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Resumen

La calidad de los modelos de los procesos de negocio (es decir, artefactos software
que capturan las relaciones entre las unidades organizacionales de un negocio) es
esencial para la mejora de la gestión de los procesos de negocio. Sin embargo,
dicho modelado se hace normalmente a mano. Esa tarea puede representar un gran
reto para el analista y consumir bastante tiempo, sobre todoen ciertos escenarios
con unos requisitos de diseño concretos (es decir, estimaciones de los atributos
de las actividades, incertidumbres, relaciones entre actividades y asignación de
recursos). Esta situación es aún más complicada si se añaden algunos requisitos de
optimización, además de flexibilidad y robustez. Además, los modelos generados
puede ser poco eficientes, contener errores y, probablemente, sean muy estrictos.
Para facilitar la tarea del analista y para mejorar los modelos de proceso de negocio
resultantes, en esta memoria de Tesis se describe un métodosoftware para generar
planes de ejecución de manera automática en tiempo de diseño a partir de una
especificación declarativa. Para gestionar estos planes,esta propuesta se basa en
modelos de procesos de negocio configurables, los cuales permiten a los analistas
entender qué comparten esos planes y cuáles son sus diferencias.

Antes de poder ejecutar el modelo de proceso de negocio configurable, es
necesario seleccionar un modelo de proceso de negocio concreto de entre los con-
tenidos en el modelo configurable. Esta selección la hace normalmente el analista,
quien manualmente individualiza el modelo teniendo en cuenta los requisitos del
negocio. Para individualizar dicho modelo, al contrario que el resto de trabajos
relacionados que existen en la literatura, en esta tesis se propone un método to-
talmente automático para crear una herramienta software basada en cuestionarios
que guı́e al usuario para la individualizació de un modelo de proceso de nego-
cio configurable en tiempo de ejecución. Ası́, la decisiónde qué aspecto tiene el
plan de ejecución se retrasa hasta el tiempo de ejecución,que es cuando hay más
información disponible.

La principal diferencia de la propuesta que se presenta en esta tesis frente
a otros trabajos previos es la gestiòn de considera la incertidumbre de los esce-
narios a través de atributos estocásticos, además de la optimización de múltiples
funciones objetivos. Además, se propone un herramienta basada en cuestiona-
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rios para permitir, en tiempo de ejecución, la selección de un plan de ejecución
optimizado a partir de una especificación declarativa.
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Abstract

The quality of business process models (i.e., software artifacts that capture the
relations between the organizational units of a business) is essential for enhanc-
ing the management of business processes. However, such modelling is typically
carried out manually. This can be quite challenging and be very time consuming
in some real scenarios which present certain design requirements (i.e., estimated
activity attributes, input uncertainty, relations between activities and resource al-
location). This situation is further complicated if such requirements have to be
addressed together with some optimization requirements including flexibility and
robustness. Moreover, the resulting models may be non-optimized, potentially
contain errors, and might be too strict. To facilitate the human work and to im-
prove the resulting business process models, this Thesis Dissertation proposes a
software-supported approach for automatically generating optimized enactment
plans from declarative specifications at design-time. For managing these plans
the proposed approach suggests to build upon configurable business process mo-
dels (which allow analysts to understand what these plans share and what their
differences are).

Before the execution of the configurable business process model, a business
process model has to be selected from it. This selection is typically performed
by an analyst who manually individualizes the model in orderto address the bu-
siness requirements. To individualize such models, unlikeexisting approaches,
a totally automated method to create a questionnaire-basedapplication for guid-
ing a business expert on individualizing the configurable business process model
during run-time is proposed. Therefore, the decision of howthe enactment plan
to be executed looks like is deferred to run-time, i.e., whenmore information is
available.

The current Thesis Dissertation differs from existing approaches since it con-
siders the uncertainty of the scenario through stochastic attributes, as well as the
optimization of multiple objective functions. Moreover, aquestionnaire-based ap-
plication is suggested to enable the selection of an optimized enactment plan from
a declarative specification during run-time.
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Chapter 1

Introduction

1.1 Generalities

A business process (BP) can be defined as a set of activities which are performed
in coordination in an organization to achieve a business goal (Weske, 2007). These
activities can be manual activities, other BPs, or even pieces of software. In or-
der to support BPs, BP Management (BPM) embraces methods, techniques, and
software to design, enact, control, and analyze operational processes involving
humans, organizations, applications, and other sources ofinformation (van der
Aalst et al., 2003). Such management generally follows a strict methodology to
ensure the quality of the information systems which are created.

Nowadays, there exist several software tools, namely BPM Systems (BPMSs),
which are intended to support the BPM during the BPM life cycle (Weske, 2007).
The traditional BPM life cycle includes four phases (Weske, 2007):

1. Process design & analysis, when a design of the BP (i.e., a BP model) is
created following the requirements.

2. System configuration, when the software defined in the BP model is imple-
mented.

3. Process enactment, when the software is executed (i.e., one or more BP
instances) following the BP model.

4. Evaluation, when monitoring information or logs are analyzed to look for
design improvements.

In turn, it becomes increasingly common for organizations to deal with large col-
lections of BP models (Rosa et al., 2012). Therefore, more and more research is
done related to BP collections (Dijkman et al., 2012) in which configurable BP
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2 CHAPTER 1. INTRODUCTION

models (La Rosa et al., 2008) are widely used to capture families of BPs in an
integrated manner allowing the users for a high variability. In such scenarios a
new phase, namelyconfiguration & individualization, is defined in the BPM life
cycle after the process design & analysis phase (La Rosa et al., 2008). Such a new
phase is in charge of selecting one BP model from the configurable BP model.

In addition, in the last years, the interest in the effectiveand flexible manage-
ment of BPs has grown considerably (Reichert and Weber, 2012; Dijkman et al.,
2012) since real scenarios are generally subject to uncertainty. In a related way,
flexibility and robustness concerns have received increasing attention (de Haan
et al., 2011; Golden and Powell, 2000; Gueorguiev et al., 2009; Cicerone et al.,
2012), also in the field of BPM (Reichert and Weber, 2012; Schonenberg et al.,
2008a).

To support the BPM lifecycle, artificial intelligence (AI) planning techniques
have been successfully applied at different stages since aninstance of a BP is
analogous to a plan in AI. AI planning (Ghallab et al., 2004) proposes techniques
to select a plan (i.e., a set of activities to execute in a specific order) to achieve
a given goal. In addition, the performance of an execution plan related to a BP
model can be greatly influenced by scheduling decisions (Pinedo, 2008; Bruc-
ker et al., 2006) such as the resource allocation (Shah and Ward, 2003; Karim
and Arif-Uz-Zaman, 2013). Such scheduling decisions are commonly made by
BPMSs during the enactment phase (i.e., run-time) by automatically assigning
work (i.e., activities) to the available resources (Russell et al., 2005). In general,
a planning & scheduling (P&S) problem consists of determining an enactment
plan for a set of activities which are related by temporal constraints, which com-
pete for some shared resources, and where the optimization of some objective
functions is pursued. In such context, constraint programming (CP) (Rossi et al.,
2006) supplies a suitable framework for modeling and solving problems involving
P&S aspects (Salido, 2010).

1.2 Motivation

The quality of a BP design (i.e., of a BP model) has a great influence on all the
phases of the BPM life cycle and is essential for BP improvement, which has been
ranked as the number one priority for top management by the 2010 Gartner survey
(Group, 2010).

In the process design & analysis phase the BP models are typically specified
by hand using imperative languages like EPC or BPMN (BPMN, 2011). This way,
a precise activity sequence which establishes how a given set of activities has to
be performed is defined. Such a sequence typically includes temporal relations
between activities or even dependencies with input data. Typically, such activities
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Figure 1.1: Motivation overview: Designs issues.

are related to a set of attributes (e.g., duration and cost) which need to be esti-
mated. Furthermore, in many real scenarios such estimates might be subject to
input uncertainty (e.g., normally, surgical operation durations and recovery dura-
tions are imprecisely definite) (Souki, 2011). Therefore, regarding such scenarios
and motivated by the case study described in this Thesis (cf.Chapter5), when de-
signing a BP model, analysts have to face certain design requirements (cf. Figure
1.1(1)), such as:

1. Dealing with activity attributes and their estimated values.

2. Managing the input uncertainty which exists in many real scenarios (Souki,
2011) in which providing a range of possible values for a BP property is
most reliable that providing an exact value which may be difficult to know.

3. Dealing with relations between the activities, i.e., control-flow as well as
temporal and data constraints of the BP.1

4. Considering resource allocation.

Since uncertain scenarios are considered, managing such input uncertainty be-
comes necessary. For this, flexibility and robustness are proposed since they are
considered the best way to properly address the considered uncertainty. The situ-
ation is further complicated if the aforementioned design requirements have to be
addressed along with optimizing some (potentially) conflicting objective functions
(e.g., minimizing time and maximizing profit). Such optimization requirements
(cf. Figure1.1(2)) can be summarized as follows:

1Note that the considered scenarios are focused on the control-flow and the resource perspec-
tives of the BPs and the data perspective is only partially considered.
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Figure 1.2: Motivation overview: Run-time issues.

1. Flexibility, i.e., the capability to adapt to input uncertainty (Reichert and
Weber, 2012; Golden and Powell, 2000; Schonenberg et al., 2008a). For
this, designed models should consider different executionalternatives to
support such uncertain scenarios (Weske, 2007).

2. Robustness, i.e., the capability to withstand the uncertainty to some extent
(Eppink, 1978; Cicerone et al., 2012; de Haan et al., 2011). For his, BP
models should be designedto avoid making unnecessary adaptations which
typically are costly.

3. Other objective functions are commonly considered sincethe BP design
usually involves a trade-off between different quality dimensions which
may be in conflict or be opposed (Reijers, 2003).

This task of creating a BP design can form a very complex problem and be
very time consuming (cf. Figure1.1 (3)). Moreover, the resulting models may
be non-optimized, potentially contain errors, and might betoo strict (Ferreira and
Ferreira, 2006; Mendling et al., 2007; Westergaard and Maggi, 2012) (cf. Figure
1.1(4)). For this, methods and tools for supporting analysts during the BP design
are becoming more and more necessary.

To facilitate the human work involved in such design, to avoid failures, and to
allow for a better optimization during the execution phase,declarative BP models
are increasingly used since the tacit nature of human knowledge is often an obsta-
cle to eliciting accurate BP models (Ferreira and Ferreira, 2006). However, due to
their flexible nature, there are frequently several variants related to a given decla-
rative model, each one presenting specific values for different objective functions
(e.g., overall completion time or profit). Therefore, the decision about how to exe-
cute this declarative model (i.e., selecting a variant thatfinally gets executed) can
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be quite challenging since usually many constraints need tobe obeyed, multiple
instances of a process get concurrently executed within a particular timeframe,
shared resources need to be allocated, and relevant objective functions should be
considered.

In such context, there exist some proposals for generating imperative BP mo-
dels or that could be extended in such direction (cf. (Pesic, 2008; Sadiq et al.,
2005; Pesic et al., 2007; Lu et al., 2009; Ferreira and Ferreira, 2006; Montali,
2009; Westergaard and Maggi, 2012; Krogt et al., 2010; Hummer et al., 2013)).
These proposals are based on generating a single execution plan which fulfills all
the BP constraints starting with a constraint-based specification, e.g., a declarative
model. This plan could be, in turn, used for the generation ofan imperative BP
model. However, as a major disadvantage of existing proposals, only one single
execution plan is selected (i.e., a single process variant)before starting the process
execution which unnecessarily restricts the flexibility (Barba et al., 2013a) and
hence diminishes the advantages of using declarative process models. In particu-
lar, if BPs are subject to uncertainty and conditions may change during BP execu-
tion, it might turn out that the selected BP model is not applicable and replanning
might be required. In order to be better able to cope with suchuncertainty, it is
more suitable to defer the decisions of how the BP model to be executed looks
like to run-time (i.e., to select the BP model to be executed incrementally during
run-time). To be more specific, instead of narrowing down theselection to one
single variant before run-time (cf. Figure1.2(a)), it would be better that onlythe
worstvariants are removed while thethe bestvariants are kept (cf. the outermost
gray circle in Figure1.2(b)). Thereby the goodness of a variant is measured by its
values for given objective functions (Jimenez-Ramirez et al., 2013a). This way,
the variants which are kept can be narrowed down incrementally during run-time
at the last possible moment (i.e., gradually moving from theoutermost inner circle
to the back dot in Figure1.2(b)).

Thus, the existing proposals are not sufficient to address all the previously
mentioned requirements, e.g., dealing with the flexibilityneeds of existing BPs
(Reichert and Weber, 2012).

1.3 Contributions

In order to facilitate the human work which is involved in theprocess design &
analysis phase and to improve the resulting imperative BP models a method for
automatically creating configurable BP models (i.e, a modelling artifact that cap-
tures a family of process models in an integrated manner) (der Aalst et al., 2006)
from declarative specifications (Ferreira and Ferreira, 2006) is proposed (cf. Fig-
ure 1.3). The proposed approach considers all the aforementioned requirements
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which have to be considered when creating a suitable BP model, i.e., activity
attributes, resource allocation, input uncertainty, relation between activities, opti-
mization of several objective functions, as well as flexibility and robustness issues,
and is detailed in the following.

Declarative models are typically easier to specify and lesstime-consuming
than imperative models in scenarios where high variabilityis required (Ferreira
and Ferreira, 2006). Therefore, declarative specifications are used as starting point
of the proposed approach. For this, the Declare language2 (Pesic, 2008) is used
as basis, since it allows the specification of BP activities together with the cons-
traints which must be satisfied for correct BP enactment and for the goal to be
achieved. Declare is extended in order to widen its design flexibility by conside-
ring stochastic values for modelling the uncertainty of thescenario (as required in
the considered problems, cf. Section1.2), resulting in the SDeclare language. To
be more precise, with the proposed extension, some properties of a BP (such as
activity attributes, data and temporal constraints, and resource availability) can be
expressed through probabilistic mass functions instead ofwith fixed values. For
example, the current approach allows one to specify the uncertainty about the du-
ration of an activity by using a flat discrete range (e.g., [15-20], meaning that such
an activity may last from 15 to 20 units of time with the same probability). This
can be used, for example, for specifying that the arrival time of clients is uncertain
due to unpunctual clients, or that the availability of some resources is subject to
uncertainty. The SDeclare language is then used for the declarative specification
of the BP models (cf. Figure1.3(1)).

Since a declarative model captures highly variable scenarios (i.e., it allows nu-
merous possible enactment plans), it may include many execution alternatives that
are not desirable for the business regarding the optimization of a set of objective
functions. For this, a desirable part of the variability of adeclarative model has
to be extracted (cf. Chapter3). To do this, a method for generating optimized BP
enactment plans from declarative specifications is proposed to optimize the perfor-
mance of a process by considering multiple objectives (cf. Figure1.3 (2)). This
process is done automatically using a constraint-based approach which obtains
the best execution alternatives of a declarative model according to a set of given
objective functions. For this, activities to be executed have to be selected and
ordered (planning problem (Ghallab et al., 2004)) considering both control-flow
constraints as well as resource constraints imposed by the declarative specification
(scheduling problem (Brucker and Knust, 2006))

Since the generated set of multi-objective optimized enactment plans may
contain similar alternatives or non-robust alternatives,such set must be filtered

2Declare is one of the most referenced and used declarative BPlanguages in the context of
BPM.
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Figure 1.3: Contribution overview: Selecting the desirable variability of a declarative
model.

considering flexibility and robustness concerns (cf. Chapter 4). That filter is per-
formed regarding how the set of plans manages the input uncertainty in such a
way that flexibility and robustness are optimized. Specifically, those alternatives
which are too strict (i.e., not robust (Eppink, 1978; Cicerone et al., 2012; de Haan
et al., 2011)) or which only withstand an extent of the uncertainty whichis already
withstood by another alternative (i.e., do not contribute to the flexibility of the fi-
nal solution (Reichert and Weber, 2012; Golden and Powell, 2000; Schonenberg
et al., 2008a)), are discarded. Therefore, the variability of the sourcedeclarative
model is reduced to a set of relevant plans where most of the non-desirable al-
ternatives are removed (cf. Figure1.3 (3)). In this way, the proposed approach
manages both flexibility and robustness at design-time3, as motivated in Section
1.2.

Typically the relevant plans which are kept after such filtering process share
many commonalities since they are created from the same declarative specification
and optimize the same objective functions. For this the current approach suggests
to build upon established techniques, i.e., configurable BPmodels (Rosemann
and van der Aalst, 2007; Rosa et al., 2012; der Aalst et al., 2006; Hallerbach et al.,

3Note that flexibility can be managed by: (1) design, i.e., at design-time some control-flow
patterns which allows one to consider different alternatives (e.g., OR structures) are included in
the model or (2) flexible PAISs, i.e., at run-time several activities of a flexible BP model (e.g., a
declarative model) are enabled to be executed (Reichert and Weber, 2012). Since this approach is
focused on the process design & analysis phase, flexibility at run-time is out of the scope of this
Thesis.
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Figure 1.4: Contribution overview: Run-time individualization of configurable BP mo-
dels.

2010; Sun and Aiello, 2008; Gottschalk et al., 2008). Such models can be created
by merging all these plans (cf. Figure1.3 (4)). The goal of creating configurable
BP models in the current Thesis is twofold:

1. Supporting the analysts in the management of the set of optimized plans.

2. Helping the analysts understand what the different plansshare, what their
differences are, and why and how these differences occur (Rosemann and
van der Aalst, 2007).

To enable configurable BP models being configured by domain experts in such
a way that these experts incrementally reduce the number of process variants to
be executed, the automatic generation of questionnaires (i.e., sequences of ques-
tions each one created for configuring a part of the related configurable BP model
(La Rosa et al., 2008)) is proposed. While the usage of questionnaires for indi-
vidualizing configurable BPs is not new (La Rosa et al., 2008; Rosa et al., 2009),
existing works require that analysts manually create the questionnaires which con-
figure the configurable BP model. In addition, such a configuration is done at
configuration time (i.e., before process execution starts), and hence premature de-
cision may unnecessarily be taken. To overcome such drawbacks, this Thesis
Dissertation proposes a method for (cf. Figure1.4):

1. Automatically generating the questionnaires for individualizing the config-
urable BP model.

2. Incrementally individualizing the configurable BP modelduring run-time
using the automatically generated questionnaires.

For this, using the generated configurable BP model (cf. Figure 1.4 (1)) to-
gether with a set of well-defined relevant business properties (i.e., properties that
can be measured within each variant and which are understandable by the domain
expert, cf. Figure1.4 (2)), a questionnaire is automatically generated without



1.3. CONTRIBUTIONS 9

involving the analyst. Such a questionnaire consists of questions related to the
business properties written in the business language (cf. Figure1.4 (3)). There-
after, the domain expert interacts with the questionnaire to configure the config-
urable BP model herself during run-time. This way, the generated questionnaire
allows to narrow down the variants of the configurable BP model in an incremen-
tal way during run-time, i.e., guiding the execution of the configurable BP model
by answering the questionnaire (cf. Figure1.4 (4)). Therefore, the BP model is
partially created (cf. Figure1.4 (5)) and thus, it is possible to execute already
configured parts. In addition, as users often do not have an understanding of the
overall process, they can focus only on the part of the configurable BP model to
be configured, which may help them to take decisions.

Note that the proposed approach is appropriate for managingscenarios which
present certain requirements, i.e., scenarios which:

1. Present high variability.

2. Pursue the optimization of some objective functions.

3. Are subject to changes (e.g., company best practices which change due to
the customers feedback).

4. Have a well-defined set of business properties which can beextracted for a
variant (e.g., the property ’completion time’ of a variant can be related to
the ’opening and closing time’ of the business).

5. Highly rely on domain expert’s skills (i.e., decisions influence business per-
formance) and thus, decisions can not be predefined.

As an example of such a scenario, the suitability of the current proposal has been
validated through a real scenario (cf. Chapter5).

The main contributions of the current Thesis Dissertation are:

1. The consideration of temporal, data and resource constraints together with
stochastic attributes for the declarative BP specification.

2. The management of the uncertainty of the scenario throughflexibility and
robustness, at the same time as the optimization of multipleobjective func-
tions is considered.

