6 383
8,12 (1.4,1.8] 0.1 31.0 305 1561 10.1 681.6 -29.3 325
8,12 (1.8,2.2] 3.2 36.5 396 1492 9.9 8056 -36.8 20.0
[13,17]  [1,1.4] 3.1 51.6 364 1690 12.2 721.8 -31.2 29.7
[13,17] (1.4,1.8| 5.8 59.3 419 1632 185 905.0 -27.7 21.8
[13,17] (1.8,2.2] 5.1 63.2 538 1681 19.0 9843 -294 16.4
[18,22]  [1,1.4] 6.0 63.1 515 1877 244 8512 -32.4 217
(18,22 (1.4,1.8] 7.3 60.7 638 1838 215 9695 -36.8 16.1
[18,22] (1.8,2.2] 8.7 69.2 801 184% 30.8 12524 -41.3 8.9

replanning in this 13.3% of cases. Thé&x{4 and consequentiyiQ2 are

answered as true.

Comparing bottED1 andED2 designs, it can be said that using both ran-
domly generated data and real data from a log a similar behaviob-
served in the bounds of the objective function values (ciuroms minWT,
MaxWT, minP and MaxP in TableS.6 and5.11). However, the upper
bounds in the&eD2 design (cf. columns MaxWT and MaxP in Tabke41)
tend to be slightly different since the SDeclare model hanlextended in
this experiment (i.e., more services, more resources aoerianty are in-
cluded). The size of the ranges of the waiting time (i.efedénces between
columns minWT and MaxWT) increases as the average numbervtss
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Table 5.12: Quantified variables for tBD2 design (2)

N NS | %Dominated Flex minRob MaxRob
8,127  [1,14 100 100.0 222 444
8,12 (14,18 100 1000  16.7 38.9
8,12 (1.8,2.2) 100 956  22.2 27.8
13,17  [1,14] 100 1000  25.0 41.7
(1317 (1.4,1.8 100 956  16.7 33.3
(1317 (1.8,2.2] 100 956  16.7 20.8
1822 (1,14 100 889  16.7 30.0
(1822] (1.4,1.8 100 956  13.3 23.3
1822 (1.8,2.2] 100 833 133 16.7

per client increases (i.e., column NS). Such dependencyeda the fact
that when NS is high, including additional services invelweore complex
schedules and therefore, it increases the waiting time tharewhen NS is
low. However, the opposite happens with the size of the mogthe profit.
This is the expected behavior since the simpler the probEmgi.e., the
lower values of NS), the more chances to include servicest.ekherefore,
the approach behaves similarly against both sources ofgamnsb

3. In order to answelMQ3, the sub-questionsQ5, AQ6, AQ7, andAQ8 need
to be answered. For this, Tabled 3is analyzed. The values of the columns
#mQand tMQ reveal that the number of questions that need to be answered
for each node seems to be independent of the number of bi(ach©B)
of the related node. In addition, no errors were observechvgamerating
the questionnaires and, thusQ5 can be answered as true. Furthermore,
#MQ is lower than 10 (i.e., the number that the salon manageifgubas
maximum) and, thusAQ6 can be answered as true.

In order to answeAQ7 andAQ8, Table5.14is analyzed. As expected(Q#
increases asAttsincreases, which indicates that more effort is required
by the domain expert to individualize more complex configleeBP mo-
dels. Even though,@is lower than 10 in all the cases, meaning that our
approach can efficiently deal with real problems. Moreod&rjncreases
as #Actsincreases, which highlights the benefits of using the pregap-
proach in real cases and thd€)7 can be answered as true. Regarding the
values of IR, it can be concluded that the number of times that the salon
manager needs to change her initial plan due to unexpectedse{e.g., a
client arrives later than expected or a resource becomesilaiale) is dras-
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Table 5.13: Quantified variables for the Table 5.14: Quantified variables for the

ED3 design ED4 design
OB | #mQ #MQ #Acts | #Q A$ %R
[2,5) 1.2 6.3 (40,60 | 3.1 1415 70.0
[5,8) 11 5.0 (60,80 | 4.1 189.1 60.0
(8,11) 1.2 5.9 (80,100 | 7.6 219.4 66.7
[11,14) 11 6.1 (100,120 | 8.0 239.8 75.0

tically reduced (i.e., almost 43% in most complex caseserdiore, AQ8
and consequentlyQ3 can be answered as true.