3. A questionnaire-based application to enable the selection of an optimized
enactment plan from a declarative specification during run-time without in-
volving the analyst.
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1.4 Structure

The rest of the document is organized as follows:

• Chapter2 includes background related to the areas which are addressed in
the current Thesis Dissertation, i.e., (1) Planning and Scheduling, (2) Cons-
traint Programming, (3) Business Process Management, and (4) Uncertainty
Management.

• Chapter3 details the constraint-based approach which is used for P&Sthe
BP activities so that multi-objective optimized enactmentplans are genera-
ted from a declarative specifications.

• Chapter4 describes how the resulting set of multi-objective optimized BP
enactment plans can be used to guide the optimal execution ofa declarative
model through automatically-generated questionnaires. In addition, both
flexibility and robustness concerns are dealt to manage the input uncertainty
of the scenarios.

• Chapter5 describes a wide empirical evaluation which has been carried out
to evaluate the effectiveness and the efficiency of the proposed approach.

• Chapter6 presents a critical discussion of this Thesis Dissertationas well
as its limitations.

• Chapter7 summarizes the main conclusions which were obtained during
the development of this Thesis.

• Lastly, Chapter8 shows some future work which is intended to be ad-
dressed.

1.5 Publications

During the development of the current Thesis Dissertation,some research works
have been published in different Conferences and Journals.These publications4

support the validation of the scientific quality of this thesis.

1. Andŕes Jiḿenez-Raḿırez, Irene Barba, Barbara Weber, Carmelo del Valle.
”Automatic Generation of Questionnaires for Supporting Users during the
Execution of Declarative Business Process Models”. 17th International

4The publications has been chronologically ordered starting from the most recent publications,
and ending with the oldest publications.
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Conference on Business Information Systems (In press) (BIS2014,Ran-
ked as B in ERA and CORE Conference Rankings), 2014.Awarded as
Best Paper.

2. Andŕes Jiḿenez-Raḿırez, Barbara Weber, Irene Barba, Carmelo del Valle.
”Automatic Generation of Questionnaires for Managing Configurable BP
Models”. 6th International Conference on Agents and Artificial Intelligence
(In press) (ICAART 2014,Ranked as C in ERA and CORE Conference
Rankings), 2014.

3. Irene Barba, Barbara Weber, Carmelo Del Valle, Andrés Jiḿenez-Raḿırez.
”User Recommendations for the Optimized Execution of Business Processes”.
Data & Knowledge Engineering, Volume 86, Pages 61-84, ISSN 0169-
023X, 2013

4. Andŕes Jiḿenez-Raḿırez, Irene Barba, Carmelo del Valle, Barbara We-
ber. ”Generating Multi-objective Optimized Business Process Enactment
Plans”. 25th International Conference (CAiSE 2013,Ranked as A in ERA
and CORE Conference Rankings), Springer LNCS Volume 7908, Pages
99-115, 2013

5. Irene Barba, Carmelo del Valle, Barbara Weber, Andrés Jiḿenez-Raḿırez.
”Automatic Generation of Optimized Business Process Models from Constraint-
based Specifications”International Journal of Cooperative Information
Systems, Volume 22, Issue 02, Pages 59, ISSN 1793-6365, 2013

6. Andŕes Jiḿenez-Raḿırez, Irene Barba, Carmelo del Valle, Barbara We-
ber. ”OptBPPlanner: Automatic Generation of Optimized Business Process
Enactment Plans”. 21th International Conference on Information System
Development (ISD 2012,Ranked as A in ERA and CORE Conference
Rankings), Building Sustainable Information Systems, Pages 429-442,
ISBN 978-1-4614-7539-2, 2012

7. Andŕes Jiḿenez-Raḿırez, Irene Barba, Carmelo del Valle, Barbara Weber.
”Generating Multi-objective Optimized Configurable Business Process Mo-
dels”. 6th International Conference on Research Challenges in Information
Science (RCIS 2013,Ranked as B in ERA and CORE Conference Rank-
ings), Pages 1-2 , 2012

8. Andŕes Jiḿenez-Raḿırez, Rafael M. Gasca, Angel Varela-Vaca.”Contract-
based Test Generation for Data Flow of Business Processes using Cons-
traint Programming”. 5th International Conference on Research Challenges
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in Information Science (RCIS 2011,Ranked as B in ERA and CORE
Conference Rankings), Pages 1-12 , 2011

9. Angel Varela-Vaca, Rafael M. Gasca, Andrés Jiḿenez-Raḿırez. ”A Model-
driven Engineering Approach with Diagnosis of Non-conformance of Secu-
rity Objectives in Business Process Models”. 5th International Conference
on Research Challenges in Information Science (RCIS 2011,Ranked as B
in ERA and CORE Conference Rankings), Pages 1-6 , 2011

1.6 Research Projects

The development of the current Thesis Dissertation has beenframed in and funded
by some research projects5.

1. Técnicas para la diagnosis, confiabilidad y optimización en los sistemas
de gestíon de procesos de negocio.Ministerio de Ciencia e Innovación
TIN2009-13714(17/04/2010 - ..).

2. OPBUS: Mejora de la calidad de procesos mediante tecnologı́as de op-
timización y tolerancia a fallos.Consejerı́a de Innovación, Ciencia y Em-
presa(17/04/2010 - 12/01/2011).

5The research projects has been chronologically ordered starting from the most recent projects,
and ending with the oldest projects.



Chapter 2

Background

This Thesis Dissertation combines aspects of Planning & Scheduling (P&S), and
Constraint Programming to support users during the execution of BPs. In a related
way, Section2.1 gives an overview of Planning & Scheduling, Section2.2 de-
scribes the constraint programming paradigm. Section2.3provides backgrounds
regarding BPM, and Section2.4states different mechanisms for dealing with un-
certainty.

2.1 Planning and Scheduling

Planning (cf. Section2.1.2) and scheduling (cf. Section2.1.1) are two rather
related areas, and hence many actual problems involve both of them (cf. Section
2.1.3). However, these areas also present some differences. Boththe similarities
and the main differences are discussed in the current section.

2.1.1 Scheduling

The area of scheduling (Brucker et al., 2006; Pinedo, 2008) includes problems
in which it is necessary to determine a schedule for a set of activities related
by temporal and resource constraints. A schedule states (1)the start and end
times of the activities to be executed and (2) the resource which is assigned to
perform each activity. Since different activities may require the same resources,
they may compete for limited resources (i.e., resource constraints). In general,
the objective in scheduling consists of, given a set of activities, finding a feasible
plan which satisfies both temporal and resource constraints. Resource constraints
lead to establish a specific ordering between the activitieswhich share the same
resource, providing the problem with NP-hard complexity (Garey and Johnson,
1979). In scheduling problems several objective functions are usually considered

13
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to be optimized, in most cases related to temporal measures,or considering the
optimal use of resources.

In scheduling, an activity refers to a task which needs to be executed during a
specific amount of time units, usually without interruption(i.e., preemptive sche-
duling), and using certain specific resources.

A quite general scheduling problem is called Resource-Constrained Project
Scheduling Problem (RCPSP, cf.Brucker and Knust(2006)). RCPSPs are speci-
fied by a set of activities which are related by precedence constraints1. Moreover,
for the execution of each activity, several units of many resources may be required.
An extension of RCPSPs is the Multi-mode Resource-Constrained Project Sche-
duling Problem (cf.Drexl and Gruenewald(1993)). This problem is a RCPSP in
which the activities can be executed in more than one operating mode, each one
potentially using different resources, and usually presenting different values for
certain properties, e.g., duration or cost of the activity.

In many scheduling problems, the activities are organized in jobs, i.e., se-
quences of activities which establishe precedence relations between the activities
so that an activity can start only when all its predecessors have been executed.

Many variants of scheduling problems exist. Some of them arelisted as fol-
lows (cf. Figure2.1):

• Job Shop (cf.Brucker and Knust(2006); Pinedo(2008)): Each activity can
only be executed using a specific resource.

• Flow Shop (cf. Brucker and Knust(2006)): It is a special case of the job
shop problem in which each job is composed by exactly the samenumber
of activities (which is equal to the number of resources). Inthis way, each
job contains exactly one activity to be executed using each resource, and
hence each job uses each resource exactly once. Moreover, all jobs use the
resources in the same ordering.

• Flexible Job Shop (cf.Brandimarte(1993)): Many job centers exist, each
one containing the same number of resources. In this way, an activity can
be executed in any job center using the suitable resource.

• Cumulative Job Shop (cf.Nuijten and Aarts(1996b)): It is a generaliza-
tion of the Job Shop in which the resources have a finite capacity and the
activities may require several unities of several kinds of resources.

• Open Shop (cf.Pinedo(2008)): Unlike in job shop problems, in open shop
problems the jobs do not have a predetermined fixed route.

1”Activity a precedes activity b” means that activity b cannot start before a is finished.
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Figure 2.5: A disjunctive graph for a job shop problem.Figure 2.1: A representation of a job shop problem.

There are many typical objective functions to be consideredin scheduling pro-
blems. Some of them are listed as follows:

• Makespan: It refers to the time in which the execution of all activities have
finished.

• Tardiness: It refers to the delay of all jobs or activities regarding a specific
due date.

• Total Weighted Tardiness: It consists of a generalization of the tardiness, in
which ∑ j∈Jobsw j ×Tj is minimized, wherew j usually refers to an impor-
tance factor related to jobj, e.g., holding cost per unit time, andTj refers to
the delay of jobj regarding a specific due date.

• Number of Tardy Jobs: It refers to the number of jobs which do not meet
their due dates.

• Total Weighted Completion Time: It consists on minimizing∑ j∈Jobsw j ×
Cj , wherew j usually refers to an importance factor related to jobj, andCj

refers to the completion time of jobj.

• Objectives related to the use of the resources by the activities, e.g., balanced
use of resources.

2.1.2 Planning

In a wider perspective, in Artificial Intelligence (AI) planning (Ghallab et al.,
2004), the activities to be executed are not established a priori, hence it is nece-
ssary to select them from a set of alternatives and to establish an ordering. In most
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cases, the specification of planning problems includes the initial state of the world,
the goal (i.e., a predicate representing a set of possible final states) that must be
reached, and a set of operators (i.e., actions) which can be applied to one state in
order to reach another state. In general, the objective in planning consists of, given
a set of available activities, generating a schedule by selecting and ordering a set
of activities in a way that the resulting plan reaches a givengoal. Furthermore,
in planning problems, usually the optimization of certain objective functions is
considered.

Taking the goals to be achieved into account, different planning strategies can
be used for representing and reasoning about planning scenarios, e.g., Classi-
cal Planning (Fikes and Nilsson, 1971; Lekavy and Návrat, 2007), Hierarchical
Task Network (Erol et al., 1994), Decision-Theoretic Planning (Joshi et al., 2011),
Case-based Planning (Hammond, 1990) and Reactive Planning (Fernandes et al.,
1983).

In order to reuse the same algorithms for solving different kinds of problems,
and to solve the same problem using different algorithms, (1) domains for repre-
senting the problems, and (2) algorithms for solving the problems are specified in
a separated way (domain-independent planning). For solving a specific problem,
a domain-independent planner takes as input the problem specification and the
domain information.

The first strategy which was proposed for representing and reasoning about
planning scenarios was Classical Planning (Fikes and Nilsson, 1971; Lekavy and
Návrat, 2007). The basic idea of Classical Planning consists of finding a sequence
of actions which will modify the initial state of the world into a final state where
the goal holds. The specification of Classical Planning problems is composed by:

• A set of literals from the propositional calculus which can be positive or
negative and which represent the goal to be achieved.

• A set of literals from the propositional calculus which can be positive or
negative and which represent the initial state, also known as initial condi-
tions.

• A set of actions which are characterized by STRIPS operators. A STRIPS
operator is a parameterized template used for stating a set of possible ac-
tions. Each action is composed by:

– A set of preconditions: set of positive or negative literalswhich must
be true for executing a specific action.

– A set of effects: set of positive or negative literals which become true
after the execution of the action.
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As mentioned before, for executing an activity, all the literals included in the
precondition of the activity need to be true. Therefore, at each stage, there is a set
of possible activities to be executed which depends on the literals which are true
in that moment (state of the world, i.e., a set of atoms or literals that define how
the objects of the model relate to each other and their properties). Each time a
specific activity is executed, the set of literals which are true changes, and hence
the set of possible activities to be executed also changes. In this way, the state of
the world evolves.

A solution for a planning problem is determined by a sequenceof activities
which reaches the final state from the initial state.

In such context temporal analysis is typically applied overthe resulting sched-
ules to figure out the temporal slack of the activities (Brucker and Knust, 2006;
Gueorguiev et al., 2009), i.e., to calculate which activities can delay or advance
their execution without affecting the completion time of the schedule. In this re-
spect, different techniques such as CPM, PERT or Gantt charts (Gantt, 1913) can
be used to perform this analysis in order to calculate the enactment plan (cf. Def-
inition 1) related to a specific schedule. The same enactment plan can be related
to different schedules, as shown in Figure2.4.

Definition 1. An enactment planP= (pid,Acts) is identified by pid and is com-
posed of a set of activities act∈ Acts which are executed without preemption.
Each activity act is a tuple<actid, Pred, dur, es, le, res> where: actid is an
unique identifier in the enactment plan, Pred is the list of its precedence activities
(i.e., those activities which must be executed before act),dur is the estimated du-
ration of act, es is the earliest start time (i.e., the soonest that the activity act can
start), le is the latest end time (i.e., the latest that the activity act can finish), and
res is the resource which performs the activity act in the plan2.

Such definition is provided to formalize the concepts which already exist in
the literature related to that term.

2.1.3 Integrating P&S

Planning and scheduling are rather related areas since bothdeal with the temporal
planning of activities. The main difference between both areas is that in schedu-
ling the activities to be planned are known and that it alwaysinvolves the resource
perspective, while in planning the activities which will beincluded in the plan
need to be determined and resource constraints are not always considered.

2Note that, since activities are executed without preemption and the same resource cannot be
used to perform more than one activity in parallel, there areimplicit precedence relations between
the activities which are executed by the same resourcesince the current approach does not allow a
resource doing multiple activities in parallel.
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Many works which combined P&S can be found, since several actual problems
involve both of them. A problem involving P&S is characterized by: (1) there is
a goal to be reached through the execution of a sequence of activities which are
unknown a priori (planning), and (2) each of these activities has a specific dura-
tion and requires a specific resource to be executed, so that temporal constraints
exist between the execution of activities, and certain (temporal) objective function
needs to be optimized (scheduling).

Some of the extensions to scheduling that have been considered, such as alter-
native resources and process alternatives, lead to models that are closer to plan-
ning, as problems involving choice of actions are often regarded as planning pro-
blems (Smith et al., 2000).

Some planning techniques are not able to represent or reasonwith resources,
metric quantities or continuous time. Moreover, planning techniques do not ty-
pically consider optimization. Therefore, there are many works which extend
Classical Planning techniques in order to deal with resources (Drabble and Tate,
1994; Laborie and Ghallab, 1995), metric quantities (Koehler, 1998; Penberthy
and Weld, 1994), and optimization criterions (Wolfman and Weld, 1999; Vossen
et al., 1999). Furthermore, there exist works which extend planning techniques in
order to allow working with continuous time and temporal constraints (Penberthy
and Weld, 1994; Smith and Weld, 1999).

2.2 Constraint Programming

In such context, constraint programming (CP) (Rossi et al., 2006) (cf. Figure2.2)
supplies a suitable framework for modeling and solving problems involving P&S
aspects (Salido, 2010). In order to solve a problem through CP, it needs to be
modelled as a constraint satisfaction problem (CSP) (cf. Definition 2).

Definition 2. A CSPP= (V,D,CCSP) is composed of a set of variables V , a set of
domains D which is composed of the domain of values for each variable vari ∈V,
and a set of constraintsCCSPbetween variables, so that each constraint represents
a relation between a subset of variables and specifies the allowed combinations
of values for these variables.

The given definition is provided to formalize the concepts which already exist
in the literature related to CSP.

A solution to a CSP (cf. Definition3) consists of assigning values to CSP
variables.

Definition 3. AsolutionS=< (var1,val1),(var2,val2), ...(varn,valn)> for a CSP
P= (V,D,CCSP) is an assignment of a value vali ∈ domi to each variable vari ∈V.
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Figure 2.2: Schema of Constraint Programming.

A solution isfeasiblewhen the assignments variable-value satisfy all the cons-
traints, i.e., a goal state is reached. In a similar way, a CSPis feasible if at least
one feasible solution for this CSP exists. From now on,Svar refers to the value
assigned to variablevar in a solutionS.

Similar to CSPs, constraint optimization problems (COPs, cf. Definition 4)
require solutions that optimize an objective function.

Definition 4. A COP Po = (V,D,CCSP,o) related to a CSP P= (V,D,CCSP) is a
CSP which also includes an objective function o to be optimized.

A feasible solutionS for a COP isoptimal when no other feasible solution
exists with a better value for the objective functiono.

Once a problem is modelled as a CSP, several goals can be pursued, e.g.:

• Finding any feasible solution for the CSP.

• Finding several feasible solutions for the CSP.

• Finding all the feasible solutions for the CSP.

• Finding the optimal (or optimized) solution for a COP.

• Finding a set of optimal (or optimized) solutions for a COP.

Example 1. A classic problem which can be modelled as a CSP is the map col-
oring problem. This problem consists of coloring a map whichis divided in a set
of regions so that a color need to be assigned to each region, taking into account
that regions sharing a boundary line do not have the same color and only specific
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Figure 2.7: Map coloring problem.Figure 2.3: Map coloring problem.

colors can be used. The modelling of this problem as a CSP is made so that each
region is a CSP variable, the domain of each variable is composed by the set of
allowed colors, and the constraints establish inequality relations between the va-
riables which represent adjoining regions. Figure2.3 shows an example for this
problem in which there are 4 regions, Ra, Rb, Rc and Rd, and 3 allowed colors,
red (r), green (g) and yellow (y).

Constraint programming allows to separate the models from the algorithms,
so that once a problem is modelled in a declarative way as a CSP, a generic or
specialized constraint-based solver can be used to obtain the required solution.
Furthermore, constraint based models can be extended in a natural way, main-
taining the solving methods. Several mechanisms are available for solving CSPs
and COPs (Rossi et al., 2006), which can be classified as search algorithms (i.e.,
for exploring the solution space to find a solution or to provethat none exists) or
consistency algorithms (i.e., filtering rules for removinginconsistent values from
the domain of the variables). In turn, search algorithms canbe classified as:

• Complete search algorithms. Such algorithms (which are also called sys-
tematic algorithms) guarantee that a solution will be foundif one exists,
and can be used to show that a CSP does not have a solution and tofind a
optimal solution in COPs.

The possible combinations of assignments of values to the CSP variables
lead to a space state which can be represented by a tree o search graph.
Each node of the search tree represents a partial assignmentof values to
a set of variables. The root node of the search tree represents the case in
which any variable is instantiated, while the leaf nodes represent the cases
in which all the variables are instantiated.
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There are many systematic search algorithms, most of them are based on
chronological backtracking (Mouhoub et al., 2003).

• Incomplete search algorithms. Incomplete search algorithms consist of ex-
ploring only certain regions of the state space so that, in general, the reach
of a (optimal) solution can not be guaranteed. They are widely used due to
the complete search usually requires a high cost. Local or stochastic search
algorithms are examples of incomplete algorithms.

Local search algorithms typically start generating a first solution of a given
problem instance (in a random or a heuristic way), which may be infeasi-
ble, suboptimal or incomplete. This initial solution is iteratively improved
so that the value for the objective function is optimized in the case of COPs,
or the number of inconsistencies are reduced in the case of CSPs. In most
cases, these algorithms finish after certain tries or iterations have been com-
pleted, or when the required solution is found.

A wide scope of local search algorithms can be found in the literature,
e.g., genetic algorithms (Mitchell, 1998), simulated annealing (Kirkpatrick
et al., 1983), taboo search (Glover, 1989), and Greedy Randomized Adap-
tive Search Procedure (Feo and Resende, 1989, 1995). Different local search
algorithms vary in the way in which improvements are achieved, and in par-
ticular, in the way in which situations are handled when no direct improve-
ment is possible.

Moreover, some algorithms combine systematic and local search techniques,
e.g, Large Neighborhood Search (Pisinger and Ropke, 2010).

In this work P&S is applied to generate different possible enactment plans
from the same constraint-based BP model through an incomplete search algo-
rithm.

Since actual problems typically involve multiple conflicting objective func-
tions, multi-objective constraint optimization problems(MO-COPs, cf Definition
5) are considered in the current work. The reader is referred to Ehrgott and
Gandibleux(2003) for a review of the literature on MO-COPs.

Definition 5. A MO-COP MPo=(V,D,CCSP,OFs) related to a CSP P=(V,D,CCSP)
is a CSP which also includes a set of objective functions OFs to be optimized
(maximized or minimized).

Such definition is provided to formalize the concepts which already exist in
the literature related to that MO-COP.

In multi-objective optimization problems, usually no unique optimal solution
exists, but a set of Pareto optimal solutions (cf. Definition6) can be found.
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Definition 6. Let Sols be the set of all the solutions of a MO-COP MPo which
includes n objective functions, i.e, OFs= OF1, ...,OFn. Then, a solution sol1 ∈
Sols isPareto optimalif ∄sol2 ∈ Sols such that∀OF ∈ OFs : solOF

2 is better
or equal than solOF

1 , i.e., for obtaining a feasible solution which improves one
objective functions, at least another objective function needs to be deteriorated.

Since many MO-COPs present NP complexity (Garey and Johnson, 1979),
Pareto optimized solutions are considered (cf. Definition7).

Definition 7. Let Sols be the set of all the solutions of a MO-COP MPo and let
Solsz⊆ Sols be the subset of the solutions already explored at certain time. Then,
a solution sol1 ∈ Solsz is Pareto optimizedif it is Pareto optimal regarding only
the subset Solsz, i.e., if ∄sol2 ∈ Solsz such that∀OF ∈ OFs : solOF

2 is better or
equal than solOF

1 .

To solve multi-objective optimization problems there are,basically, three ap-
proaches:

1. Defining a new objective function by combining the original objective func-
tions, e.g., trough weighted-sum function (Leitmann, 1977; Zeleny, 1982;
Chankong and Haimes, 1983). However, these approaches does not nec-
essarily guarantee that the final solution will be neither acceptable (Koski,
1985; Stadler, 1995; Athan and Papalambros, 1996; Das and Dennis, 1997;
Messac et al., 2000) nor Pareto optimized (Das and Dennis, 1997).

2. Working with stochastic algorithms like genetic, simulated annealing or ant
colonies algorithms to obtain a set of Pareto optimized solutions. For ex-
ample, previous works applied the simulated annealing technique (Smith
et al., 2008; Suman, 2004) and evolutionary multi-objective optimization
algorithms (Deb and Kalyanmoy, 2001; Shukla and Deb, 2007) for solving
multi-objective optimization problems.

3. Optimizing one of the objective functions while constraining the other ones
(e.g.,ε-constraint method (Haimes et al., 1971)). These methods are based
on optimizing only one of the objective functions while all the others ob-
jective functions are used to state additional constraints. Here, the main
challenge is to select the proper bounds for the objectives which are not op-
timized. Each approach typically solves this issue with itsown method. In
general, each single-objective problem is solved several times by varying
the value of the bound. The complete set of Pareto optimal solutions can be
figured out if the bounds are adequately varied (Laumanns, 2006).

In this work, theε-constraint method (Haimes et al., 1971) is applied since it
appeared well suited for the purposes of this Thesis and typically provides good
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results.In addition, in a previous approach (Jimenez-Ramirez et al., 2013a), such
a technique was applied and it achieved good results. Furthermore, the base al-
gorithm to be used in theε-constraint method were developed and analyzed in
previous approaches (Barba et al., 2013b,a) and results showed its effectiveness
for improving performance. However, other promising multi-objective optimiza-
tion techniques (e.g., stochastic algorithms) could be also applied.

2.2.1 Constraint Programming for Planning and Scheduling

Scheduling problems have been successfully addressed for awide scope of ap-
plications using constraint-based techniques. Most of those problems can be mo-
delled in a natural way, so that, since the actions are set, variables are chosen to
correspond to the temporal unknowns (mainly start and end times) or to the or-
dering of tasks, and constraints gather precedence and resource constraints (Beck
and Fox, 1998). Typical CSP modelings for the job shop problem states the start
times of the activities as the variables of the CSP, and the constraints are divided
in two groups:

• The precedence constraints are a set of inequalities involving the variables
corresponding to the start times of the activities of the same job or related by
precedence relations, and taking into account the durations of the activities.

• The resource constraints may be defined as disjunctions between the start
time of the activities using the same resource. However, other approaches
have been used, as representing the use of each resource by all the activities
with global constraints, which may allow more efficient filtering algorithms.

Moreover, CP has been used in several recent AI planners (Nareyek et al.,
2005; Vidal and Geffner, 2006; Tu et al., 2007; Gabriel and Grandcolas, 2009;
Bao et al., 2011), since this paradigm is at the core for combining planning and
scheduling techniques.

On the other hand, many constraint-based proposals for solving P&S problems
exist in the literature, e.g.,Timpe (2002); Liu and Jiang(2006); Gomes et al.
(2006); Garrido et al.(2008); Moura et al.(2008); Garrido et al.(2009). Further-
more, several filtering algorithms for specialized scheduling constraints have been
developed. Specifically,Beck and Fox(2000) andBartak and Cepek(2010) model
scheduling problems which include alternative and optional tasks respectively, to-
gether with their filtering rules. Moreover, the workBarták and Cepek(2008)
proposes filtering rules for both precedence and dependencyconstraints in order
to solve log-based reconciliation (P&S) problems in databases. In those studies,
the precedence constraints signify the same as in P&S problems, while the de-
pendency constraints are given between optional activities which can potentially
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be included in the final schedule. The workLaborie et al.(2009) introduces new
types of variables (time-interval, sequence, cumulative,and state-function varia-
bles) for modelling and reasoning with optional schedulingactivities. In addition,
Lombardi and Milano(2010) presents a set of filtering rules for cumulative cons-
traint propagation when solving an extension of the resource-constrained project
scheduling problem which includes time lags and uncertain,bounded activity du-
rations. Furthermore,Monette et al.(2009) includes a constraint-based approach
for the Just-In-Time Job Shop Scheduling, i.e., each activity has an earliness and
a tardiness cost with respect to a due date. This approach includes a filtering
algorithm which uses a machine relaxation to produce a lowerbound, and dedi-
cated heuristics. This work also includes pruning rules which update the variable
bounds and detect precedence constraints.

2.3 Business Process Management

Nowadays, there exists a growing interest in aligning information systems in a
process-oriented way (Weske, 2007) as well as in the effective and flexible mana-
gement of business processes (cf. Definition8) (Reichert and Weber, 2012). Or-
ganizations need to adapt to the new commercial conditions,as well as to respond
to competitive pressures, considering the business environment and the evaluation
of their information systems.

Definition 8. A Business Process(BP) can be defined as a set of related struc-
tured activities whose execution produce a specific serviceor product required by
a particular customer. These activities can be manual activities, other BPs, or
even pieces of software.

In order to use and manage business processes, business analysts need to spe-
cify the BPs through BP models (cf. Definition9) by using a BP modelling lan-
guage.

Definition 9. A Business Process modelconsists of a set of activity models and
execution constraints between them (Weske, 2007).

In the literature, a wide spectrum of paradigms for BP modelling are pre-
sented, each one entailing different levels of accuracy in the BP elicitation, e.g.,
declarative and imperative paradigms. Such BP models are typically specified by
hand using imperative languages like EPC or BPMN (BPMN, 2011). This way,
a precise activity sequence which establishes how a given set of activities has to
be performed is defined. These imperative models can be graphically represented
using a BP graph (cf. Definition10). The graph definition is introduced inRosa
et al.(2012).
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Definition 10. A GraphG= (gid,N,Edges) is identified by gid and consists of a
set of pairs of nodes n∈ N, i.e., Edges. Eachedgedenotes a direct edge between
two nodes in the graph. A node n∈ N is a tuple< nid, l , t > where nid is an
unique identifier of a node in the graph, l is its label, and t isits type.

With relation to planning and scheduling, since there are several parallelism
with BPM, an enactment plan (cf. Definition1) can be represented as a graph.
The activities of an enactment plan which are not preceded byany other activity
are called initial activities. In a similar way, the activities which do not precede
any other activity are called final activities. Therefore, regarding the precedence
relations between the activities (stated by thePred attribute, cf. Definition1)
and the parallelism that exists between activities which are executed by different
resources (stated by theres attribute, cf. Definition1) the schedule can be re-
presented as a graph. In such graph, both a start node which precedes all of the
initial activities and a final node which is preceded by all the final activities are
additionally included (cf. Example2).

Example 2. Figure2.4 (a) shows two schedules related to how to prepare a hol-
iday where the activitiesbook a hotel, select the clothesandprepare the luggage
are considered. Since both schedules include the same activities, which are execu-
ted by the same resources and also in the same order, they result in the same enact-
ment plan. As can be seen in the Gantt diagram related to the enactment plan (cf.
Figure2.4(b)), the activityBook hotelpresents 1 temporal unit of slack. In addi-
tion, Figure2.4(c) shows the related graph using BPMN3. This graph consists of
the following 7 nodes (cf. Definition10): <1,start,event>,<2,AND,gateway>,
<3,book,activity>,<4,select,activity>,<5,AND, gateway>,<6, pack,activity>
and<7,end,event>; which are paired (cf. Definition10) as follows:(1,2), (2,3),
(2,4), (3,5), (4,5), (5,6), and(6,7).

Such definition of graph allows one to represent an imperative model (i.e.,
an enactment plan, cf. Definition1) in many different languages, e.g., BPMN or
EPC. As an example, the types of nodes (i.e.,t) in BPMN language (BPMN, 2011)
are ’activity’, ’event’, or ’gateway’. A node of type ’gateway’ allows labels (i.e.,
l ) ’AND’, ’OR’, ’XOR’, etc., while ’event’ nodes allow ’start’ and ’end’ labels
(cf. Figure2.5).

However, declarative BP models (e.g. constraint-based BP models, cf. Section
2.3.1) are increasingly used and their usage allows the user to specify what has to
be done instead of having to specify how it has to be done. Someexamples of BP
models are shown in Figs.2.7and2.8which are explained later.

3For simplicity, role information is shown inside the activity boxes in the BP graph. InRosa
et al.(2012), a general solution for managing role information and other non-control-flow elements
is shown.
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Figure 2.5: Basic elements of BPMN.

The modelling of the processes plays an important role in theoverall manage-
ment of BPs (Business Process Management, BPM, cf. Definition11) (Davenport,
1993; Georgakopoulos et al., 1995). In the current business world, the economic
success of an enterprize increasingly depends on its effectiveness in the manage-
ment of its BPs, and hence BPM is an interesting research areawhich is being
widely analyzed nowadays. In a related way, BPM Systems (cf.Definition 12)
are software tools that support the management of the BPs.

Definition 11. Business Process Management(BPM) can be seen as supporting
BPs using methods, techniques, and software to design, enact, control and analyze
operational processes involving humans, organizations, applications, documents
and other sources of information (van der Aalst et al., 2003).
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Figure 2.6: Typical BPM Life Cycle.

Definition 12. A Business Process Management System(BPMS) is a generic
software system that is driven by explicit process representations to coordinate
the enactment of business processes (Weske, 2007).

Such management generally follows a strict methodology to ensure the qual-
ity of the information systems which are created. Traditional BPM Life Cycle
(Weske, 2007) (cf. Figure2.6) includes four phases which are related to each
other. These stages are organized in a cyclical structure which shows the logical
dependencies between them:

• Process Design & Analysis: In this phase, BPs are identified,reviewed, va-
lidated, and represented by BP models, so that the informal BP description
is formalized using a particular BP modelling notation. Twosteps are con-
sidered to create a BP model: (1) draw an initial BP model, and(2) improve
this initial model by simulation or BP redesign techniques.Traditionally,
this phase is mostly a human activity. In some cases, processmodels can be
verified against inconsistencies and errors (van Dongen, 2007).

• System Configuration: In this phase, BP models are implemented by con-
figuring a BPM system. There are different ways to do so, e.g.,by stating
a set of policies and procedures. Service-oriented architectures as well as
web services for their implementation have gained increasing popularity for
BPMSs implementations recently. Moreover, data-driven approaches to the
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flexible enactment of BPs are considered for enactment of human interac-
tion BPs using data dependencies to control process enactment.

• Process Enactment: After completing system configuration phase, BP ins-
tances can be enacted. In this phase, the BPMS controls the execution of BP
instances as defined in the BP model. As execution proceeds, the enactment
information must be analyzed due to the possible appearanceof unexpected
events.

• Evaluation: In this phase, information regarding the BP enactment is eva-
luated in order to identify and improve the quality of the BP model and their
implementations. Traditionally, enactment logs are analyzed by using BP
activity monitoring and BP mining techniques.

After the Evaluation phase, BP models are corrected and improved in the BP
Design & Analysis phase if necessary by considering the evaluation information,
and hence closing the cycle which shows the logical dependencies between the
phases of the BPM life.

In this Thesis Dissertation, the BP Design & Analysis phase is widely ana-
lyzed since this phase plays an important role in the BPM lifecycle for any im-
provement initiative, and it greatly influences the remaining phases of this cycle.
Specifically, constraint-based BP models (cf. Section2.3.1) and configurable BP
models (cf. Section2.3.2) are analysed.

2.3.1 Constraint-based BP Models

Recently, constraint-based approaches have received increased interest (Vander-
feesten et al., 2008; Pesic, 2008; Westergaard and Maggi, 2012; Montali et al.,
2013) since they suggest a fundamentally different way of describing BPs which
seems to be promising in respect to the support of highly dynamic processes (Van-
derfeesten et al., 2008; Pesic, 2008). Irrespective of the chosen approach, require-
ments imposed by the BPs need to be reflected by the process model. This means
that desired behavior must be supported by the process model, while forbidden
behavior must be prohibited (Pesic et al., 2007; van der Aalst et al., 2009; Mon-
tali, 2009). While executable process models specify exactly how things have to
be done4, declarative process models focus on what should be done. Inthe current
approach, declarative BP specifications are considered since, as stated, the speci-
fication of process properties in a declarative way is an important step towards the

4With the term executable models it is referred to imperativemodels which are rather strict and
which represent only one enactment plan (or at most only few decision points are included).
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flexible management of BPMs (van der Aalst et al., 2009). In the literature, se-
veral rule-based and constraint-based languages for declarative BP modeling are
proposed (e.g.,van der Aalst and Pesic(2006a); Dourish et al.(1996); Wainer and
De Lima Bezerra(2003); Lu et al.(2006)). This Thesis Dissertation uses the lan-
guage Declare (also known as ConDec) (Pesic, 2008; Pesic et al., 2007) for the BP
control-flow specification. Declare is considered to be a suitable language, since it
allows the specification of BP activities together with the constraints which must
be satisfied for correct BP enactment and for the objective tobe achieved (cf.
Definition13).

Definition 13. Thegoal of a BP is specified through the constraints which must
be satisfied during the BP enactment.

Moreover, Declare allows to specify a wide set of BP models ofvaried nature,
flexibility and complexity in a simple way. In addition, Declare has been widely
referenced in the past years in the context of BPs (Ly et al., 2008; Montali, 2009;
Lamma et al., 2007; Chesani et al., 2009). Declare is based on constraint-based BP
models (cf. Definition14), i.e., including information about (1) activities that can
be performed as well as (2) constraints prohibiting undesired process behavior.

Definition 14. A constraint-based BP modelCM = (A,CBP) consists of a set of
activities A, and a set of constraints CBP prohibiting undesired execution beha-
vior. Each activity a∈ A can be executed arbitrarily often if not restricted by any
constraints.

Such definition is provided to formalize the concepts which already exist in
the literature related to constraint-based BP model.

Constraints can be added to a Declare model to specify forbidden behavior,
restricting the desired behavior. For this, Declare proposes an open set of tem-
plates which can be divided into 4 groups:

1. Existencetemplates: unary relationships concerning the number of times
one activity is executed, e.g., Exactly(N,A) specifies thatA must be execu-
ted exactly N times.

2. Relation templates: positive binary relations used to impose the presence
of a certain activity when some other activity is performed,e.g., Prece-
dence(A,B) specifies that to execute activity B, activity A needs to be exe-
cuted before.

3. Negation templates: negative relationships used to forbid the execution of
activities in specific situations, e.g., NotCoexistence(A,B) specifies that if
B is executed, then A cannot be executed, and vice versa.
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Figure 2.7: Simple constraint-based model for a set of activities.

4. Choice templates: n-ary relationships expressing the need of executing ac-
tivities belonging to a set of possible choices, e.g., ExactlyChoice(N,{A,B,C})
specifies that exactly N activities of the set{A,B,C} must be executed.

In Declare, while unary relationships describe constraints related to one ac-
tivity (e.g., existence constraints), binary constraintsdescribe relationships bet-
ween activities (e.g., precedence constraints). Binary templates are composed by
a source activity (cf. Definition15) and a sink activity (cf. Definition16), which
correspond to the beginning and the end of the arrow related to the specific tem-
plate in the graphical notation of Declare, respectively.

Definition 15. A source activity of a binary template is an activity which appears
in the first parameter of the template. For templates which state precedence rela-
tions between activities, a source activity is a predecessor activity.

Definition 16. A sink activity of a binary template is an activity which appears
in the second parameter of the template. For templates whichstate precedence
relations between activities, a sink activity is a successor activity.

Figure2.7 shows a simple constraint-based model which is composed by ac-
tivities A, B, andC, and constraintsC1 (ExactlyN(A)),C2 (Precedence(A,B)),C3
(Precedence(A,C)), andC4 (NotCoexistence(B,C)).

In Declare, binary constraints can be extended by defining branched templates,
as described inPesic(2008). The branched templates for the binary templates can
be established between several BP activities in the following way:
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• The branched constraint is established between several source activities and
one sink activity, so that the relation is given betweenat leastone of the
sources and the sink5.

• The branched constraint is established between one source activity and se-
veral sink activities, so that the relation is given betweenthe source andat
leastone of the sinks6.

In Declare (van der Aalst and Pesic, 2006a), the fact of considering atomic ac-
tivities is recognized as being a major problem. Similar to Declare, the languages
ConDec++ (Montali, 2009) (an extension of Declare) and Saturn (Demeyer et al.,
2010) are constraint-based workflow definition languages based on LTL which,
unlike Declare, consider non-atomic activities that can bestarted, completed or
cancelled at a later time, and overlapped with other activities.

Once a BP is modelled through a constraint-based modelling language, the
BP can be executed. As the execution of a constraint-based model proceeds, in-
formation regarding the executed activities is recorded inan execution trace (cf.
Definition17).

Definition 17. Let S= (A,CBP) be a constraint-based process model (cf. Defini-
tion 14). Then, atraceT =< e1,e2, ...en > is composed of a sequence of starting
and completing events regarding activity executions ai , a∈ A, i.e., events can be:

1. start(ai, t, r), i.e., the i-th execution of activity a is started at time t bythe
resource r∈ Res.

2. comp(ai , t), i.e., the i-th execution of activity a is completed at time t.

A process instance (cf. Definition18) represents a concrete execution of a
constraint-based model and its execution state is reflectedby the execution trace.

Definition 18. Let S= (A,C) be a constraint-based process model with activity
set A and constraint set C. Then: Aprocess instanceI = (S,σ) on S is defined by
S and a corresponding traceσ.

A running process instanceI is in statesatisfied if its current partial traceσ
satisfies all constraints stated inC. Furthermore, an instance is in stateviolated,

5These branched templates consider only the disjunction of conditions related to the sources,
since the conjunction can be obtained by including the associated non-branched template between
each source and the sink activity.

6These branched templates consider only the disjunction of conditions related to the sinks,
since the conjunction can be obtained by including the associated non-branched template between
the source and each sink activity.
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Figure 2.8: Increased flexibility of declarative models versus executable models

if the partial trace violates all constraints stated inC and there is no suffix that can
be added to satisfy them (cf. Example3).

Considering a constraint-based model and a specific relatedprocess instance,
only certain activities are enabled to be executed next (cf.Definition19, Example
3).