5.3.7 Validity Evaluation

This section evaluates if the results are valid and not diaBkeree types of valid-
ity are addressed in this section: construct, internal atereal.

Firstly, with relation to the construct validity, it has te@ laddressed in how
far the measures which have been used are appropriate tesadtie research
guestions which have been planned. Three different thezat&lentified related
to the acquisition of the data. The first threat is relatedaw the problems have
been randomly generated in tB®1 design. In this design, unsolvable problems
were not considered in order to evaluate the algorithm befléis is checked
considering a simple rule: the generated appointment timelent plus the time
which her booked services consume cannot overpass thagkisie of the beauty
salon. Due to the parallelism which may exist because ofehmporal constraints
(i.e., a client can be served by different employees at theesime), this rule
leaves out some problems which might be solvable. To méidfais threat, a
more elaborated algorithm can be performed to avoid elitimggroblems which
may be solvable. Secondly, the complexity of the problemghvhre generated
is controlled only by varying the number of clients and heolx services (in
the ED1 design), by the number of branches of the configurable nfdebe
ED3 design) and the number of activities of the configurable Bfelers (in the
ED4 design). Although the beauty salon is considered a seitab$iness due
to its complexity, different ways of controlling this conegity can be applied to
mitigate this threat, e.g., by changing the type of constsaor by changing the
properties specified by the salon manager. The third tharaterns the duration
of the logged data in the designs (i.e, 90 days in cageld# design, and 30 days
in caseED3 andED4 designs). To the best of the acquired knowledge there is
no metric which states how long data must be logged to obteaeaningful log.
To mitigate this threat, longer durations can be consideveget more data and
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therefore to increase the probability of finding situatiauiere the algorithm does
not perform well. Finally, in all of the designs some valuasdbeen fixed in the
algorithms, i.e., the number of regions into which the soluspace is divided
(fixed to 4) and the number of samples which are generatecei B2 design
(fixed to 30). Increasing these values would increase tharacg of the proposal.

Regarding the internal validity, the main threat is thatab#ained results re-
lated to flexibility and robustness concerns could be biasecke their interpre-
tation can be subjective since it depends on the busineshwdanalyzed. In a
similar way, the results concerning/# can be biased due to that the value for
the upper bound of the number of questions to be answeredhfyuce a specific
configurable node (specified by the salon manager) repseaesubjective point
of view. This threat is difficult to eradicate. To mitigateather business experts
can be consulted in order to state what is a successful vatuiekibility and
robustness and the upper bound of the number of questiongipstionnaire.

Finally, the external validity considers in how far the ob&d results could be
generalized to any business. This generalization is thneal by the fact that the
beauty salon was the unique scenario which was studied.r &tkaarios can be
considered to replicate this study in order to mitigate thisat.






Chapter 6

Discussion and Limitations

The manual specification of BP models, which are traditigredecified through
an imperative language, can consume great quantity of resgucause failures,
and lead to non-optimized models, resulting in a very compteblem (erreira
and Ferreira2006. The current approach allows modelling the considered pro
blems in an easy way, since the considered declarativefgagicns (i.e., an ex-
tension of the Declare language=si; 2009) are based on high-level constraints.
Moreover, with the proposed extension, the expressiverfabe process designs
is enhanced compared t&4rba and Del Valle2011; Jimenez-Ramirez et al.
2013ha) (e.g., stochastic values for modelling the uncertaintthefscenario can
be included), and hence more realistic problems can be rednagy., the Beauty
Salon detailed in Chaptées. Therefore, the current approach is intended to reduce
the human work in scenarios with high variability in variouays:

¢ Since declarative BP model specifications allow their usespecify what
has to be done instead of howdsic 2009 and the tacit nature of hu-
man knowledge is often an obstacle to eliciting accurategs® models
(Ferreira and Ferreiy2006), declarative specifications facilitate the human
work which is involved in the process design and analysiseltempared
to imperative specifications. Specifically, using a dethaeaspecification,
the user only has to define the constraints of her models witheing aware
of how they are fulfilled. Therefore, several ways of exewysuch decla-
rative model exist. In turn, imperative specifications émre complexity
since all the possible execution alternatives need to bafsge Such com-
plexity is even higher when a high flexibility is required,tive presence of
input uncertainty, or when the resources need to be allddata suitable
way considering the optimization of certain objective fuioics

e Typically, executing a declarative model (which presenggh tvariability)
usually entails bigger effort for the involved users congolaio executing an
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imperative model Reichert and Webef012 Schonenberg et al20080
since deciding how to exactly execute the process is difffoulthe user
and this can lead to bad executions (i.e., very bad valuesofoe objective
functions). For this, the current approach extracts a delgrpart of the
variability of a declarative model through the generatibmalti-objective
optimized enactment plans while discarding bad execultenratives (ac-
cording to the optimization of some objective functions &t as high flex-
ibility and robustness). This way, the proposed approacititites the hu-
man work which is involved in the process enactment phase.

e Such optimized plans are then merged into a configurable Biehwhich
supports the analysts in the management of these plans &xithe ana-
lysts in understanding what the different plans share, wieit differences
are, and why and how these differences oceursemann and van der Aglst
2007).

Since these kind of problems are NP-complete, getting @tsoiutions can-
not be ensured in general (this is the reason why the ternm@ad plans is
used instead of optimal plans). This way, the quality of tbritson which is
calculated depends on the time limit which is establish e gharch algorithm.
Note that, as mentioned, efficient filtering rules have beevelbped. Despite
the NP-complexity of the considered problems, such filgerudes have demon-
strated their effectiveness for improving performance nevpus works Barba
and Del Vallg 2011, Barba et al.2013ab).

In addition, to further improve the quality of the resultiagecution alterna-
tives, flexibility and robustness concerns are considefeat. this, quantitative
definitions are provided in order to measure how the uncdytaf the scenario
is supported by each generated enactment plan. Thereka®yteon alternatives
that are not desirable for the business regarding both thktyjand a set of given
objective functions are avoided.

Furthermore, in contrast to related proposalsdiq et al. 2005 Lu et al,
2009 Ferreira and Ferreiyd2006 Westergaard and Magg2012 Krogt et al,
2010, not only a single enactment plan but a set of optimizedtemaat plans are
considered when generating the imperative model. This thayflexibility of the
resulting imperative model is not unnecessarily resticte

The optimized plans which are included in the generated gorgble BP
model can be used, as discussed in previous works, for:

1. Assisting users during the process execution to optipez®rmance through
recommendation3@rba et al.2011, 20131).

2. Providing predictions, e.g., predict the completiongiof all the running
instancesfarba et al.20139.
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3. Performing simulations, e.gvhat-if scenariosfarba et al.20139.

Moreover, the automatic generation of optimized configler&@® model can
deal with complex and real problems in a simple way as dematestin Chapter
5. Therefore, a wide study of several aspects can be carriedyosimulation.
Nonetheless, an evaluation with more complex scenariosggired to improve
the generalizability of the results and is planned for fetwork.

However, this approach also presents a few limitations.elmegal, different
resource patterns can be taken into account. Motivateddogdhsidered scenar-
i0s, the proposed approach considers that a resource capenfbrm an activity
at the same time (i.e., the same resource cannot be useddmpenore than one
activity in parallel) and that activities are executed withpreemption. The busi-
ness analysts must deal with a new language for the consbrased specification
of BPs, thus a period of training is required to let them beedamiliar with the
proposed language, i.e., SDeclarEurthermore, the optimized configurable BP
model is generated by considering estimated values for uhgber of instances
to execute, and hence the current proposal is only apptepiioa processes in
which this number is known a priori. As a real example, theubgaalon problem
is detailed and an extensive empirical evaluation is caroigt with the goal of
supporting the contributions of the proposed approach.eSmavious works also
dealt with scenarios in which the number of process instatacbe executed in a
specific timeframe is known a priori (e.gB4rba et al.20139 describes a travel
agency problem and3@rba et al. 2012 considers computer support for clinical
guidelines as an application example). In a related wayyigcattributes and
resource availability need to be estimated. Although thrstee done more easily
through the stochastic feature of SDeclare, the problenpt®aty increases as
the number of stochastic variables increases. Howevég ittual values deviate
from the estimated values during the execution of the mdt&§ techniques can
be applied to replan the activities at runtime by considgtire actual values of
the estimates, as discussed in a previous wWoekl{a et al.20133.