Definition 19. Let S= (A,C) be a constraint-based process model with activity
set A and constraint set C, and I= (S,σ) be a corresponding process instance
with partial traceσ. Then: An activity ai of instance I isenabledat time T iff ai
can be started and the instance state of I is not violated afterwards; i.e., forσ =<
e1,e2, ...en >, it is obtainedσ′l =< e1,e2, ...en,start(ai,R jk,T) > afterwards and
instance(S,σ′) is not in state violated.

Example 3. Figure 2.7 includes examples of traces of satisfied and violated ins-
tances7 for a constraint-based model. For the partial traceσ1 of Figure2.7, B is
enabled, while A is not enabled due to C1, and C is not enabled due to C4.

Due to their flexible nature, there are different ways to execute a constraint-
based BP model in such a way that all constraints are fulfilled, i.e., the process
goal is reached (cf. Definition13and Example4).

Example 4. Figure 2.8(a) shows a constraint-based BP model where traces8

<AAB>, <AB>, <ABAB>, <ABB>, <A> are some of the valid ways of ex-
ecuting such model, while traces<BA>, <BB>, <BAAB> are invalid since A
must precede B. In contrast, Figure2.8(b) shows an executable model where there
is only one valid execution trace,<AB>.

The different valid execution alternatives related to a specific constraint-based
BP model, however, can greatly vary in respect to their quality, i.e., how well
different performance objective functions (cf. Definition20) can be achieved.

7For the sake of clarity, only completed events for activity executions are included in the trace
representation.

8For the sake of clarity, traces represent sequences of activities, i.e., no parallelism is conside-
red in the examples. Moreover, only completed events for activity executions are included in the
trace representation.
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Definition 20. The objective functionof a BP is the function to be optimized
during the BP enactment, e.g., minimization of overall completion time.

Many real scenarios require the optimization of multiple objective functions.
Thus, the automatic generation of a multi-objective optimized configurable BP
model from a constraint-based BP model by applying constraint programming for
Planning and Scheduling(P&S) the BP activities is suggested.

2.3.2 Configurable Business Process Models

Typically, different BP models (cf. Definition9), also calledvariants, can be
performed in scenarios which entail high variability, e.g., human resource ma-
nagement, clinical guidelines and financial accounting. Some enterprise sys-
tem vendors manage that variability through general reference models, also call
con f igurableBP models, which cover all the different variants. Generally, con-
figurable BP models allow analysts to understand what these variations share,
what their differences are, and why and how these differences occur (Rosemann
and van der Aalst, 2007). Before such a general model can be used, it requires
to be concretized to the individual context of the target organization. For this, a
new phase, namelyconfiguration & individualization, is defined in the BPM life
cycle after the process design & analysis phase (cf. Figure2.6) (La Rosa et al.,
2008). At configuration-time a domain expert should select the most appropriate
BP model depending on the context (e.g., business regulations, objective func-
tions, etc.) (Gottschalk et al., 2008). Then, the selected BP model can be enacted
and the remaining parts of the configurable BP model (i.e., those parts which have
not been selected for execution) are not executed.

Basically, there are two ways for creating configurable BP models:

• By including possible adaptations (e.g.,hiding andblockingmethodology)
(Gottschalk and Jansen-vullers, 2006; der Aalst et al., 2006; Gottschalk
et al., 2008). It can be done from scratch or from an existing BP model.
Some elements of the configurable BP model (e.g., activitiesand data) can
be set to optional and, therefore, highlighting which configurations are pos-
sible or not (Gottschalk et al., 2008).

• By merging some BP models related to the same or similar goalswhich
already exist (Rosa et al., 2012). In that case, the source BP models need to
be compared and merged, which might result in a tedious, time-consuming
and error-prone process if it is performed by hand (Rosa et al., 2012). To
overcome these problems, there exist approaches focused onautomatically
merging different BP models in a configurable BP model (Rosa et al., 2010,
2012).
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Figure 2.9: Two enactment plans (a) are merged into a single configurable BP model (b)

Configurable BP models can be represented by configurable BP graphs, which
are defined (cf. Definition21) based onRosa et al.(2012).

Definition 21. A Configurable BP GraphCG= (G,E2I ,N2LI) consists of: (1)
a graph, G= (gid,N,Edges) (cf. Definition10), (2) a function E2I that maps
each edge e∈ Pairs to a set of process graph identifiers (i.e., E2I identifies which
branches of CG belong to each source graph which is merged in CG), (3) a func-
tion, N2LI that maps each node n∈ N to a set of pairs< gpid, l > where gpid is
a graph identifier and l is the label of node n in graph gpid (i.e., N2LI identifies
which nodes, with the corresponding label, belong to each graph which is merged
in CG).

In the this Thesis, configurable BP models are created by using the process
merger tool presented inRosa et al.(2012) after being adapted to work with
BPMN. This tool is based on a merging algorithm which analyzes the similarities
of the input models (i.e., the graphs) and creates a new model(i.e., the config-
urable BP graph) which includes configuration nodes for those points where the
input models are different. Therefore, each branch and nodeof the configurable
BP model can be related either to one or more graphs. To store these relations,
each branch/node of the configurable BP graph includes identifiers related to the
corresponding plan (i.e.,E2I function). In addition, nodes also store the asso-
ciated label related to each identifier (i.e.,N2LI function). Since a configurable
BP model includes different graphs, it is considered that a configurable BP model
includes different BP models (cf. Example5).

Example 5. Figure 2.9 shows 2 graphs which are merged into a configurable
BP model9. The first gateway in Figure2.9(b) is a configurable node which
corresponds to an ’OR’ gateway in the process 1 and an ’AND’ gateway in the
process 2.

9As there is not ambiguity, some labels are not shown (i.e., they are the same as in the branch).
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Questionnaires

Questionnaire models (Rosa et al., 2009) are typically created by the analysts to
support the user during the configuration (i.e., individualization) of the config-
urable BP models. The main benefits of using them are: (1) theyguide the user in
such a way that choices are presented in a proper order and (2)they avoid invalid
configurations which may lead to errors.

Typically, questionnaires are manually created by an analyst whereby each
question is related to booleanfactswhich are associated to configurationactions
(Rosa et al., 2009). Each time a question is answered, an action which configures
a part of the configurable BP model is fired. The sequence of answers given to
the different questions will individualize the configurable BP model in such a way
that a single variant is selected before run-time to be executed.

Unlike previous approaches which deal with questionnaires, this Thesis:

• Automatically creates the questionnaires (i.e., defining facts and actions are
not longer needed).

• The questionnaires which are created are intended to individualize the con-
figurable BP models during run-time (cf. Chapter4).

2.4 Dealing with the Uncertainty

When modeling and solving business problems, usually it is assumed that there
is a complete and exact description of the problem, and that there is no change
between the initial description of the scenario and the realscenario in which the
solution is applied. These two assumptions do not hold for many practical ap-
plications since uncertainty is typically present in most real scenarios (e.g., the
beauty salon scenario described Section5.2).

The sources of uncertainty can be quite different, e.g., related to the imprecise
knowledge of the system or due to external events (cf. Example6).

Example 6. For example, the full set of jobs to be scheduled in a factory can be
unknown in advance; the durations of activities may vary from the initial estima-
tions; there may be resource breakdowns; the availability of workers, machines
or raw material, may be not guaranteed; or the weather conditions may affect to
the validity of the initial plan.

Therefore, mechanisms to deal with uncertainty are required for real systems.
The main requirements that have been proposed when handlingwith uncertainties
and changes areVerfaillie and Jussien(2005):
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1. To limit as much as possible the need for successive onlineproblem solving.

2. To limit as much as possible changes in the produced solutions when the
first approach fails.

3. To limit as much as possible the computing time and resources that are
necessary for online problem solving when the first approachfails.

4. To keep producing consistent and optimal solutions.

Different formalisms based in CSP (cf. Definition2) have been proposed to
represent the uncertainty in their models.Dechter and Dechter(1988) introduced
dynamic constraint satisfaction problems (DCSP) as a sequence of CSP, each
one resulting from small changes from the previous one. Other extensions from
the CSP framework are the conditional constraint satisfaction problems (CCSP)
(Sabin and Freuder, 1998), the open constraint satisfaction problems (OCSP)
(Faltings and Macho-Gonzalez, 2005), the mixed constraint satisfaction problems
(Fargier et al., 1996), the probabilistic constraint satisfaction problems (PCSP)
(Fargier and Lang, 1993), the stochastic constraint satisfaction problems (SCSP)
(Walsh, 2002), fuzzy constraint satisfaction problems (Dubois and Prade, 1993),
or the branching constraint satisfaction problems (BCSP) (Fowler and Brown,
2000). In addition,L. Climent and Barber(2014) an algorithm for solving CSPs
subject to uncertainty which looks for both stable and robust solutions.

According to the different frameworks that deal with uncertainty, a variety of
solving methods for obtaining solutions have been proposed. In the surveys by
Verfaillie and Jussien(2005), Brown and Miguel(2006) andHerroelen and Leus
(2005), a wide number of proposals are collected, from both reactive and proactive
approaches.

In literature (Verfaillie and Jussien, 2005), two classes of methods have been
proposed to deal with uncertainties and changes:

• Reactive methods, which aim at reusing solutions or reasoning. They are
applied when solutions are not longer valid. They may find newsolutions
or repair the previous ones that have been invalidated.

• Proactive methods, which aim at producing robust or flexiblesolutions.
They may use knowledge about the uncertainties and changes in order to
produce solutions that will resist as much as possible thesechanges.

In the context of proactive methods, flexibility and robustness concerns have
received increasing attention in last years (Aissi and Roy, 2010; Stevenson and
Spring, 2007; de Haan et al., 2011; Golden and Powell, 2000; Gueorguiev et al.,
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2009; Cicerone et al., 2012; L. Climent and Barber, 2014), also in the context of
BPs (Reichert and Weber, 2012; Schonenberg et al., 2008a).

Although flexibility and robustness are typically used to evaluate techniques or
tools which cope with the natural uncertainty of real scenarios, literature related
to adaptability-like topics acknowledges that there is nota simple and general
definition for these terms. Some approaches even define different terms with sim-
ilar definitions (Aissi and Roy, 2010; Golden and Powell, 2000), which leads to
misunderstandings. As shown inde Haan et al.(2011), flexibility and robustness
frequently appear on research articles since 1991. Betweendozens of existing
definitions of flexibility and robustness, in this work a representative set of them
is selected in order to highlight their commonalities and differences.

On the one hand, flexibility was defined in the 80’s as ”the ability of an organi-
zation to adapt to [...] changes that [...] impact on the organizations performance”
(Aaker and Mascarenhas, 1994). It was supported by (Upton, 1994) in the 90’s
which defines flexibility as ”an organisation’s ability to change [...] with little
penalty [...]”. A more recent definition (Schonenberg et al., 2008a), which applies
this term to BPs, defines it as ”the ability to deal with [...] changes, by varying or
adapting those parts of the business process that are affected by them, whilst re-
taining the essential format [...]”. In accordance withReichert and Weber(2012);
Schonenberg et al.(2008a); Golden and Powell(2000); Upton(1994); Aaker and
Mascarenhas(1994), the term flexibility is defined as follows (cf. Definition22):

Definition 22. Flexibility is the capability to adapt a plan to external events in
order to achieve a goal (i.e., to change the original plan to anew plan which
generally has a different performance but achieves the samegoal).

Note the active feature of the verbadapt - the flexibility is an active ability
(cf. Example7).

Example 7. A person who is going to the cinema wearing summer clothes when
it is sunny but the forecast is uncertain increases the flexibility taking a foldable
raincoat in a handbag. This way, taking a raincoat makes adaptation to the
weather possible, and hence, the flexibility is increased (note that changing the
clothes is necessary only if it rains).

On the other hand, robustness was defined in the 70’s as ”the ability to respond
successfully to unforeseen environmental changes” (Eppink, 1978) 10, which was
recently supported byde Haan et al.(2011). In P&S, Jensen(2001) states that
”robustness means that the schedule is still acceptable if small delays happen du-
ring schedule execution”. In addition, similar definitionscan be found in complex

10Actually, instead of robustness, the workEppink(1978) uses the terms ”passive” or ”internal”
flexibility.
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systems which defines robustness as ”the maintenance of somedesired system
characteristics despite fluctuations in the behavior of itscomponent parts or its
environment” (Carlson and Doyle, 2002). In the area of project management,
Gueorguiev et al.(2009) considers that ”a highly robust project is one with a lot of
built-in flexibility; ’slack’ capacity that can be taken up in an emergency”. There-
fore, the term robustness is defined (Jensen, 2001, 2003; Gueorguiev et al., 2009;
Cicerone et al., 2012; Eppink, 1978; de Haan et al., 2011; Carlson and Doyle,
2002) as follows (cf. Definition23):

Definition 23. Robustnessis the capability of a process to withstand external
events in order to prevent undesirable impacts (i.e., changing the plan is not re-
quired, and hence, the same performance after the occurrence of the events is
reached).

In contrast to flexibility, robustness is considered a passive ability (cf. Exam-
ple8).

Example 8. The same person of Example7 increases the robustness wearing
mid-season clothes instead of summer clothes since the mid-season clothes can
withstand good and bad weather, and hence, the robustness isincreased (note
that, unlike in Example7, in this case changing the clothes is not required).

Typically, increasing the robustness decreases the performance, e.g., although
the mid-season clothes can withstand both sunny and rainy weather, summer
clothes and raincoats perform better under sunny and rainy conditions respec-
tively. However, flexibility and robustness are not opposed(Jensen, 2001) but can
be increased in a coordinated way, i.e., the flexibility can be increased by conside-
ring different alternatives while the robustness can be increased by providing such
alternatives with the capacity of withstanding a higher uncertainty.

As shown above, definitions given in literature for both terms differ depending
on the researchers in such a way that no formal definitions have been standard-
ized. For this, this Thesis proposes quantitative definitions for both flexibility and
robustness to measure how a system deals with the uncertainty of real scenarios
(cf. Chapter4).
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Chapter 3

From Constraint-based BP Models
to Multi-objective Optimized BP
Enactment Plans

3.1 SDeclare 1.0: Extending Declare by Including
Resource Reasoning, Temporal and Data Cons-
traints

To specify the processes in a declarative way, Declare (Pesic, 2008) is used as
basis (cf. Section2.3.1). Motivated by requirements described in literature (Mon-
tali, 2009; Westergaard and Maggi, 2012) as well as the necessities of the case
studies we have conducted (cf. Chapter5), in this chapter a first extension of
Declare is defined, resulting in the first version of the SDeclare language (such
language is further extended in Chapter 4). Besides extending Declare with re-
source reasoning and estimates for activity durations (which are partially covered
in Barba and Del Valle(2011)), SDeclare supports activities with an open set of
attributes and alternative resources (cf. Definition24), and choice, temporal and
data constraints.

Definition 24. A S-Activity SAct = (a, Res, Atts) represents a S-Activity a (cf.
Definition 14) which can be performed by any resource included in Res1, and
which has a set of attributes associated Atts (e.g., duration and profit). The set
Atts is composed of tuples<att, value>.

1This allows activities to be performed by alternative resources, whereas in previous works (cf.
(Barba and Del Valle, 2011)) only one resource can be assigned to each activity.

41
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One important aspect when modeling using SDeclare is that a S-Activity in
SDeclare represents multiple executions of it. Therefore multiple process instan-
ces are allowed if not restricted by constraints over their activities. In a SDeclare
process model (cf. Definition25), all the previously stated extensions are consi-
dered (cf. Example9).

Definition 25. A SDeclare process modelSDM = (SActs, Data, CBP, AvRes, OFs)
related to a constraint-based process model CM = (A,CBP) (cf. Definition14)
is composed of (1) a set of S-Activities (cf. Definition24) SActs= (a,Res,Atts)
related to each a∈A, (2) problem data information Data (which is the information
which influences the process execution), (3) a set of SDeclare constraints CBP

(which relates activities included in Acts and/or the data included in Data), (4) a
set of available resources AvRes (which is composed of tuples<role,#role>which
includes for each role the number #role of available resources2), and (5) a set of
the objective functions OFs to be optimized (cf. Definition20).

Example 9. Figure 2(A) shows a simple SDeclare model3 (cf. Definition25)
where: SActs= {(A,<R1>,<<att1,2>,<att2,6>>),(B,<R2>,<<att1,2>
,< att2,2>>),(C,< R1,R2>,<< att1,2>,< att2,3>>),(D,< R1,R2>,<<
att1,3>,<att2,2>>)}; Data= {};CBP= { exactly(1,A), exactly(2,B), successi-
on(A,B), response(A,B), negate− response(B,C), precedence(C,D) }; Res=
{(R1,2), (R2, 2)}; and OFs= {OF1, OF2} .

The basic SDeclare templates, extending the Declare templates (van der Aalst
and Pesic, 2006a), together with its formal specification through constraints and
some examples of valid and invalid traces are listed inAppendix A.

3.1.1 Resource Reasoning

To support the direct reasoning with resources (which is notpossible in Declare)
Declare is extendeded by including: (1) alternative resources for executing each
S-Activity (cf. Resin Definition 24), and (2) the set of available resources (cf.
AvResin Definition14). In this way, SDeclare directly supports the most common
workflow resource pattern, i.e., the role-based distribution (Russell et al., 2005),
which also supports the cases study. This pattern models theability to specify at
design-time one or more roles which will be assigned to the instances of an activity
at run-time. Note that, besides the role-based distribution pattern, SDeclare is
open to support further resource patterns (Russell et al., 2005) by including the
related constraints in the proposed CSP model (cf. Definition 14). However, as

2The role-based allocation pattern (Russell et al., 2005) is considered.
3We extend Declare tool (Declare, 2011) (i.e, a workflow management system that can be used

to specify Declare models) to allow specifying SDeclare models.
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Figure 3.1: Example of SDeclare process model.

mentioned, this work is focus on the role-based distribution pattern, which is the
one required for modelling the considered case study.

The information related to resource availabilities can be unknown until start-
ing the BP enactment. Since this information is independentof the BP-Activities,
it can be changed without affecting the specification of the activities, and vice
versa. This is not a problem for the current proposal since static information (i.e.,
the control-flow and resource constraints) is complementedwith more changing
information (i.e., the estimates), and finally the most dynamic information (i.e.,
information about resource availabilities) is included. In this way, with the cur-
rent approach, the configurable BP model can be automatically generated just
before starting the BP enactment by considering the actual values of the resource
availabilities and estimates.

3.1.2 Temporal and Data Constraints

To support increased expressiveness of Declare templates,it is extended by con-
sidering temporal and data constraints. In this way SDeclare allows to specify
temporal constraints in a similar way as (Montali, 2009; Westergaard and Maggi,
2012), i.e., all the Declare constraints have been extended to support temporal
modifiers, e.g., the SDeclare constraintPrecedence(A, B, [5, 10])states that for
starting the execution of activity B, activity A needs to be finished between 5 and
10 time units before. Furthermore, Declare is extended by including data cons-
traints in a similar way as (Montali, 2009).

Therefore, input data can be related to (1) activity attributes, e.g., in Figure3.1,
the duration of the activityB is specified by the input data, (2) resource availability,
i.e., the number of available resources of a role, and (3) SDeclare constraints, e.g.,
in Figure 3.1, the selection of the choice constraint depends on the inputdata
availableActs.
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Figure 3.2: Generating Optimized Enactment Plans from SDeclare Models



3.2. GENERATING MULTI-OBJECTIVE OPTIMIZED ENACTMENT PLANS45

3.1.3 Representing the SDeclare Model as a MO-COP Model

3.2 Generating Multi-Objective Optimized Enactment
Plans

To generate optimal (or optimized) execution plans for a specific SDeclare model,
the current Thesis proposes a constraint-based approach for P&S the BP activities.
This includes: (1) the modelling of the problem as a MO-COP, (2) the use of
global constraints implemented through filtering rules to improve the modelling
of the problems and to efficiently handle the constraints in the search for solutions,
and (3) a search algorithm for solving the MO-COP.

Given a process modeled as a SDeclare model (cf. Definition25, Figure
3.2(A)), it needs to be represented as a MO-COP (cf. Definition5, Figure3.2(B)).
Regarding the proposed MO-COP model, S-Activities (repeated activities in the
MO-COP model, cf. Definition26), which can be executed arbitrarily often if not
restricted by any constraint, are modelled as a sequence of optional scheduling
activities (cf. Definition27). This is required since each execution of a S-Activity
(i.e., a scheduling activity) is considered as one single activity which needs to be
allocated to a specific resource and temporarily placed in the enactment plan, i.e.,
stating values for its start and end times.

Definition 26. A repeated activityra = (a,Res,Att,nt) is a S-Activity SAct=
(a,Res,Atts) (cf. Definition24) which can be executed several times. It defines a
CSP variable which specifies the number of times the S-Activity is executed (i.e.,
nt).

Definition 27. A scheduling activitysa= (st,et, res,sel) related to a repeated
activity ra= (a,Res,Att,nt), represents a specific execution of ra, where st and et
are CSP variables indicating the start and the end times of the activity execution,
respectively, res∈ Res is a CSP variable representing the resource used for the
execution, and sel is a CSP variable indicating whether or not the activity is
selected to be executed (i.e., equal to 0 in the case that it isnot executed and equal
to 1 otherwise).

For each repeated activity,ntMAX
4 scheduling activities exist, which are added

to the CSP problem specification, apart from including a variablent.
Moreover, additional CSP variables representing the objective functions to op-

timize are also included in the MO-COP (cf. Figure3.2(B)). In this way, the SDe-
clare modelSDM= (SActs,Data,CBP,AvRes,OFs) (cf. Definition 25) is trans-
formed into a MO-COPPo = (V, D, CCSP, OFs)(cf. Definition 5, Figure3.2(B))
where:

4ntMAX represents the maximum value for the initial domain ofnt (cf. Fig 2(B)).
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1. V = {nt(a),a∈ SActs} ∪{st(ai),et(ai), res(ai),sel(ai), i ∈ [1.. ntMAX(a)],
a∈ SActs}∪OFs.

2. D is composed of the domains of each CSP variablevar, whereUB(var)
andLB(var) represent the upper and lower bounds of the domain ofvar,
respectively (cf. Example10).

Example 10. In the example of Figure 2, the domain [0..2] is used for nt
since 2 is the maximum cardinality for the BP activities (established by
existence relations in the constraint-based model). The domain [0..26] is
used for et and st since 26 would be the completion time if all the scheduling
activities were serially executed taking the maximum cardinality for the BP
activities into account.

3. CCSP is composed of the resource constraints, the global constraints (im-
plemented by the filtering rules, cf. Section3.2.1) related toCBP, and the
constraints which are inherent to the proposed model:

(a) ∀a ∈ SActs∀i : 1≤ i < nt(a) : et(ai) ≤ st(ai+1) (i.e., a specific exe-
cution of a repeated activity precedes the next execution ofthe same
activity).

(b) ∀a∈ SActs∀i : 1≤ i ≤UB(nt(a)) : sel(ai) == nt(a)>= i (i.e., thent
variable of the repeated activity is directly related to thesel variables
of the associated scheduling activities).

Resource constraints are not explicitly stated since most constraint-based sys-
tems provide a high-level constraint modeling specific to scheduling which in-
cludes an efficient management of shared resources. Besidesthe role-based allo-
cation pattern, the CSP variables which are included in the model can be also used
for specifying further resource constraints (Russell et al., 2005).

3.2.1 Global Constraints and Filtering Rules

Many constraint-based approaches for modelling and solving P&S problems have
been proposed (Rossi et al., 2006). Moreover, several proposals exist for filter-
ing rules related to specialized scheduling constraints (e.g., (Laborie et al., 2009;
Bartak and Cepek, 2010)). Filtering rules lead to important performance improve-
ments, facilitate the specification of the problem, and increase the efficiency in the
search for solutions (Barba and Del Valle, 2011). Therefore, the considered pro-
blem could be managed by adapting existing constraint-based approaches.
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TemporalPrecedence(A,B,[min, max]) ->
If LB(nt(B)) > 0 then

nt(A) <- nt(A) - {0}
If LB(et(act(A,1))) + min > LB(st(act(B,1))))then

LB(st(act(B,1)))) <- LB(et(act(A,1))) + min
If UB(et(act(A,1))) - max > UB(st(act(B,1))) then

UB(et(act(A,1))) <- UB(st(act(B,1))) - max

Figure 3.3: Propagator for Temporal Precedence Template inSDeclare

However, some SDeclare templates entail complex reasoningabout several
combined innovative aspects, such as the alternating executions of activities to-
gether with the varying number of times which these activities are executed. There-
fore, specific global constraints have been implemented through innovative filter-
ing rules to facilitate the specification of the problems andto increase the effi-
ciency in the search for solutions. In this way, the constraints stated in the SDe-
clare specification (cf. Definition25) are included in the MO-COP model through
the related global constraints (cf. Figure 2(B)). In the MO-COP, initial estimates
are made for upper and lower bounds of variable domains, and these values are
refined during the search process by the developed filtering rules.

In this Thesis Dissertation, filtering rules related to the SDeclare constraints
have been developed, i.e., choice, temporal and data constraints (cf. Example
11). In turns, the filtering rules associated the the basic Declare constraints were
previous developed in (Barba and Del Valle, 2011). 5

Example 11. As an example, the TemporalPrecedence(A,B, [min,max]) rule is
shown in FigureA, where the propagator that describes the pruning of domains
appears after symbol→. This constraint means that between min and max units
of time before the first execution of B, at least one executionof A must be executed.

3.2.2 Solving the MO-COP

Once the problem is modeled as a MO-COP (cf. Definition5), several constraint-
based mechanisms can be used to obtain the solutions to the MO-COP, i.e., multi-
objective optimized enactment plans (cf. Definition1). Since the generation of
optimal plans presents NP-complexity (Garey and Johnson, 1979), it is not pos-
sible to ensure the optimality of the generated plans for allthe cases. However,
the developed constraint-based approach allows solving the considered problems
in an efficient way as empirically demonstrate later in the case study.

The proposed constraint-based approach includes a multi-objective optimiza-
tion search algorithm which is based on theε-constraint method (Haimes et al.,

5A detailed description of the developed basic SDeclare filtering rules can be found at
http://regula.lsi.us.es/MOPlanner/FilteringRules.pdf.

http://regula.lsi.us.es/MOPlanner/FilteringRules.pdf
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Algorithm 1: Generation ofEnactmentPlansfrom aMO−COP
input : MO-COPP0

output: Set<EnactmentPlan> plans

1 Map<ObjectiveFunction, Range> ranges= calculateRegions(P0);
2 Set<Region> regions= divide(P0, ranges);
3 Set<EnactmentPlan> planswith dominated= solveRegions(P0, regions);
4 plans= removeParetoDominated(planswith dominated);

1971) (cf. Section2.1). This search algorithm solves a number of single-objective
COPs optimizing one of the objective functions and constraining the remaining
objective functions. Specifically, given a MO-COPPo = (V,D,CCSP,OFs) with N
objective functions (i.e.,OFs= {OF1, ..,OFN}), the proposed algorithm (cf. Alg.
1) follows four steps:

1. For each objective functionOFi ∈ OFs, the related range (i.e., tentative
maximum and minimum values that can be obtained forOFi) is calculated
(line 1 of Alg. 1) by using the algorithmcalculateRegions (cf. Alg. 2).
At the beginning of Alg.2 an empty set of enactment plans is created for
storing the solutions which are being generated (cf. line 1 of Alg. 2). More-
over, a solver which is in charge of finding solutions (i.e., enactment plans6)
for single-objective COPs is created (i.e.,solverat line 2 of Alg. 2). For
eachOFi , a COPPi = (V,D,CCSP, OFi) which includes the same variables,
domains and constraints thanPo but which only optimizesOFi is generated
(lines 4-6 of Alg. 2). Then, an incomplete complete search algorithm is
used to find one optimized solutionSoli for such problem within a given
time limit (cf. line 7 of Alg. 2). The solution is then stored in the setsols
(cf. line 8 of Alg. 2). All the solutions which are store insolsare then
used to calculate a range of tentative maximum and minimum values for
each objective functionOFi (cf. lines 9-13 of Alg.2). This is performed by
calculating the maximum and minimum values which are achieved for each
OFi in all the solutions stored insols(cf. Example12).

Example 12. For a MO-COP with three objective functions and sols=
{(OF1=10,OF2=5,OF3=4),(OF1=9,OF2=6,OF3=1)(OF1=2,OF2=
4,OF3 = 8)}, the maximum (minimum) value for each OFi , denoted as
OFM

i (OFm
i ), is: OFM

1 = 10,OFM
2 = 6 and OFM

3 = 8 (OFm
1 = 2,OFm

2 =

6In the proposed approach the schedules (i.e., the raw solutions of the considered COPs) are
directly transformed to enactment plans. Therefore, for the sake of simplicity, the solutions of
such COPs are considered enactment plans.
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4 and OFm
3 = 1.). Then, range(OF1) = [2,10], range(OF2) = [4,6] and

range(OF3) = [1,8].

Algorithm 2: calulateRegions method: Calculate the range of values for
eachOb jectiveFunction.

input : MO-COPP0

output: Map<ObjectiveFunction, Range> ranges

1 Set<EnactmentPlan> sols← /0;
2 COPSolversolver= createSolver();
3 foreach OFi in P0.OFs do
4 COPPi= createCOP();
5 Pi .〈V,D,CCSP〉= P0.〈V,D,CCSP〉;
6 Pi .OF=OFi ;
7 EnactmentPlanSoli=solver.solve(Pi, Best, TIME LIMIT );
8 sols.add(Soli);

9 foreach OFi in p0.OFsdo
10 Ranger=createRange();
11 r.max=maximumValue(sols, OFi);
12 r.min=minimumValue(sols, OFi);
13 ranges.put(OFi, r);

2. With the goal of obtaining an uniformly distributed set ofsolutions for
Po, the solution space (i.e., aN-dimensional space) is divided into smaller
N-dimensional regions (cf. line 2 of Alg. 1) by using thedivide al-
gorithm.7 A region of a solution space withN objective functions con-
sists ofN sub-ranges, each one related to one objective function. In the
divide algorithm, each range which is calculated for each objective func-
tion in the step 1,range(OFi), is divided into a given numberDIV of non-
overlapped sub-ranges, i.e.,rangej(OFi) ∀ j = 1. . .DIV . Each sub-range
rangej(OFi) of a rangerange(OFi) has the same size than the other sub-
ranges related to the same objective functionOFi, with the exception of
the first and the last sub-ranges, i.e.,∀2 ≤ j ≤ DIV − 1: rangej(OFi) =
[OFm

i +( j−1)×|range(OFi)|/DIV, OFm
i + j×|range(OFi)|/DIV ], where

|range(OFi)| refers to the size ofrange(OFi), i.e., OFM
i - OFm

i . Regar-
ding the first and the last subranges, since the solution space is not totally
explored in step 1 (since the search algorithm stops when a time limit is

7Due to its triviality, unlike the other algorithms, thedivide algorithm is not formally shown
in algorithm shape.
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Figure 3.4: Solution space with two objective functions which is divided into nine regions.

reached) the absence of solutions out of the calculated ranges cannot be
ensured. Therefore the minimum value of the first sub-range and the max-
imum value of the last sub-range are not fixed with the goal of avoiding
missing some potential solutions. In this way,range1(OFi) = [−∞,OFm

i +
|range(OFi)|/DIV ], andrangeDIV (OFi)= [OFm

i +(DIV−1)×|range(OFi)|
/DIV,+∞]. Then, the sub-ranges related to each objective function are com-
bined with the sub-ranges related to all the other objectivefunctions with the
goal of obtaining different regions,Rv, wherev∈NN is a vector which con-
tains the indices of the sub-ranges which belong toRv, i.e,rangej(OFi)∈Rv

if and only if v[i] = j, ∀1≤ i ≤ N, ∀1≤ j ≤ DIV (cf. Example13).

Example 13. Figure 3.4 depicts a solution space which is divided in nine
regions (i.e., R1,1, R1,2, .., R3,3) for a MO-COP with two objective func-
tions (i.e., OF1 and OF2) whose ranges are divided in tree sub-ranges (i.e.,
range1(OF1), range2(OF1), .., range3(OF2)).

3. In order to look for a uniformly distributed set of solutions, each region is in-
dependently managed (line 3 of Alg. 1) by using the algorithmsolveRegions
(cf. Alg. 3).
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Algorithm 3: solveRegions method: GenerateEnactmentPlansby sol-
ving theCOPsrelated to eachregion.

input : MO-COPP0

Set<Region> regions
output: Set<EnactmentPlans> plans

1 Set<Region> dominated← /0;
2 foreach region in regions by region.countDominatingRegions(regions)

descdo
3 if !dominated.contains(region)then
4 Set<EnactmentPlan> sols← /0 ;
5 foreachOFi in P0.OFsdo
6 COPPv,i= createCOP();
7 Pv,i .〈V,D,CCSP〉 = P0.〈V,D,CCSP〉;
8 Pv,i .OF=OFi ;
9 foreachOFl in P0.OFsdo

10 Pv,i .CCSP.add(”OFl ∈ region.get(OFl ).getRange()”);

11 sols=solver.solve(Pv,i, Anytime, TIME LIMIT );

12 if !sols.isEmpty()then
13 dominated.addAll(calculateDominatedRegions(regions,

region));
14 plans.addAll(removeParetoDominatedSolutions(sols));

Initially, an empty set of dominated regions is created (cf.line 1 of Alg.
3). This set is created with the goal of storing all the regionswhich are
dominated by others. Since only the Pareto optimized solutions are consi-
dered, the order of solving the regions influences the efficiency since some
calculus can be saved by applying a proper ordering. Thus, this algorithm
solves the aforementioned problemsPv,i (i.e., a problem which optimizes
the objective functioni in the regionRv) starting with those problems which
belong to the region which dominates more regions (line 2 of Alg. 3). A
regionRv dominatesRv′ if and only if ∀1≤ k≤N : v[k]> v′[k] (beingN the
number of dimensions), cf. Example14.8 If a solution is found in a region,
all the COPs related to the regions which are dominated by theformer do
not need to be solved (line 3 of Alg.3) since all their solutions are Pareto
dominated by any solution which belongs to the former region.

8For the sake of clarity, the maximization of each objective function is assumed. The problem
of minimization is analogous.
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Example 14. In Figure 3.4, region R3,3 dominates R2,2,R2,1,R1,2 and R1,1,
region R2,3 dominates R1,2 and R1,1, and so on.

Therefore, for each regionRv which is not dominated, an empty set of solu-
tions is created (cf. line 4 of Alg.3) to store all the enactment plans related
to such region. In addition,N COPsPv,i = (V,D,Cv,OFi) are generated (cf.
lines 5 and 6 of Alg.3), whereCv =CCSP∪ (OFl ∈ rangev[l ](OFl),∀1≤ l ≤
N) (i.e., which only optimizesOFi and where all the objectives functions
are constrained to be in the related sub-rangerangev[l ](OFl); cf. lines 7-10
of Alg. 3). Unlike step 1, in order to generate a wide set of solutions,an
anytime optimization algorithm(Zilberstein, 1996) is used which is an in-
complete search algorithm which updates the best solution which is found
during the search. Then not only the best solution (cf. line 11 of Alg. 3) but
some intermediate solutions are returned.

If at least one solution is found within a regionRv (cf. line 12 of Alg. 3),
the regions which are dominated byRv are included in the setdominatedto
avoid the search for solutions in that dominated region (cf.line 13 of Alg.
3). In addition, the solutions which are obtained withinRv are filtered by
removing the solutions which are Pareto dominated (cf. line14 of Alg. 3
and Example15).9

Example 15. For a MO-COP with two objective functions and a solution
space divided in nine regions, Figure3.5 shows the different solutions ob-
tained within each region, where no solutions are found in regions R2,3 and
R3,3, and where R1,1 and R2,1 are eliminated (i.e., the COPs related to them
are not solved) since some solutions are found in region R3,2 which domi-
nates R1,1 and R2,1. In Figure3.5, each cross represents a solution which is
Pareto dominated by another solution in the same region.

4. After all the COPs are solved (i.e., a diversified set of solutions is obtained),
solutions which are dominated by solutions from a differentregion are re-
moved (cf. line 4 of Alg. 1). Then a distributed set of Pareto optimized
solutions is obtained (cf. Example16).10

Example 16. In Figure 3.5all solutions which are dominated by any solu-
tion which belongs to a different region are depicted by a cross inside a box,
and all the Pareto optimized solutions are depicted by a square.

9In a general case, the complexity of the Pareto dominance algorithm is O(n2) where n
is the number of solutions [referecia]. Then, the fact of having all the solutions divided in
non-overlapped regions (i.e., the solutions are clustered) reduces the complexity sinceO(n2) <
O((n/m)2)×m, ∀m> 1 wherem is the number of regions.

10The complete set of Pareto optimal solution is not the goal ofthe proposed algorithm, but a
representative and distributed set of Pareto optimized solutions.
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3.3 Other applications of the Optimized BP Enact-
ment Plans

3.3.1 User Recommendations for the Optimized Execution of
BPs

Introduction

In order to support the users during process execution in optimizing performance
goals (e.g., minimizing the overall completion time), the generation of optimized
enactment plans was proposed (cf. Section3.2). Recommendations on possi-
ble next steps are then generated taking the partial trace and the optimized plans
into account. Replanning is supported if actual traces deviate from the optimized
enactment plans (e.g., because estimates turned out to be inaccurate).
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Figure 3.6: Overview of the proposal for generating optimized execution plans at build-
time and generating recommendations at run-time.

Generating Recommendations on Possible Next Execution Steps

As stated, constraint-based processes offer much flexibility. Typically, given a
constraint-based process model and a certain partial trace, users can choose from
several enabled activities which activity to execute next,which is a challenging
selection in most cases. In order to address this challenge this section proposes an
approach to assist users during process execution in optimizing performance goals
like minimizing the overall completion time. Specifically,users are supported du-
ring process execution by a recommendation service which provides recommen-
dations on how to proceed best with the execution. Hereby, a recommendation (cf.
Definition28) is composed by one or more enabled activities (cf. Definition 19) to
be executed next, together with their resource allocationssince both control-flow
and resource perspectives are considered.

Definition 28. A recommendationRec is composed by a set of pairs(ai,R jk)
suggesting to start the i-th execution of activity a using resource R jk11.

11R jk refers to the k-th resource with rolej.
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For example, the recommendation< (A1,R01),(B2,R12) > suggests to start
the first execution of activityA using resourceR01 and the second execution of
activity B using resourceR12.

The recommendation service is based on optimized enactmentplans which
are already generated during build-time (cf. Section3.2) by P&S all BP activities
and further optimized during run-time. At specific times of the process execution,
the recommendation system generates the recommendations by considering: (1)
the optimized enactment plans, (2) the partial traces (cf. Definition 17) of the
process instances to be optimized, and (3) the resource availabilities. In order
to determine the recommendations, different strategies can be used (which will
be described later). Thereby, the recommendation service ensures that not only
single process instances get optimized, but the whole set ofinstances which is
planned to be executed within a certain timeframe, hence allowing for a global
optimization.

At run-time, process instances (cf. Definition18) are executed by authorized
users (a in Figure3.6). At any point during the execution of a process instance,
the user can select from the set of enabled activities (cf. Definition 19) what to
do next. However, to guide the user to optimize the overall process goals, recom-
mendations (cf. Definition28) are provided by the recommendation service (b in
Figure3.6). Note that the user is not obliged to follow the recommendations but
she can select any of the enabled activities, i.e., all the flexibility of the declarative
specification is kept. To provide recommendations, the recommendation service
proposes the most suitable activity to execute next, i.e., proposes the recommen-
dation with the highest quality.12

Algorithm 4 shows how the recommendations are generated. As input data
some information is required: (1) the SDeclare specification of the problem (cf.
Definition 25) and (2) the initial optimized enactment plans (cf. Definition 1)
generated during the build-time phase. As stated, for a particular timeframe a BP
enactment plan for a set of instances (cf. Definition18) is generated. Algorithm4
starts at the beginning of such a timeframe and lasts until all the planned instances
have completed (line 15 in Alg.4).