In addition, motivated by the requirements of the consideseenarios, the
data perspective which is considered in the current approsnly includes data
constraints which can be applied to input data and actilgtions. However,
more advanced features like dynamic data or data-flow petispdave been left
out since they are not part of the design requirements ofdhsidered scenarios
and will be addressed in future work when applying the curpeaposal to BPs
with different characteristics.

To support the graphical specification of SDeclare mode®#isting Declare tool (available
at http://www.win.tue.nl/declare/) has been adapted lloméng resource specification, temporal
and data constraints, as well as stochastic estimates.
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Chapter 7

Conclusions

Nowadays, there exists a growing interest in aligning imfation systems in a
process-oriented way as well as in the effective and flexiideagement of busi-
ness processes (BPs) since real scenarios are commordgsiabjincertainty. In
order to manage such BPs, the traditional BP managemenylfe involves four
phases: (1) process design & analysis (i.e., a design offhe Breated following
the requirements), (2) system configuration (i.e., thenso® defined in the BP
design is implemented), (3) process enactment (i.e., thwa® is executed fol-
lowing the BP design) and (4) evaluation (i.e., monitorinfprmation or logs are
analyzed to look for design improvements).

In such context, analysts are in charge of designing BP rsodeich capture
the behavior of the business under analysis. To do this, analysts must face
certain design requirements, e.g., dealing with uncdstastimates, resource al-
location as well as control-flow, data and temporal constsailn addition, the
designed BP models typically have to optimize some objedtimctions —which
may be opposed- while they must be able to withstand the inpcértainty to
some extent (i.e., flexibility and robustness are required)

To address the aforementioned requirements, declaratvenBdels (e.g.,
constraint-based BP models) are increasingly used sircéattt nature of hu-
man knowledge is often an obstacle to eliciting accurate Biets. However,
due to their flexible nature, there exist several ways of @etkeg a declarative
BP model, i.e., there are different imperative BP models@ated to the same
declarative specification. In such context, existing pea® Cesic 2008 Sadiq
et al, 2005 Pesic et a].2007 Lu et al, 2009 Ferreira and Ferreif2006 Mon-
tali, 2009 Westergaard and Magd012 Krogt et al, 201Q Hummer et al.2013
generate a single execution plan from the declarative BPeinddbnetheless, if
BPs are subject to uncertainty and conditions may changegBP execution, it
might turn out that the generated enactment plan is not@gpk and replanning
might be required.
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For overcoming this, the first part of this work (cf. Chap8mproposes the
automatic generation of optimized enactment plans fronstcaimt-based specifi-
cations at design-time. Such specifications consider theaeflow and resource
perspectives as well as the specification of the input uaireyt of the scenario.
For dealing with them, these plans are merged into a flexibidigurable BP
model in the second part of this work (cf. Chap#gr Before the execution of
such model, a single BP model has to be selected from it ifi;leeeds to be in-
dividualized). To individualize such models, unlike ekigt approachesHosa
et al, 2009, a totally automated method to create a questionnaireebagplica-
tion for guiding a business expert on individualizing thefogurable BP model
during run-time is proposed. This way the decision of howeghactment plan to
be executed looks like is deferred to run-time.

To be more precise, the proposed approach includes thevfoljocontribu-
tions:

1. The definition of a suitable language, SDeclare, whiawvadlthe constraint-
based specification of BPs be defined in a suitable form (batkral-flow
and resource perspectives are considered). Furthermare,aslanguage
allows the analyst to include temporal and data constrdoits Chapter
3) as well as the input uncertainty which may exist (cf. Chag)e The
proposed language significantly extends the existing galsdy conside-
ring multi-objective optimization, choice’¢sig 2008, temporal (lontali,
2009 Westergaard and Magd2012) and data constraint$/(ontali, 2009
Montali et al, 2013, alternative resources, and stochastic attributes.