Algorithm4 continuously generates recommendations (line 11) on how topro-
ceed with process execution considering (1) the best available enactment plan (d
in Figure3.6) meeting the constraints imposed by the constraint-based specifica-
tion (e in Figure3.6), and (2) all events that occurred during process execution
(i.e.,allEvents). This includes (1) the current partial traces of the process instan-
ces (c in Figure3.6), and (2) the current information about resource availabilities
(c in Figure3.6), e.g.,(!R jk,T) means that k-th resource with role j becomes un-

12As multi-objective optimization is considered in this Thesis, the value of the quality is calcu-
lated from the values of the objective functions.
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Algorithm 4: Provide Recommendations
input : SDeclare Specificationcr

set<EnactmentPlan> plans

1 Recommendationrec;
2 Set<Event> allEvents← /0;
3 Set<Event> newEvents;
4 int T ← currentTime();
5 repeat
6 if event(newEvents,T) then
7 allEvents← allEvents∪newEvents;
8 plan← update(cr, plans,allEvents);

9 if optimizerPlan(cr, plans,allEvents)! = null then
10 plan← optimizerPlan(cr, plans,allEvents);

11 rec← generateRecommendation(plans,allEvents);
12 if rec! = null then
13 send(rec);

14 T← currentTime();
15 until !CompleteTrace(cr,allEvents);

available at timeT. In the case that a recommendation is suggested (line 12), the
recommendation system sends it to the user (line 13).

As execution proceeds, the BP enactment and the resource availabilities are
monitored (f in Figure3.6). If there are new events at timeT (line 6 in Alg. 4), i.e.,
activities get started/completed or resources become available/unavailable (g in
Figure3.6), then the set of eventsallEvents, which includes both the partial trace
and the resource availability events, is updated (line 7 in Alg. 4). By doing this,
the proposed approach is able to deal with uncertainty involved (i.e., inaccurate
estimates, unexpected changes in resource availabilities, and user deviations).

Whenever events are updated the Replanning Module (h in Figure3.6) ana-
lyzes the optimized plans (i in Figure3.6) as well as the events. In particular, it
checks if the current execution traces match with any of the optimized enactment
plans (and if a recommendation can be made) or whether updates of the execution
plans are needed (j in Figure3.6). In general, updates of the execution plan can
become necessary due to deviations (line 8 in Alg.4), i.e., (1) the execution trace
is not part of one of the optimized enactment plans (e.g., theuser is not always
following the recommendations), (2) estimates are incorrect (e.g., when activity
executions take longer/shorter than estimated, or more or less instances than ex-
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pected get executed), or (3) resource availabilities change (i.e., resources become
unavailable).

Moreover, the Replanning Module is continuously searchingfor a better plan
by considering the event log during BP execution, provided that the current plan
is not optimal. In this way, plan updates are conducted whenever the replanning
module finds a solution which is better than the current optimized plans (lines 9
and 10 in Alg.4). If plan updates are required, the Replanning Module needsto
access the extended constraint-based specification of the process (k in Figure3.6)
to generate new optimized plans considering both the estimates and the constraint-
based specification. If necessary, the replanning, i.e., the generation of new opti-
mized enactment plans, is carried out by applying a constraint-based approach for
P&S the BP activities (cf. Section3.2).

Despite the NP-complexity of the considered problems, in general replanning
is less time consuming than initial planning, since most of the information about
previous generated plans can usually be reused, and CSP variable values become
known as execution proceeds.

3.3.2 Automatic Generation of Optimized Imperative BP Mo-
dels

Introduction

To support process analysts in the definition of optimized BPmodels a method
for automatically generating imperative BP models using AIplanning techniques
from constraint-based specifications is suggested. In the proposed approach, the
static part of the input declarative model (i.e., control-flow and resource cons-
traints) is expected to be useful on a long-term basis since it embraces informa-
tion which is not supposed to change often. The base declarative model (i.e.,
only including the static part) is complemented with information that is less sta-
ble and which is potentially unknown until starting the BP execution. From this
extended model, the proposed approach is in charge of determining how to satisfy
the constraints imposed by the declarative specification and at the same time to
attain an optimization of certain objective functions (e.g., minimization of com-
pletion time). For this optimization, scheduling is done ona short-term basis by
considering the optimization of a set of instances.

Unlike conventional proposals, in this approach each generated model is crea-
ted and deployed for a specific planning period, consideringchanging information
such as the number of process instances which are being executed within a spe-
cific timeframe. For the next executions of the declarative model, new models
will be generated considering the specific values which are given for the changing
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Figure 3.7: AI P&S techniques for the generation of optimized BP models.

information. Since planning is done on a short-term basis, the generated models
are less prone to change.

Figure3.7 provides an overview of this section. Taking the constraint-based
specifications as a starting point (cf. Figure3.7(1)), enactment plans can automa-
tically be generated (cf. Figure3.7(2), Section3.2).

The generated enactment plans are then automatically translated into a BPMN
model (BPMN, 2011) (cf. Figure3.7(3)), which can be then further improved by
a business analyst, where necessary. In most cases, BPMN models can be trans-
lated into an execution language (Ouyang et al., 2006), such as BPEL (BPEL,
2007), which enables BP designs to be deployed into BPMSs and let their ins-
tances be executed by a BPM engine. To provide for an increased flexibility the
BPMN model can be dynamically adapted during run-time by using replanning
(cf. Figure3.7(4)).

Note that the BPMN model is generated with the goal of making the decla-
rative model automatically executable by a BPMS by considering the specific
values of the changing information which are given just before starting the exe-
cution the process. In this way, application of decision deferral patterns is auto-
mated (Reichert and Weber, 2012), i.e., the role of the BPMS is rather focused
on enabling control and ensuring compliance (decisions areautomatically made
by the BPMS). Regarding decision deferral patterns, this approach belongs to
the late modelling and composition pattern, i.e., allowingfor modelling and au-
tomatic composition of a process model just before startingthe execution of a
branch of process instances. Therefore, this approach can be framed within dy-
namic process-based composition (i.e., completely creating the executable process
model dynamically at run-time), which constitutes an example of the automated
variant of the late modelling and composition pattern.

In this way, the automatic generation of BP models simplifiesthe BP design
phase by facilitating the human work in most cases, preventing failures in the de-
veloped BP models, and enabling better optimization to be attained in the enact-
ment phase. Furthermore, imperative BP models can dynamically be generated
from static constraint-based specifications just before starting the BP enactment,
once some values for the enactment parameters, e.g., resource availabilities, are
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known. Moreover, the automatic generation of BP models can deal with complex
problems of great size in a simple way. Therefore, a wide study of several aspects
can be carried out, such as those related to the requirement of resources of diffe-
rent roles, or the estimated completion time for the BP enactment, by generating
several kinds of alternative specifications. In addition, in order to address run-time
flexibility the proposed approach allows decisions to be deferred at run-time by
using complex late-planning activities, and the BPMN modelto be dynamically
adapted during run-time using replanning.

From Optimized Enactment Plans to Optimized Business Process Models

Section3.2 has described how optimized BP enactment plans can be generated
from SDeclare specifications. This section describes how a BPMN model which
includes the same activities to be executed in the same ordering and also using the
same resources can be generated from the optimized enactment plan.

For each role in the BP enactment plan, a BPMN pool (cf. Definition 29) is
created, which contains as many lanes as number of availableresources for that
role.

Definition 29. A BPMN pool BPMNPool= (role,#role) is a pool of a BPMN
model, which is composed of#role lanes.

Moreover, for each scheduling activity in the BP enactment plan a BPMN
activity (cf. Definition30) is created. Additionally, one start activity and one end
activity are included in the BPMN model.

Definition 30. A BPMN activity BPMNAct= (pool, lane,dur,st) is an activity
of a BPMN model placed in the lane named lane of the pool named pool, with
duration dur and start time st.

One of the most important aspects to be considered for the generation of op-
timized BPMN models are the precedence relations between the BPMN activities
(scheduling activities). For establishing these precedence relations the values for
the start and the end times of the scheduling activities in the enactment plan are
considered. These precedence relations are then used as a basis for generating
BPMN models (cf. Definition34) from BP enactment plans. Some related defini-
tions are given below:

Definition 31. In a BP enactment plan regarding a CSP solution S, a scheduling
activity ai is apredecessorof another scheduling activity bj , ai ∈ predecessors(b j),
if the relation Set(ai) ≤ Sst(b j) holds due to resource or template relations.
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Definition 32. In a BP enactment plan, a scheduling activity ai is a direct prede-
cessorof another scheduling activity bj , ai ∈ DP(b j), if ai ∈ predecessors(b j) ∧ 6
∃ck ∈ predecessors(b j) | ai ∈ predecessors(ck).

Definition 33. In a BP enactment plan, a scheduling activity ai is anindirect pre-
decessorof another scheduling activity bj , ai ∈ IP(b j), if ai ∈ predecessors(b j)∧
∃ck ∈ predecessors(b j) | ai ∈ predecessors(ck).

Definition 34. A BPMN model BPMN = (Pools, Activities, SequenceFlows,
ParallelM) related to a SDeclare process model CR=(Acts,Data,CBP,Res,OFs)
(cf. Definition25) and to a solution S (cf. Definition3) of the related CSP (cf. Def-
inition 2) is a BP model specified through the BPMN language, where:

1. Pools= {BPMNPool(role,#role),(role,#role)∈ Res}.

2. Activities= {BPMNAct(role(a),Sres(ai),dur(a),Sst(ai)),(a, role,dur)∈Acts, i ∈
[1..Snt(a)]} ∪ {start=BPMNAct(P0,L0,0,0)} ∪ {end=BPMNAct(P0,L0,0,
max(a,role,dur)∈Acts,i∈[1..Snt(a)]S

et(ai))}.

3. Let the set Predecessors be:

I {(start,ai) | (a, role,dur) ∈ Acts, i ∈ [1..Snt(a)], Sst(ai) = 0} ∪
II {(aSnt(a),end) | (a, role,dur)∈Acts, 6 ∃bi , i ∈ [1..Snt(b)], (b, roleb,durb)∈

Acts, aSnt(a) ∈ predecessors(bi)} ∪
III {(bi ,c j) | i ∈ [1..Snt(b)], (b, roleb,durb)∈Acts, j ∈ [1..Snt(c)], (c, rolec,durc)∈

Acts, bi ∈ DP(c j)},

Then:

(a) SequenceFlows= {(bi,c j) | (((b, roleb,durb)∈Acts∧ i ∈ [1..Snt(b)]) ∨
bi = start) ∧ (((c, rolec,durc) ∈ Acts ∧ j ∈ [1..Snt(c)]) ∨ c j =
end) ∧ (bi,c j) ∈ Predecessors∧ |{dk,(((d, roled,durd) ∈ Acts∧
k∈ [1..Snt(d)]) ∨ dk = start), (dk,c j) ∈ Predecessors}|= 1)}.

(b) ParallelM= {(Sources,c j) | (((c, rolec,durc)∈Acts∧ j ∈ [1..Snt(c)])
∨ c j =end)∧ Sources= {bi,(((b, roleb,durb)∈Acts∧ i ∈ [1..nt(b)])
∨ bi = start) ∧ (bi ,c j) ∈ Predecessors} ∧ |Sources|> 1}.

In this way, through the setPredecessors, the precedence relations between
activities are stated so that (1) the start activity is predecessor of all scheduling
activities whosest value is equal to 0, (2) the activities which are not predecessors
of any other activity, are predecessor of the end activity, and (3) in general, one
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activity bi is predecessor of another activityc j iff bi is direct predecessor ofc j

(cf. (3) in Definition 34) . The setPredecessorsis represented in the BPMN
model by BPMN sequence flows between a source activitybi and a sink activity
c j , in the case thatbi is the only predecessor ofc j (cf. (3)(a) in Definition34),
or by a parallel merging gateway between a set of source activities Sourcesand
a sink activityc j in the case thatc j has more than one predecessor (cf. (3)(b)
in Definition 34). Note that parallel merging gateways (i.e., parallel gateways
which have several sources and only one sink) need to be explicitly included in the
resulting BPMN model, since they do not have the same meaningas several binary
sequence flows from several sources and one sink. However, parallel splitting
gateways (i.e., parallel gateways which have several sinksand only one source)
do not need to be explicitly included in the resulting BPMN model since several
binary sequence flows between one source activity and several sink activities have
the same meaning as a parallel splitting gateway in the BPMN language.

In order to develop the algorithms to generate the BP models from the opti-
mized enactment plans, certain related types are stated, asshown in Figure3.8
(UML diagram). Note that at this point of the process the CSP variables are ins-
tantiated, and hence all the information is known (nt variable for each BP activity,
st variable for each scheduling activity, resource in which each scheduling acti-
vity is executed, etc). The types which appear in the UML diagram are as follows:

• OptimizedPlan(acts, r, t): This represents the generated optimized enact-
ment plan. Moreover, it contains the information related tothe input pro-
blem. Specifically, this type contains properties regarding a set of rolesr, a
set of repeated activities (SDeclare activities)acts, and a set of constraints
which relate the repeated activitiest.

• RepeatedAct(role,dur,acts,nt): This represents the SDeclare activities. Each
repeated activity contains information about the requiredrole (i.e.,role), the
estimated duration (i.e.,dur), the set of scheduling activities which repre-
sent the execution of each BP activity (i.e.,acts), and the number of times
this repeated activity is executed (i.e.,nt).

• Role(resources): This represents a role, and it is composed of the set of
resources available for this role.

• Resource(acts): This represents a resource. This type contains properties
regarding a list of scheduling activities which are executed in that resource,
ordered by the start time.

• Constraint(name): This represents the high-level relations which are given
between the repeated activities. Two specializations are included to allow
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the relations between one source and several sinks (ConstraintSinks), and
between several sources and one sink (ConstraintSources)13. The method
includePredof a template updates the information of the BPMN model
by including the precedence relations which are implied by that template
(more details are given later in this section during the presentation of the
algorithms). For the generation of the BPMN model, the constraints are
considered for the connection of the BPMN activities.

• P&SAct(st,et, res): This represents each execution of a repeated activity.
This type contains properties regarding the start and the end times of the
activity, together with the resource used by the schedulingactivity (st, et
andres respectively). Since each P&SAct is related to a specific BPMN-
Act in the resulting BPMN model, the P&SAct type provides themethod
toBPMNActin order to obtain the related BPMNAct from a P&SAct (cf.
Figure3.8). This method is formalized as follows, where the symbol→ is
used to specify the output parameter:toBPMNAct(a : P&SAct)→BPMNAct(
a.res.lane.pool,a.res.lane,a.dur,a.st).

• BPMNModel(pools,acts,seqFlows,gates): This represents the BPMN model
that is generated. This model is composed of a set of poolspools, a set of
BPMN activitiesacts, a set of sequence flowsseqFlows, and a set of gates
gates. It contains the functioncreateBPMN()→ BPMNModel( /0, /0, /0, /0)
(i.e., this method returns an object of type BPMNModel in which all pro-
perties are empty sets).

• BPMNAct(pool, lane,dur,st): This represents a BPMN activity. This type
contains properties regarding the pool and the lane where the activity is allo-
cated (i.e.,pool andlanerespectively), together with the estimated duration
dur and start timest. It contains the following functions (cf. Figure3.8):
(1) createBPMNAct(a : P&SAct)→BPMNAct(a.res.lane.pool,a.res.lane,
a.dur,a.st), which creates a BPMNAct from a P&SAct, and (2)createBPMNAct(
p : Pool, l : Lane,dur : int,st : int)→ BPMNAct(p, l ,dur,st).

• Pool(lanes, role): This represents a BPMN pool. Each pool is associated to
a specific object of type Rolerole, and is composed of a set of objects
of type Lanelanes. It contains the functioncreatePool(role : Role) →
Pool(lanes, role), wherelanes=

⋃
res∈role.resourcescreateLane(res), i.e., for

each resource of that role, a related lane is created and included in the pool.

13Note that both ConstraintSinks and ConstraintSources can be used for specifying binary cons-
traints.



3.3. OTHER APPLICATIONS 63

• Lane(res): This represents a BPMN lane. Each lane is associated to a spe-
cific resourceres. It contains the functioncreateLane(res : Resource)→
Lane(res).

• Gate: This represents a BPMN gate. In order to consider parallel merging
gateways, a specialization, named ParallelM, is developed.

• ParallelM(sources,sink): This represents a parallel merging gateway, to-
gether with the related input and output connections of the gateway. This
type contains properties regarding a set of inputssources, and one output
sink. It contains the functioncreateParallelM(l : Set< BPMNAct>,a :
BPMNAct)→ ParallelM(l ,a).

• SequenceFlow(a,b): This represents a precedence sequence flow between
two BPMN activities,aandb. It contains the functioncreateSequenceFlow(
a : BPMNAct, b : BPMNAct)→ SequenceFlow(a,b). Note that the con-
nections between a BPMN activity and a gateway are stated in ParallelM
objects.
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Algorithm 5: Construct an Optimized BP Model from an Optimized BP
Enactment Plan

input : SortedSet<P&SAct> acts, ordered byst
Set<Constraint> c
Set<Role> r

output: BPMNModelbp

1 bp← createBPMN();
2 bp.pools←{createPool(role) | role∈ r};
3 bp.acts←{createBPMNAct(a) | a∈ acts};
4 BPMNAct start← createBPMNAct(P0,L0,0,0);
5 BPMNAct end← createBPMNAct(P0,L0,0,maxa∈actsa.et);
6 bp.sequenceFlows←{createSequenceFlow(start, ini) | ini ∈

bp.acts, ini.st= 0};
7 Map<P&SAct,Set<P&SAct>> pred←CreateDependencies(acts,c, r);
8 foreach psact in actsdo
9 if pred(psact).size == 1then

10 P&SAct aPred← pred(psact).get(0);
11 bp.sequenceFlows← bp.sequenceFlows∪

createSequenceFlow(toBPMNAct(aPred), toBPMNAct(psact));

12 else
13 Set<BPMNAct> inputs←{toBPMNAct(a) | a∈ pred(psact)};
14 bp.gates←

bp.gates∪createParallelM(inputs, toBPMNAct(psact));

15 Set<BPMNAct>
f inals←{toBPMNAct(a) | a∈ P&SAct,¬∃b∈ P&SAct,a∈ pred(b)};

16 if finals.size == 1then
17 BPMNAct f inal← f inals.get(0);
18 bp.sequenceFlows←

bp.sequenceFlows∪createSequenceFlow( f inal,end);

19 else
20 bp.gates← bp.gates∪createParallelM( f inals,end);

21 return bp;

In Algs. 5, 6, 7, 8, T<P> represents the generic type T with the generic
parameter instantiated to P. These algorithms are explained below.

The main algorithm, Alg.5, constructs a BPMN model from an optimized BP
enactment plan (cf. Definition1) and a SDeclare model (cf. Definition refdefsde-
clareprocessmodel). From the enactment plan and the SDeclare model, the input
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parameters of Alg.5 can be stated, i.e., a sorted set of scheduling activities or-
dered by start time (i.e.,acts); a set of the constraints which relate the repeated
activities (i.e.,c); and a set of the considered roles (i.e.,r). Algorithm 5 starts
by creating an empty BPMN model (cf. line 1). Moreover, a poolassociated to
each role is created, together with the corresponding lanes(line 2). In a similar
way, a BPMN activity associated to each scheduling activityis created (line 3).
The start and end activities of the model can be associated toany pool, which
is represented byP0 in Alg. 5, and to any lane, which is represented byL0 in
Alg. 5 (lines 4 and 5 respectively). In line 6, a sequence flow between the start
BPMN activity and each BPMN activity whose estimated start time is equal to 0 is
created through thecreateSequenceFlowmethod (cf. Figure3.8). As explained,
thecreateSequenceFlowmethod contains the parameters (1)a of typeBPMNAct,
and (2)b of typeBPMNActas input, and creates aSequenceFlowobject which
states a BPMN binary precedence relation starting ina and ending inb. After
that, the mappred associates a set of direct predecessors (cf. Definition32) to
each scheduling activity by using the methodCreateDependencies(cf. Alg. 6,
explained later in this section) in order to generate the BPMN model (line 7)14.

Lines 8-14 establish the sequence flows and gateways betweenthe BPMN
activities in the following way: if the BPMN activity has only one direct prede-
cessor, a sequence flow is included (lines 9-11); otherwise if the BPMN activity
has several direct predecessors, a parallel merging gateway is included through
the createParallelMmethod (lines 12-14). As explained, thecreateParallelM
method contains the parameters (1)l of type List < BPMNAct>, and (2)a of
type BPMNActas input, and creates aParallelM object which states a BPMN
parallel merging gateway (also including all the related connections) with con-
tains all the BPMN activities ofl as input and the BPMN activitya as output. In
line 15, all the final activities are selected to be direct predecessors of the end ac-
tivity. These activities are related by either a sequence flow, in the case that there
is only one ending activity (lines 16-18); or by a parallel merging gateway, in the
case that there are several ending activities (lines 19-20). Note that, as mentioned,
parallel merging gateways (i.e., parallel gateways which have several sources and
only one sink) need to be explicitly included in the resulting BPMN model, since
they do not have the same meaning as several binary sequence flows from several
sources and one sink. However, parallel splitting gateways(i.e., parallel gateways
which have several sinks and only one source) do not need to beexplicitly in-
cluded in the resulting BPMN model since several binary sequence flows between
one source activity and several sink activities have the same meaning as a parallel
splitting gateway in the BPMN language.

14The generic typeMap< T1,T2>, which associates an object of typeT2 to an object of type
T1, is used.
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Algorithm 6: CreateDependencies
input : SortedSet<P&SAct> actsordered byst

Set<Constraint> constraints
Set<Role> roles

output: Map<P&SAct,Set<P&SAct>> directPredecessors

1 Map<P&SAct,Set<P&SAct>> allPredecessors← /0;
2 foreach r in rolesdo
3 foreach res in r.resourcesdo
4 List<P&SAct> actsRes← res.acts;
5 foreach i in i:1..actsRes.size-1do
6 allPredecessors(actsResi+1)←{actsResi};

7 foreach c in constraintsdo
8 c.includePredecessors(allPredecessors);

9 Map<P&SAct,Set<P&SAct>> indirectPredecessors← /0;
10 foreach act in actsdo
11 directPredecessors(act)← allPredecessors(act);
12 foreach p in allPredecessors(act)do
13 directPredecessors(act)←

directPredecessors(act)\allPredecessors(p);
14 indirectPredecessors(act)←

indirectPredecessors(act)∪allPredecessors(p);

15 allPredecessors(act)←
allPredecessors(act)∪ indirectPredecessors(act);

16 return directPredecessors;

As stated before, one of the most important aspects to be considered for this
model generation are the precedence relations between the scheduling activities of
the plan, which are managed by Alg.6. As mentioned, these precedence relations
are due to (1) resource constraints, i.e., the activities are allocated in the resources
in a specific order in the generated enactment plan, and (2) SDeclare constraints
related to precedence between activities. Algorithm6 generates a map in which
each scheduling activity is associated to a set of scheduling activities that are its
direct predecessors (cf. Definition32). For this, three maps are managed in this
algorithm: (1)directPredecessors, which associates each scheduling activity to
the set of its direct predecessors, (2)indirectPredecessors, which associates each
scheduling activity to the set of its indirect predecessors(cf. Definition 33), and
(3) allPredecessors, which associates each scheduling activity to the set of allits
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direct and indirect predecessors. In Alg.6, first, the precedences required due to
the use of the same resource are included (lines 2-6). Secondly, the precedences
required due to the high-level relations (i.e., SDeclare constraints) between the
repeated activities which are stated in the model are included through the method
includePred of each constraint (lines 7-8). Typically, unlike resourceprecedence
relations, precedence relations due to SDeclare constraints cannot be easily ob-
tained. To this end, each SDeclare template presents a method which is in charge
of determining the precedence relations which are given between the scheduling
activities related to the repeated activities which are involved in that SDeclare
template. The mentioned method for some representative SDeclare templates is
detailed in Algs. 7 and 8. Lastly, the indirect predecessors are removed from
the mapdirectPredecessorsin order to avoid redundant connections, by taking
into account that the sorted setacts is ordered byst, and hence, the scheduling
activities are managed from minor to majorst in the external loop (lines 9-15).

Algorithm 7: includePred method for thePrecedence template with se-
veral source activities and one sink activity

input : Map<P&SAct,Set<P&SAct>> pred
output: Map<P&SAct,Set<P&SAct>> pred

1 Set<P&SAct> meet←{a1 | a∈ this.sources,a1.et≤ this.sink1.st};
2 P&SAct sel← argmina∈meet(a.et);
3 pred(this.sink1)← pred(this.sink1)∪sel;
4 return pred;

With respect to theincludePred method, some representative templates are
selected for illustration purposes (other templates can bedescribed in a simi-
lar way). In Alg. 7, the template regarding the branchedPrecedence tem-
plate with several source activities and one sink activity (i.e., it is modelled by a
ConstraintSourcesobject, cf. Figure3.8) is shown. The location of a precedence
template between several sources and one sink implies that the first execution of at
least one of the sources must finished before the start of the first execution of the
sink. In line 1, the set of scheduling activities which comply with the Precedence
template (i.e, the first executions of the sources which end before the start of the
first execution of the sink) are included in the setmeet. At least one scheduling
activity will be included in this set since the Precedence template is satisfied, how-
ever it may be possible to find more than one. In order to generate a BPMN model
which is compatible with both the optimized enactment plan and the SDeclare
specification, as is the purpose of the current approach, anyscheduling activity of
the setmeetcan be selected to be the predecessor of the sink in the BPMN model.
One scheduling activity of the setmeetis then selected to be the predecessor of the
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sink. Specifically, the scheduling activity which presentsmore slack is selected
(line 2) in order to construct a robust BPMN model. In line 3, the selected pre-
decessor is included in the map, and is associated to the predecessors of the first
execution of the sink. The fact that an activityB can start after another activityA
has finished (ES, default option), is stated by includingA in the setpredof B (line
3) of Alg. 8.

Algorithm 8: includePred method for theAlternatePrecedence Tem-
plate with several source activities and one sink activity

input : Map<P&SAct,Set<P&SAct>> pred
output: Map<P&SAct,Set<P&SAct>> pred

1 Set<P&SAct> meet←{a1 | a∈ this.sources,a1.et≤ this.sink1.st};
2 P&SAct sel← argmina∈meet(a.et);
3 pred(this.sink1)← pred(this.sink1)∪sel;
4 foreach i in 2..this.sink.ntdo
5 Set<P&SAct> meet←{a j | a∈ this.sources, j ∈

1..a.nt, this.sinki−1.et≤ a j .st∧a j .et≤ this.sinki.st};
6 P&SAct

sel← argmaxa∈meet((a.st− this.sinki−1.et)+(this.sinki.st−a.et));
7 pred(sel)← pred(sel)∪ this.sinki−1;
8 pred(this.sinki)← pred(this.sinki)∪sel;

9 return pred;

Allowing for Run-time Flexibility

The execution plans generated in Section3.2provide an optimal way for executing
the source SDeclare model assuming certain estimated values and all decision to
be goal-based. Even though these assumptions are valid for certain environments
(e.g., certain web service settings) estimates might not always be accurate or some
decisions might depend on run-time information. For this, the approach described
in Sections3.1and3.2is extended in this section to allow decisions to be deferred
at run-time, and to allow the BPMN model to be dynamically adapted during run-
time.
Late-planning Activities

Executing a SDeclare model usually entails dealing with decisions related to
(1) how many times one activity is being executed, and (2) theorder of execution
of the activities. This approach assumes that at least the decisions related to the
order of execution of the activities are goal-based. However, non-goal-based deci-
sions (e.g., user-based decisions) are considered, if needed, regarding the number
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of executions of a particular activity. Related to these decisions, in turn, in Declare
one activity can be executed arbitrarily often if not restricted by any constraint.
However, there are some Declare templates which constrain the number of execu-
tions of the activities, resulting either in a specific value(e.g., A must be executed
exactly twice), or in a range (e.g., A must be executed eitheronce or twice). The
number of times one activity should be executed can be statedby one specific
constraint (e.g., Exactly(A,2)), or by the combination of several constraints (e.g.,
the combination of Exactly(A,2) together with ChainSuccession(A,B) implies that
B should be executed exactly twice). To be able to deal with decisions related to
the number of times certain activities are being executed which are not goal-based,
this approach proposes to encapsulate these activities (together with the relations
in which they are involved) in a complex declarative late-planning activity when
specifying the SDeclare model, i.e., the use of hierarchical models is proposed. In
declarative models the activities included in a complex activity should be such that
they can be executed in isolation from the top-level process(Zugal et al., 2012).

Encapsulating decisions which are not goal-based in a fragment allows dealing
with each sub-process (i.e., complex activity) as if it werea black box, and there-
fore, the current approach can be directly applied (even enabling multiple instance
optimization). Therefore, when creating the optimized enactment plans from the
SDeclare specification (cf. Section3.2), each late-planning activity is treated as
an atomic activity, and it is managed as a repeated activity (cf. Definition26). In
this way, when generating the BPMN model (cf. Section34) the complex activi-
ties are then integrated into the BPMN model by substitutingthe BPMN activity
related to the complex activity by the associated imperative fragment. For sake of
clarity a description of how constraints, resources , and durations are managed is
included:

• Constraints

The BPMN fragment associated to a specific complex activity is generated
as follows:

1. Generating all possible combinations of declarative models in such a
way that all different possibilities fornt (i.e., number of times) for each
activity are covered. This is done by stating Exactly constraints for all
the possible values for the number of executions for all the activities
which belong to the complex activity. Specifically, for eachactivity A
whose number of executions should be in a range [Min..Max], the ge-
nerated models should cover all the possibilities (i.e., Exactly(A,nt),
∀nt ∈ [Min..Max]) in combination with all the possibilities for the
other activities. Note that the maximum number of executiontimes
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for each activity belonging to a complex activity needs to beestabli-
shed, otherwise, the possibilities are not finite.

2. For each declarative model which is generated, related optimized enact-
ment plans are created (i.e., local optimization for each possible fea-
sible declarative model is addressed) through the proposedconstraint-
based approach (cf. Section3.2).

3. These optimized plans are then translated to BPMN fragments as stated
previously in this Section.

4. These fragments are then linked by using existing mergingalgorithms
(e.g., (Rosa et al., 2010)). Note that the resulting fragment will include
XOR gateways when necessary.

When generating the different combinations of declarativemodels (i.e., step
(1)) it is possible that some unfeasible combinations exist. In these cases,
no related optimized enactment plan is generated, and therefore, the related
BPMN fragment is not considered when merging (cf. Example17).

Example 17. Figure 3.9shows an example of the complete process over a
fragment which includes 5 BP activities (A, B, C, D and E) and 5existence
relations (i.e., all activities should be executed at most once) together with
5 binary relations (i.e., (1) ExChoice(A,C), implying thateither A or C (but
not both) must be executed, (2) ExChoice(B,D), implying that either B or
D (but not both) must be executed, (3) Response(A,B), implying that after
the execution of A, B should be eventually executed, (4) Precedence(C,D),
implying that before the execution of D, C should be executed, and (5) Suc-
cession(D,E), implying that after the execution of D, E should be executed
and before the execution of E, D should be executed). Given that declarative
specification, there are 3 feasible scenarios, i.e., 3 possible ways to execute
the specification ensuring that all constraints are satisfied:

1. A is executed once; C is not executed due to ExChoice(A,C);B is exe-
cuted once after A due to the Response(A,B) constraint; D is not exe-
cuted due to ExChoice(B,D), therefore also E cannot be executed due
to Succession(D,E).
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Figure 3.9: Generating BPMN fragments from declarative complex activities.
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2. C is executed once; A is not executed due to ExChoice(A,C);B is exe-
cuted once; D is not executed due to ExChoice(B,D), therefore also E
cannot be executed due to Succession(D,E). In the related optimized
enactment plan, both options (B succeeding C or C succeedingB) are
feasible. For this example, the option B succeeding C is considered
more optimized than C succeeding B (note that for each feasible sce-
nario only the most optimized plan is selected for the merging, as ex-
plained in the step (2) of the process).

3. C is executed once; A is not executed due to ExChoice(A,C)); D is
executed once; B is not executed due to ExChoice(B,D). SinceD is
executed, E should be also executed due to Succession(D,E).In the
related optimized enactment plan, C should precede D due to Prece-
dence(C,D), and D should precede E due to Succession(D,E).

In this example, some unfeasible combinations for nt exist.For example, the
scenario in which A is executed once and D is executed once is unfeasible
since 2 relations (i.e., Response(A,B) and Precedence(C,D)) are violated.

In Figure3.9, the different BPMN fragments (related to the optimized enact-
ment plans) which are obtained from the 3 feasible scenarioshave been
merged using the tool presented in (Rosa et al., 2010). For the sake of clar-
ity, in Figure3.9information related to resources and durations of activities
has been omitted.

Note that optimization is locally applied within each complex activity since
for each declarative model which is generated (i.e., for each possibility)
optimized enactment plans are generated.

• Resources

For each complex activity, required resources need to be stated when in-
cluding this activity in the SDeclare model. When all the activities which
belong to the same complex activity require resources related to the same
role, the complex activity will also require that role, and the proposed ap-
proach can be directly applied (cf. Figure3.10(a), where all the activities
require a resource of role R0). However, when the activitieswhich belong to
the same complex activity require resources related to different roles, some
adjustments are required, e.g., encapsulating the declarative sub-process in
a complex activity which requires as many resources as different roles are
included in the sub-process (cf. Figure3.10(b)), i.e., the constraint-based
approach needs to be adapted to allow for activities which require multiple
resources, resulting in a cumulative scheduling problem (Nuijten and Aarts,
1996a).
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Figure 3.11: Flexible execution of BPMN models.

This extension can be easily achieved since most constraint-based systems
provide a high-level constraint modelling specific to scheduling which in-
cludes an efficient management of shared resources for well-known sche-
duling problems, which is the case of the cumulative scheduling problem.
When generating the BPMN model, each activity of the sub-process needs
to be associated to the suitable lane (cf. Figure3.10). Note that, in the pro-
posed approach, the required resource is considered to be used throughout
the duration of the activity.

• Durations

Moreover, for each complex activity, estimated durations need to be stated
when including this activity in the SDeclare model. The estimated durations
of the complex activities can be calculated in different ways, e.g., as (1) the
average duration of these complex activities in past process executions (i.e.,
by analyzing event logs), and hence, trying to optimize the resulting plan
as much as possible although usually more replanning will berequired, or
(2) the maximum duration of these complex activities in pastprocess exe-
cutions, and hence, the plan is probably less optimized but less replanning
will be required.

Replanning
Since estimates might not always be accurate and resource availabilities might

unexpectedly change, the generated BPMN model is dynamically adapted during
run-time by using replanning, and hence allowing for an increased flexibility (cf.
Figure3.11). As can be seen, as execution proceeds, the BP enactment andthe
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resource availabilities are monitored (a in Figure3.11). All new events, i.e., activ-
ities get started/completed or resources become available/unavailable, are stored
in an Event Log (b in Figure3.11). Whenever events are updated the Replanning
Module (c in Figure3.11) analyzes the optimized plan (d in Figure3.11) as well
as the events. In particular, it checks if the current execution matches with the op-
timized enactment plan or whether updates of both the enactment plan (f in Figure
3.11) and the BPMN model (g in Figure3.11) are required. In general, updates can
become necessary due to (1) deviations, i.e., estimates areincorrect (e.g., when
activity executions take longer/shorter than estimated),or (2) resource availabi-
lities change (e.g., resources become unavailable). Note that not every deviation
requires replanning due to the slack of some activities in the enactment plan. If
plan updates are required, the Replanning Module needs to access the SDeclare
specification of the process (h in Figure3.11) to generate a new optimized plan
which considers the actual partial execution of the processby using the proposed
constraint-based approach (cf. Section3.2). The generated optimized plan is,
in turn, translated to an optimized BPMN model which is used for updating the
current BPMN model in a way that the part which has been already executed re-
mains unchanged, and the part which remains to be executed isreplaced. Despite
the NP-complexity of the considered problems, in general, replanning is less time
consuming than initial planning, since most of the information about previous ge-
nerated plans can usually be reused, and CSP variable valuesbecome known as
execution proceeds.

Note that changing a deployed BPMN model and migrating running instan-
ces to a new schema can be quite challenging since respectivechanges must not
violate process model correctness and proper instance execution (Reichert and
Weber, 2012). However, in the current approach, the proposed model adaptation
and instance migration can be handled properly as detailed in the following.

On the one hand, in process model evolution it is necessary tocheck that the
new model is (1) correct, i.e., it meets the structural properties required by the pro-
cess modelling language used, and (2) sound, i.e., it obeys proper completion and
absence of dead activities (Reichert and Weber, 2012). In the current approach,
the generated BPMN model is correct since the automated generation guarantees
that the new model meets the structural properties requiredby BPMN. Moreover,
it is sound since the model is automatically generated from afeasible enactment
plan which meets all the constraints imposed by the declarative specification and
reaches the specified goal. Since the generation of the new models is not manual
but completely automated, no errors can be unintentionallyintroduced.

On the other hand, once a new correct and sound model is deployed, the BPMS
must properly deal with corresponding process instances, i.e., process instances
which were started and partially executed on the previous model, but have not yet
been completed (Reichert and Weber, 2012). In this way, in addition to struc-
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tural properties, the BPMS needs to consider the state of a process instance when
adapting its process model (Reichert and Weber, 2012), i.e., depending on the
current state of a process instance, certain changes shouldbe allowed while others
must be prohibited (e.g., it must not be possible to change the past of a process
instance). Specifically, the running process instance should be state compliant
with the new process model. A process instance is state compliant with an up-
dated process model (i.e., can therefore be migrated to it) if the execution trace of
the instance is producible on the new model as well. In the case of this Thesis,
there is only one running instance (which comprises the execution of all instan-
ces which were planned within a specific timeframe) which hasto be migrated to
the new model version. This is not problematic in the currentapproach since the
new model is generated through replanning from the partial execution trace of this
instance. Therefore, this trace will be always producible on the new model, i.e.,
everything which has been done before can be done in the new model. However,
for migrating this instance to the new process model version, activity states might
have to be adapted to enable proper continuation of instanceexecution afterwards.
As an example of instance state adaptation, it might become necessary to imme-
diately enable or disable certain activities before continuing with the execution
of the process instance (Reichert and Weber, 2012). Using selected commercially
available state-of-the art BPMSs (e.g., AristaFlow BPM Suite (AristaFlow, 2009))
respective changes can be accomplished.

3.4 Related Work

This chapter significantly improves and extends the Declarelanguage by conside-
ring multi-objective optimization, choice (Pesic, 2008), temporal (Montali, 2009;
Westergaard and Maggi, 2012) and data constraints (Montali, 2009; Montali et al.,
2013), and alternative resources. Hence, more realistic problems and more ex-
pressive specifications can be managed. In fact, SDeclare isbased on the time
extension defined in (Montali, 2009) where it is possible to define time lags over
the different Declare constraints. The same time-aware extension is considered
in (Westergaard and Maggi, 2012) where, additionally, a deep reasoning based
on a finite automaton is performed to warn the users to avoid wrong states. Fur-
thermore, a data-aware extension has been recently proposed in (Montali et al.,
2013). Such extension is considered in the current approach. Nevertheless, unlike
the current approach, (Montali et al., 2013) is based on Event Calculus and it is
focused on monitoring and operational support.

This Thesis is not aware of any other approaches for generating set of enact-
ment plans from declarative specifications. However, thereexist some further
proposals which could be extended in such direction (Pesic, 2008; Montali, 2009;
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Krogt et al., 2010; Lu et al., 2009; Rychkova et al., 2008; Hummer et al., 2013).
Specifically, (Pesic, 2008) proposes the generation of a non-deterministic finite
state automaton from constraint-based specifications which represents exactly all
traces that satisfy the constraints. However, the big disadvantage following such
an approach would be that the process of generating the automaton from the decla-
rative specifications is exponential with respect to the size of the formula (Montali
et al., 2010), and, unlike the proposed approach, no heuristic is used. Addition-
ally, CLIMB (Montali, 2009) could be used to generate quality traces from de-
clarative specifications, and calculate its values for different objective functions.
Then, the best traces could be selected. Unlike the proposedapproach, (Mon-
tali, 2009) does neither consider optimality nor resource availabilities. Therefore,
these would only cover the planning part of the current proposal, but not the sche-
duling aspects. In a related way, the work (Krogt et al., 2010) plans and schedules
tasks considering resources and the optimization of one objective function through
an integer constraint-based specification. Although (Krogt et al., 2010) presents
a similar constraint-based approach, it misses dealing with multi-objective opti-
mization, and does not support high level constraints. Moreover, in (Lu et al.,
2009), a constraint formalization is proposed to generate variations of an ad-hoc
BPMN sub-processes. In a similar way, (Rychkova et al., 2008) proposes the spe-
cification of processes based on a first-order logic languageand translates them to
an imperative language. In turn, related to BP, (Hummer et al., 2013) provides a
model-driven approach which produces an imperative process specification from a
declarative specification. Unlike the current approach, (Lu et al., 2009; Rychkova
et al., 2008; Hummer et al., 2013) do not consider the optimization of any objec-
tive function.