2. A constraint-based proposal for planning and schedtiie@P activities in
a multi-objective optimized way in order to obtain optindZ8P enactment
plans related to a SDeclare model (cf. Chag@@er Unlike other related
approachesResi¢ 2008 Montali, 2009 Krogt et al, 201Q Lu et al, 2009
Rychkova et al.200§ Hummer et al.2013, the proposed method enables
the optimization of several objective functions, resougasoning and the
specification of high level constraints.

3. Afiltering algorithm which selects those plans which présan outstanding
performance and which can deal with the highest uncertdaityChapter
4). Using such filtered plans, a configurable BP model is ctkaté of
them. For this, quantitative definitions of both flexibilapd robustness are
proposed unlike existing approachésderone et a).2012 Aissi and Roy
201Q Reichert and WebeR012 Schonenberg et aR0083.

4. Finally, a method for creating a questionnaire from thefigurable BP
model to allow the user individualize such model during timme (cf. Chap-
ter4). Unlike (Rosa et al.2009 which needs the intervention of an analyst
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for creating the questionnaires, the current approachgsega totally au-
tomatic method for generating such questionnaires.

In this way, once the analyst has designed the declarativea@&il, the user
is supported during the execution of it. Therefore, the édookcontrol which is
commonly associated to the constraint-based specificattoameliorated since
the current approach enables the optimized execution bffsexible models.

The proposed approach is appropriate for managing scenahich (1) present
high variability, (2) pursue the optimization of some olbjee functions, (3) are
subject to uncertainty, (4) have a well-defined set of bissm@operties which
can be extracted for a variant , and (5) highly rely on domajpee’s skills (i.e.,
decisions influence business performance) and thus, desisan not be prede-
fined. Following this criteria, the beauty salon problemeatested (cf. Chapter
5) as case study. In order to validate the proposals of thisisH2issertation, a
wide empirical evaluation is developed using such scendr results of such
evaluation can be summarized as follows:

1. Although the optimization of enactment plans is a highdpstrained pro-
blem, the proposed approach produces a satisfactory nuofitsritable
solutions which, in addition, are well distributed in théwtmn space.

2. In most cases, the generated solutions help the user rownthe perfor-
mance of her business.

3. In several cases, the current approach avoids makingmeiplg due to the
run-time feature. Therefore, selecting an execution ptarementally du-
ring run-time produces a more suitable solution than selg&uch plan
before starting the execution.

In addition, the motivation and the interest related to {y@raach presented in
the current document is strongly justified. Furthermorscd$sions related to the
advantages, drawbacks and limitations of each step of thaph are included.
Moreover, the most related work together with the overcgmiand innovations
of the proposed approaches are also presented.
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Chapter 8

Future Work

In this Thesis Dissertation a method for supporting thesidaring the execution
of declarative business process models is presented. Seittodnincludes a set
of steps. Each one of these steps can be extended to widepytieaaility of the
proposed approach in different aspects, as explainedlas/fol

1. Related to the modelling language (i.e., SDeclare), tia gerspective
which is considered in the current approach mainly inclutiga constraints
which can only be applied to input data and activity relagigince it was
motivated by the requirements of the considered scenarfo£bapters).
However, more advanced features like dynamic data or datagferspec-
tive have been left out since they are not part of the desiguirements of
the considered scenarios and will be addressed in futurk wen apply-
ing the current proposal to BPs with different charactesstFurthermore,
further resource patterns can be considered in the SDdalagaage.

2. Regarding the algorithm which generates optimized emaxt plans from
SDeclare specifications, various additionally constrhaged solving tech-
niques are planned to be explored in order to analyze thigatslity for the
generation of multi-objective optimized plans.

3. Inthe current approach the main application of the geedmaulti-objective
optimized enactment plans (cf. Chap8iis the generation of configurable
BP models to create the related questionnaires (cf. ChdptBionetheless,
two additional scenarios are discusses in this Thesis & (i.e., user
recommendations for optimized BP execution and the geparaft opti-
mized imperative BP models, cf. Secti@B). However, other scenarios
might be interesting to explore:

e Performing simulations to investigatdat-if scenarios or to generate
a fast-forward view of the current process instance of an@ass pro-
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cess model. For future work, the generated enactment pEmbe
used as a part of a simulation engine for declarativex models

e Providing reliable time predictions/gn der Aalst et a).2017), e.qg.,
to know when all the current process instances will tern@n&ince
all the temporal information is available in the generatadotment
plans, these data can be used, as future work, for creatirgpapon
engine for declarative models.

4. An extended empirical study is intended to be carried atit the goal of
measuring the impact of the robustness and flexibility orptioeess perfor-
mance in different real businesses with more variety ovais, resources
and sources of uncertainty, e.g., scenarios from infoongtrocessing or
manufacturing processes. In a related way, the tools assdcio the pro-
posed approach still need some refactoring in order to makeady to use
by others and thus, to make it publicly available.

5. Lastly, with relation to the automatic generation of digsaires (cf. Chap-
ter4), some tasks are planned as future work:

e Improve the semantics of the questions which are creates shey
seem too artificial in some cases. For this, the semantidseobuisi-
ness properties need to be improved. Therefore, a deearchsof
the area of linguistics is required.

e Analyze more in depth the different classification algarithfor cre-
ating the decision trees since the characteristics of thieectty in-
fluence the questionnaire which is shown to the user.

e Conduct experiments over other real scenarios for being @byen-
eralize the results which are obtained.






134 CHAPTER 8. FUTURE WORK



Acronyms

Al Artificial Intelligence.

BP Busines Process.
BPM Busines Process Management.

BPMS Busines Process Management System.

COP Constraint Optimization Problem.
CP Constraint Programming.

CSP Constraint Satisfaction Problem.
MO-COP Multi-objective Constraint Optimization Problem.
P&S Planning and Schedulling.

RCPSP Resource-Constrained Project Scheduling Problem.
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Appendix A

SDeclare Basic Templates

As stated, in general, if not restricted by any constrairsaBtivities are assumed
to be executed several timesegsic and van der Aals2006. Henceforthnt(A)
refers to the number of times that the repeated activigyexecutedA; represents
the P&S activity related to the i-th execution Af andst(A;) andet(A;) repre-
sent the start and the end timesApf respectively. It should be clarified that the
constraints/i : 1 <i < nt(A) : et(A) < st(Ai+1) hold for each repeated activify

In FigureA.1, some representative examples of SDeclare templatesaigr
cally represented. Specifically, three precedence relsti@tween two repeated
activities, A andB, are shown. As stated earlier, several executions of the sam
BP activity can be modelled as a sequence of single P&S aesvin this figure,
the P&S activityA; represents the i-th execution of the repeated activityAh, (
and the arrow represents:

e A precedence relation between two P&S activitgsandBj, when it ap-
pears between two activities, which means g ) < st(B;).

e A precedence relation between a P&S actikyand a setS of P&S ac-
tivities, when it appears between an activity and a dottethrgle which
encloses a set of activities, which means #it c S: et(A) < st(B;).

e A precedence relation between a Sedf P&S activities and a P&S acti-
vity Bj, when it appears between a dotted rectangle which enclosetsoh
activities, and an activity, which means th&# € S: et(A)) < st(B;).

In a similar way, a special arrow (wider than the other arrawd with a big
dot in its origin) which appears between two P&S activitikgndB, shows that
A must be executeinmediately beforeB (et(A) = st(B)). In a similar way, this
can be defined for a set of activities. More details aboutii@gul are shown in
the definition of the related templates.
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© 90 ¢

Ai+nt(A) Ai+nt(A)

@ Bnt(B)

- -----'
-----'

,------------------~
,---------~

QR

(a) Precedence(A,B)
(b) Alternate Precedence(A,B) (c) Chain Precedence(A,B)
Figure A.1: Precedence templates wimgfB) > 0.

The SDeclare templates, based on Declare templates, évgeith some ex-
amples of valid and invalid tracksare listed as follows A full description of
the Declare templates is included in the repoet( 3 ).
These templates can be easily modified to include furthesipitises.

e Existence(N,A): A must be executed more than or equal to Kdint(A) >
N.

e Absence(N,A): A must be executed less than N timé@)) < N
e Exactly(N,A): A must be executed exactly N times(A) = N.

e Responded Existence(A,B): If Ais executed, then B must bésexecuted
either before or after Apt(A) > 0=-nt(B) > 0. For example, when Res-
ponded Existence(A,B) holds,B>, <AB> or <BA> are valid traces, and
<A> is an invalid trace since the execution of A requires the etten of
B.

For the sake of clarity, no parallelism between the acésiis considered in the examples,
i.e., trace<A’A?, . A"> means thati : 1 <i < n,et(A') = st(A+1).
2For simplification, only non-branched templates are shown.
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CoExistence(A,B): The execution of A requires the exeecuibB, and vice
versa,nt(A) > 0 < nt(B) > 0. For example, when CoExistence(A,B)
holds,<AB> or <BA> are valid traces, angdB> is an invalid trace since
the execution of B requires the execution of A.

Precedence(A,B): Before the execution of B, A must have lsecuted,
nt(B) > 0= (nt(A) > 0) A (et(A1) < st(B1)). As can be seen in Figure
A.1(a), this relation implies that; must preced®; in the case thatt(B) >

0. For example, when Precedence(A,B) holdABBBA > is a valid trace,
and<BAABB > is an invalid trace since the first B is executed before any
A.

Response(A,B): After the execution of A, B must be executgdy) > 0=
(nt(B) > 0) A (st(Bpy(m)) > €t(Anya))). For example, when Response(A,B)
holds,<BAABB > is a valid trace, anetABBBA > is an invalid trace since
after the last execution of A, B is not executed.

Succession(A,B): Relations Precedence(A,B) and Respayiehold. For
example, when Succession(A,B) holdsABABB > is a valid trace, and
<BABBA > is an invalid trace since the first B is executed before any A
(moreover, after the last execution of A, B is not executed).

Alternate Precedence(A,B): Before the execution of B, A iawe been
executed, and between each two executions of B, A must beiekecThis
implies that:

1. The number of times that A is executed must be greater thaqual
to the number of times that B is executed(A) > nt(B).

2. Between each two executions of B, A must be executed dtdeas.
Specifically, between th& — 1)-th and thei-th execution of B, the
earliest execution of A that can existijsand hencd,_; must precede
Bi_1 (as can be seen in Figufel(b)). In a similar way, between the
(i—1)-th and the-th execution oB, the latest execution & that can
exist isi + nt(A) —nt(B), and henc&; must precedéy, yi(a)—ny(B)+1-
This can also be seen in Figukel(b), where the possible activities
to be executed between tiie— 1)-th and thei-th execution ofB are
framed within the dotted rectangl&i : 2 <i <nt(B):3Jj:i<j <
i +nt(A) —nt(B) : st(Aj) > et(Bi_1) Aet(Aj) < st(Bj).

3. Before the execution of B, A must be executet(B;) > et(A1).

For example, when Alternate Precedence(A,B) hotdSBAABABA > is

a valid trace, andcABAABBAA > is an invalid trace since between the
second and the third execution of B, there is not any A.
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e Alternate Response(A,B): After the execution of A, B mustdxecuted,
and between each two executions of A, there must be at leasb@tution
of B. This implies:

1. The number of times that B is executed must be greater thaqual
to the number of times that A is executed(B) > nt(A).

2. Between each two executions of A, B must be executed &dtdeas.
Specifically, between theth and the(i + 1)-th execution of A, the
earliest execution of B that can exisi jand henc®;_1 must precede
Ai. In a similar way, between thieth and the(i + 1)-th execution of
B, the latest execution of A that can exist is nt(B) — nt(A) — 1, and
henceA; must preced®; g)—nt(a)- Vi: 1<i<nt(A):Jj:i<j<
i +nt(B) —nt(A) —1:st(Bj) > et(A) Aet(Bj) < st(Air1).

3. After the execution of A, B must be executat{Byyg)) > et(Aqya))-

For example, when Alternate Response(A,B) holdBABABBAB > is a
valid trace, andcBAABBABB > is an invalid trace since between the first
and the second execution of A, there is not any B.

e Alternate Succession(A,B): Both the relations Alternaéedence(A,B)
and AlternateResponse(A,B) hold. For example, when AdteriSucces-
sion(A,B) holds,<ABABAB > is a valid trace, andcABABBA > is an
invalid trace since between the second and the third execafiB, there is
not any A.

e Chain Precedence(A,B)mmediately before the execution of B, A must be
executed. It implies that:

1. The number of times that is executed must be greater than or equal
to the number of times th& is executednt(A) > nt(B).

2. Immediately before each execution®)fA must be executed. Speci-
fically, before thea-th execution oB, the earliest execution & that
can existig. In a similar way, before thieth execution 0B, the latest
execution ofA that can exist i$+ nt(A) —nt(B). Vi : 1 <i <nt(B):
Jj i <j <i+nt(A)—nt(B): et(Aj)=st(B).

This is shown in Figuré\.1(c), where a special arrow (wider than the other
arrows and with a big dot in its origin) shows thatmust be executed
immediately beforeB. For example, when Chain Precedence(A,B) holds,
<ABAABABA > is a valid trace, an&ckABAABBAA > is an invalid trace
since immediately before the third execution of B, thereasany A.
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e Chain Response(A,B)mmediately after the execution of A, B must be
executed. It implies:

1. The number of times th& is executed must be greater than or equal
to the number of times th&t is executednt(B) > nt(A).

2. Immediately after each execution Af B must be executed. Specifi-
cally, before tha-th execution ofA, the earliest execution @ that
can exist ig. In a similar way, after the-th execution ofA, the lat-
est execution oB that can exist i$+nt(B) —nt(A) —1. Vi: 1 <i <
nt(A):3j:i < j<i+nt(B)—nt(A) —1:st(Bj)=et(A).

For example, when Chain Response(A,B) holdBABABBAB > is a valid
trace, and<BAABBABB > is an invalid trace since immediately after the
first execution of A, there is not any B.

e Chain Succession(A,B): Both the relations Chain Preces{gnB) and Cha-
in Response(A,B) hold. For example, when Chain SuccessjBhfolds,
<ABABAB > is a valid trace, and&cABABBA > is an invalid trace since
immediately before the third execution of B, there is not Any

e Responded Absence and Not CoExistence(A,B): If B is exeguteen A
cannot be executed, and vice ver§at(A) > 0) - (nt(B) > 0)) == 0. For
example, when Responded Absence(A,B) holda,> or <B> are valid
traces, an&BA> is an invalid trace.

¢ Negation Response, Negation Precedence, Negation SimuésB): Af-
ter the execution of A, B cannot be executed, i.e., the last@tion of B
must finish before the start of the first execution oft&(A) > 0ANnt(B) >
0) = et(Byp)) < st(A1)). For example, when Negation Succession(A,B)
holds,<BBBA > is a valid trace, anekBBAB > is an invalid trace since the
third B is executed after A.

¢ Negation Alternate Precedence(A,B): Between two exenstdd B, A can-
not be executedit(B) > 2=Vi:1<i<nt(A):et(A) <st(B1) Vst(A) >
et(Bnt(B)). For example, when Negation Alternate Precedence(A,Bjshol
<AABBA > is a valid trace, ane&tABABA > is an invalid trace since bet-
ween the first and the second execution of B, A is executed.

e Negation Alternate Response(A,B): Between two executairs, B can-
not be executedht(A) > 2= V1 <i < nt(B) : et(B;) < st(A1) Vst(Bj) >
et(Ana))- For example, when Negation Alternate Response(A,B) holds
<BBAAB > is a valid trace, an&cBABAB > is an invalid trace since bet-
ween the first and the second execution of A, B is executed.
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e Negation Alternate Succession(A,B): Both the relationgdi®n Alternate
Precedence(A,B) and Negation Alternate Response(A,R). lebr exam-
ple, when Negation Alternate Succession(A,B) hold8ABB > is a valid
trace, andcAABBA > is an invalid trace since between the second and the
third execution of A, B is executed.

e Negation Chain Succession(A,B): B cannot be executed inatedd after
the execution of Ayi : 1 <i <nt(B): —3j: 1< j <nt(A): et(Aj) = st(Bj).
For example, when Negation Chain Succession(A,B) hoitBACBA >
is a valid trace, andcBABA > is an invalid trace since the second B is
executed immediately after A.

The SDeclare templates can be classified either in unary (od parameter,
e.g., ExistenceN or AbsenceN) or binary (two parametegs, Response or Chain
Succession) templates.
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