Several filtering rules for specialized scheduling constraints have been deve-
loped. Specifically, (Bartak and Cepek, 2010; Laborie et al., 2009) model schedu-
ling problems which include alternative and optional tasksrespectively, together
with their filtering rules. The proposed model and propagation for the optional ac-
tivities in the current work are very similar to the proposalpresented in (Laborie
et al., 2009). However, unlike (Bartak and Cepek, 2010; Laborie et al., 2009),
to efficiently manage SDeclare constraints complex and innovative filtering rules
are developed which are related to the alternating executions of repeated activities
together with the variable number of times which these activities are executed.





80 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS



Chapter 4

Guiding the Optimized Execution of
Constraint-based BP Models subject
to Uncertainty through
Questionnaires

4.1 SDeclare 2.0: Extending SDeclare 1.0 by Inclu-
ding Stochastic Estimates

As stated in Section3.1, to specify the processes in a declarative way, Declare
(Pesic, 2008) is used as basis. In this chapter, the second version of the SDeclare
language is proposed by considering stochastic estimates.

Stochastic Estimates

As mentioned, to allow the specification of certain input uncertainty in the de-
clarative BP models which are designed, Declare is extendedby including the
stochastic attributes for certain parts of the model (i.e., S-Activity attributes,
data and temporal constraints, and resource availability). Estimates can be ob-
tained by interviewing business experts or by analysing past process executions.
Moreover, both approaches can be combined to get more reliable estimates.

Since estimating values can be quite challenging (Souki, 2011), SDeclare al-
lows specifying any discrete value of the model in a stochastic way by using prob-
ability mass functions (PMFs in the following) which are functions that give the
probability of a variable taking a certain value. These PMFscan be associated
to any input data (cf.Data in Definition 25) of the SDeclare model. Thus, the
Data property of a SDeclare model consist of tuples<dName,dValue/dPMF>,

81
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fB(7)=1.0

fR2(0)=.50

fR2(1)=.50

Book
R1, R2

dur= fS

dur=fB

Resource Availability

R1 = 1

R2 = fR2

OFs

1) Minimize sum of dur

2) Minimize time of R2

Input Data

so=2

fS(5)=.15

fS(10)=.35

fS(15)=.50

Select
R1, R2

Pack
R1

dur=10

so

11 response

Figure 4.1: Example of SDeclare process model

meaning that the datadNamecan be associated to a fixed value (dValue) or to a
PMF (dPMF) (cf. Example18).

Example 18. In Figure 4.1, a SDeclare process model related to how to prepare
a holiday is depicted. To prepare a holiday three activitiesneed to be performed,
select the cloths, pack them, and book the flights between each stopover. The ob-
jective is to minimize the planning time and, additionally,to minimize the use of
a second resource. Therefore, SActs ={Book,Select,Pack}, OFs= {minimize
sum of dur, minimize time ofR2}, AvRes ={<R1,1>, <R2, fR2>} (i.e., the num-
ber of available resources of R2 is defined by the PMF fR2), Data=<so,2> and
CBP={Response(Select ,Pack), Exactly(1, Select), Exactly(1, Pack), Exactly(so,
Book)} (i.e., the number of repetitions of Book is defined by the input data so).
In addition,{Book,Select,Pack} are three S-Activities (cf. Definition24) where
Book=<Book,{R1,R2},{<dur, fB>}>, Select=<Select,{R1,R2},{<dur, fs>}>
(i.e., its durations are defined by the PMFs fB and fS), and Pack=<Pack,{R1},
{<dur,10>} >. Note that there is uncertainty related to the duration of Select,
i.e., it may last 5, 10 or 15 units of time and 15 is the most probable value.

Using PMFs, the estimates reflect the business reality better (AbouRizk et al.,
1994). There are extensive studies focused on patterns of PMFs that represent the
uncertainty best (AbouRizk et al., 1994; Fente et al., 2000; Maio et al., 2000; Back
et al., 2000) that are not discussed here since it is out of the focus of this Thesis
Dissertation.

4.2 Generating Configurable BP Models

In this section, the generation of a configurable BP model is explained. This
includes: (1) the sampling of the stochastic properties of the SDeclare model to
obtain a set of non-stochastic models (cf. Section4.2.1), (2) the generation of
optimized enactment plans for such non-stochastic models (cf. Section4.2.2),
(3) the definition of two properties to measure how well the input uncertainty is
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managed by the plans (i.e., flexibility and robustness, cf. Section4.2.3), (4) the
filtering of non-desirable enactment plans (cf. Section4.2.4), and (5) the merging
of the resulting plans in a configurable BP model (cf. Section4.2.5).

4.2.1 Sampling the SDeclare Model

As stated in Section4.1, stochastic properties can be included in the SDeclare
model (e.g., S-Activity attributes, data properties or resource availabilities). These
properties represent the input uncertainty that is considered in the scenario and it
is used to evaluate the flexibility of the configurable BP model and the robustness
of the optimized enactment plans included in the model, as explained later.

For managing the uncertainty of the SDeclare model when generating the re-
lated optimized enactment plans, the different stochasticproperties are sampled
(cf. Definition35) by considering their associated PMFs.

Definition 35. Let SDM= (SActs,Data,CBP ,AvRes, OFs) be a SDecare model
with n stochastic properties prop1, .., propn. Then: asampleis a set of n tuples
< propi , vali >, i = 1..n which indicates the fixed value vali that the property
propi takes in such sample. The value vali is randomly selected considering the
PMF related to propi (i.e., fpropi ).

Each sample is used to create a non-stochastic model (cf. Definition 36) from
a SDeclare model by assigning a fixed value to each stochasticproperty (cf. Ex-
ample19). In the proposed approach, multiple samples are generatedin order to
obtain a representative set of non-stochastic models. Eachnon-stochastic model
is, in turn, transformed to a MO-COP.

Definition 36. A non-stochastic SDeclare modelis a SDeclare model in which
all properties are defined by fixed values.

Example 19. Regarding the SDeclare model of Figure4.1, a possible sample
could be:{< f S,10>,< f B,7>,< f R2,0>}. Applying the sample to the SDe-
clare model, the non-stochastic SDeclare model of Figure4.2 is obtained.

4.2.2 Generating Multi-objective Optimized Plans

The SDeclare modelSDM= (SActs,Data,CBP,AvRes,OFs) is initially modified
by the samples which are considered in such a way that one non-stochastic model
is generated for each sample. For generating the multi-objective optimized enact-
ment plans, the approach stated in Chapter 3 is applied to each non-stochastic
model. Then a set of BP enactment plans are obtained.
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Figure 4.2: A non-stochastic SDeclare model resulting fromapplying the sample of Ex-
ample 7 over the SDeclare model of Figure4.1.

4.2.3 Quantifying the Flexibility and the Robustness

In this section definitions for both flexibility and robustness are proposed in order
to measure how the generated models deal with the uncertainty. Such definitions
are based on related literature, which is introduced in Section 2.4. In the BP
field, flexibility and robustness can be treated as quantitative attributes related to
a specific process model. In the context of this Thesis, robustness and flexibility
are quantified over enactment plans (cf. Definition1) and configurable BP models
(cf. Definition21) respectively.

As mentioned in Section2.3.2, a configurable BP model includes different
enactment plans sice there exists a one-to-one relation between graphs and enact-
ment plans. Each enactment plan which is included in such models has its own
level of robustness against a specific variable which presents uncertainty (cf. Def-
inition 37). This uncertainty is defined through the related PMF which is included
in the SDeclare model (cf. Definition25).

Definition 37. Let Pi be an enactment plan (cf. Definition1); let v be a variable
related to some attribute of Pi and which is defined in the domain D(v) with a
PMF fv : D(v)→ [0..1] ,∑x∈D(v) fv(x)= 1; and let W(Pi,v) be the set of values of v
which Pi withstands, i.e., Pi tolerates scenarios where v takes any value in W(Pi,v)
without changing its performance (e.g., without changing its objective function
values, cf. Definition20). Then: therobustness ofPi againstv, Rob(Pi,v), is
the probability of the variable v taking a value that Pi withstands. When v is
a discrete variable, then Rob(Pi,v) = ∑x∈W(Pi ,v) fv(x). When v is a continuous
variable, W(Pi,v) is considered as the non-overlapped ranges of values of v (i.e.,
[[r1in f , r1sup], [r2in f , r2sup]...]) which Pi withstands; then Rob(Pi,v) = ∑rx∈W(Pi,v)(∫ rxsup

rxin f
fv(x)dx).

In this way, therobustness against a variableis applied over single alternatives
(i.e., single enactment plans) of a configurable BP model. Bycontrast the term
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flexibility (cf. Definition 38) is applied over configurable BP models (cf. Example
20).

Definition 38. Let P be a configurable BP model which contains different enact-
ment plans Pi ∈P; and let v be a variable related to some attribute of P and which
is defined in the domain D(v) with a PMF fv : D(v)→ [0..1] ,∑x∈D(v) fv(x) = 1.
Then: theflexibility of P againstv, Flex(P,v), is the probability of the variable
v taking a value that P withstands by adapting its workflow to any of its alter-
natives Pi . When v is a discrete variable, then Flex(P,v) = ∑x∈⋃Pi∈PW(Pi ,v) fv(x).

When v is a continuous variable, W(Pi ,v) is considered as the non-overlapped
ranges of values of v (i.e.,[[r1in f , r1sup], [r2in f , r2sup]...]) which Pi withstands; then
Flex(P,v) = ∑rx∈⋃Pi∈PW(Pi,v)(

∫ rxsup
rxin f

fv(x)dx).

When the variablev follows a flat distribution, the robustness and the flexibil-
ity can be expressed asRob(Pi,v) = |W(Pi,v)|/|D(v)| andFlex(P,v) = |⋃Pi∈PW(
Pi ,v)|/|D(v)| respectively.

Example 20.Consider the two enactment plans depicted in Figure4.3(a), and the
two probability mass functions shown in Figure4.3 (b) (i.e., fR2 which is related
to the number of available resources with role R2 and fS which is related to the
duration of the activity Select, i.e., S). Then, some measures can be calculated (cf.
Figure 4.3 (c)). The robustness of the enactment plan P1 against S, Rob(P1,S), is
equal to0.15 since P1 only withstands that activity Select takes 5 units of time.
However, the robustness of P1 against R2, Rob(P1,R2), is equal to1 since P1 is
valid for any availability of R2 (note that R2 is not used in P1). In a similar way,
the robustness against these 2 variables is calculated for plan P2. Considering the
last column of the table Robustness, it can be concluded thatthe enactment plan
P2 manages the uncertainty better that P1.In a related way, once a configurable
BP model is created by merging these two enactment plans, then the flexibility of
such model can be calculated as stated in Definition38. Therefore, Flex(P,R2)
is equal to1, since P includes plans which can withstand any value of R2, and
Flex(P,S) is equal to0.5, since the value 15 for S is not withstood by any plan
of P. Considering both variables together, Flex(P,R2∧S) = 0.325which means
that the 32.5% of the input uncertainty is properly managed by the configurable
BP model.

4.2.4 Selecting the Relevant Plans

In order to select the relevant plans from the set of optimized enactment plans
(denoted byPSfrom now on) a two-steps algorithm is proposed:

1. Considering that the uncertainty of the scenario is specified over the stochas-
tic variables (i.e.,vp) associated to some properties of the SDeclare model,
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(a) Enactment Plans

Pred dur st / lf res

Book1 {} 5 0 / 5 R1

Book2 {} 5 5/10 R1

Select {} 5 10/15 R1

Pack {S.} 10 15/25 R1

P1.
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P1 .15 1.0 .15

P2 .5 .5 .225

 !  "#  "#$!

.5 1 .325

Robustness:

Flexibility (of a configurable BP model

resulting of merging plans 1 and 2):

Pred dur st / lf res

Book1 {} 5 5 /10 R1

Book2 {} 5 0 / 5 R1

Select {} 5 0 /10 R2

Pack {S.} 10 10/20 R1

P2.

(b) Uncertain variables
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Select
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Figure 4.3: For two different enactment plans (a) generatedfrom the SDeclare model of
Figure4.2, and considering two uncertain variables (b), the robustness of each plan and
the flexibility of the related configurable BP model are calculated (c).

a set of properties are calculated for each enactment planPi ∈ PS(cf. Ex-
ample21):

• Withstood values for each uncertain variable: For eachvp, the range of
withstood values are calculated (i.e.,W(Pi,vp)). Note that calculating
the withstood ranges of the S-Activity attributes or of the availabil-
ity of resources might be trivial. However, when the uncertainty is
specified over data properties which affect a constraint, calculating the
withstood ranges may require more elaborated calculus.

• Robustness for each uncertain variable: The robustness against each
uncertain variablevp (i.e., Rob(Pi,vp)) is calculated as stated in Defi-
nition 37.
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Table 4.1: VariablesSandR2 which are defined by the PMFsfS and fR2 respectively.

S fS R2 fR2

5 0.15 0 0.5
10 0.35 1 0.5
15 0.5

Table 4.2: Properties which are calculated for the set of enactment plans of Figure4.3.

Enactment Plans Measures
Planid sum dur time R2 W(Pi ,S) W(Pi,R2) Rob(Pi,S) Rob(Pi,R2) Rob(Pi)

P1 25 0 [5] [0, 1] 0.15 1.0 0.575
P2 20 5 [5, 10] [1] 0.50 0.5 0.5

• Average robustness: Finally, the general robustness of a plan (i.e.,
Rob(Pi)) is calculated as the mean of the individual robustness of each
stochastic variable.

Example 21. Table4.2shows a set of 2 optimized enactment plans (cf. col-
umn Planid) generated from the SDeclare model shown in Figure4.1 with
two uncertain variables fs and R2 (cf. Table4.1and its associated objective
function values (cf. columns sumdur and time R2). Moreover, regarding the
domains that each plan withstands against v1 and v2 (cf. columns W(Pi ,v1)
and W(Pi,v2) respectively), the value of the robustness against these va-
riables can be calculated as stated in Definition37. The values of the ro-
bustness are depicted on columns Rob(Pi,v1) and Rob(Pi,v2) respectively.
Furthermore, the value of the general robustness (cf. column Rob(Pi)) is
calculated as the mean of Rob(Pi,v1) and Rob(Pi,v2).

2. In this step, the relevant plans are selected. For this, three different policies
can be considered:

(a) All plans are kept: No plan is removed. In this case, the non-desirable
variability is not reduced.

(b) The plans which present the highest robustness are kept:The enact-
ment plans are ranked by its average robustness. Then, a percentage
of plans which present the lowest robustness are removed (cf. Exam-
ple 22). The goal of this policy consists of creating a configurableBP
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model composed by the most robust plans to the detriment of the flex-
ibility, i.e., this policy is not intended to cover the inputuncertainty as
much as possible.

Example 22. In Table4.2the plan p2 presents an average robustness
which is significantly lower than the robustness of the otherplans, and
then it would be removed if this policy is followed.

(c) The plans which provide for the highest flexibility are kept: The min-
imum set of plans which covers the maximum input uncertaintyis se-
lected (i.e., the minimum set which maximizes the union of the with-
stood domains, cf. Example23). The goal of this policy consists of
creating a configurable BP model which provides for the highest flex-
ibility, i.e., which embraces plans which cover as much uncertainty as
possible typically to the detriment of the robustness of these plans.

Example 23. When following this policy, in Table4.2 the plans P1
and P2 would be selected since they are not totally overlapped.

In this way, this second step removes some enactment plans regardless of
their objective function values. Therefore,goodplans (i.e.,optimizedplans)
which were calculated in Alg.1 are removed here, and then, only those
plans which arerelevant(i.e., the plans which are selected according to a
policy) remain. This way, only the plans which are both good and relevant
are kept.

The proposed approach could be easily adapted to consider the robustness as
an additional objective function when generating the set ofoptimized enactment
plans. However, in that scenario non-optimal solutions would be included since a
new dimension would be considered in Alg.1, i.e., the robustness.

4.2.5 Merging the Relevant Plans into a Configurable BP Model

As stated in Section2.3.2, an adaptation of the Process Merger tool (Rosa et al.,
2012) is used to create the configurable BP model out of the selected plans. The
enactment plans to be merged are identified by a label, i.e.,pid attribute (cf. Def-
inition 1, columnPlan id in Table4.2, Figure4.4 (a)). The generated config-
urable BP model has special nodes called configurable nodes which represent the
variation points of the model (cf. Figure4.4 (b)). In addition, each arc of the
configurable BP model has a reference to the labels of the plans to which the arc
belongs. The variant to be executed is selected from the configurable BP model
before the run-time phase regarding (1) the actual values ofthe uncertain variables
of the scenario, (2) the robustness of the plans which withstand such actual values,
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Figure 4.4: Two different BPMN Graphs (a) related to the enactment plans of Figure4.3
merged into a configurable BP model (b).

and (3) the values of the objective functions. Just in case the flexibility which is
obtained becomes insufficient (i.e., none of the enactment plans which are in the
configurable BP model withstands the actual values of the uncertain variables),
replanning becomes necessary and new optimized BP enactment plans will be ge-
nerated by considering the actual values of the uncertain variables instead of the
PMFs and then a new configurable BP model will be created.

4.3 Run-time Individualization of Configurable BP
Model

In this section, a method for automatically generating questionnaires from a de-
clarative model and its usage for supporting the user duringthe execution of such
model is described (cf. Figure4.2). Such a method uses a configurable BP model
as starting point with can be generated as detailed in Section 4.2. Then, the BP
execution starts and advances until a configurable node (cf.Definition21) is found
in the configurable BP model (cf. Section4.3.1, Figure4.5(1)). Thereafter, a de-
cision tree related to such configurable node is created (cf.Section4.3.2, Figure
4.5(2)) as an intermediate step for generating the questionnaire associated to this
configurable node (cf. Section4.3.3, Figure4.5(3)). Whenever the user answers a
questionnaire (i.e., a decision is taken, cf. Section4.3.4, Figure4.5 (4)), the vari-
ants of the configurable BP model are narrowed down based on the answers given.
This method is iteratively applied from step 1 to step 4 untilno more individual-
ization is needed (i.e., until only one single variant remains in the configurable BP
model).
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Figure 4.5: Automatic generation of questionnaires for Individualizing a configurable BP
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4.3.1 Execution the Configurable BP Model

As stated in Definition21, all variants which are included in the configurable BP
model are labeled (cf. Example24).

Example 24. The running example of Figure4.6(a) comprises four BP models,
each one labeled with an integer. Furthermore, a group of properties for each BP
model is provided (cf. Figure4.6 (b) where time (T), benefit (B) and risk (R) pro-
perties are provided for each model). Such properties are related to the business
language, e.g., T is related to the opening hours of the business. The configurable
BP model associated with the BP models which are depicted in Figure 4.6 (a) is
shown in Figure4.6(c). In this model, 4 different configurable nodes are depicted
with a bold diamond. In the first configurable node, labeled as1, two alternatives
are possible. The lower branch comprises BP Model 4 (i.e., where activity A is
not executed), and the upper branch comprises BP Models 1 to 3(where activity
A is executed).

The configurable BP model can be executed from the beginning until a con-
figurable node appears, i.e., until a decision must be taken (cf. Figure4.5(1)).

Note that the selection of a valid variant is guaranteed since this approach
building upon previous work which generates valid variants. Merging them pre-
serves these variants and the same happens with the decisiontrees.
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Node1
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Figure 4.7: (a) Questionnaire for Node 1. (b) The resulting configurable model after
removing Variants 2 and 4.

4.3.2 Generating Decision Trees

When a configurable node is encountered the current approachapplies a method
for generating a prediction system (i.e., a model that predicts the value of a target
variable based on several input variables) (Breiman, 1984) for predicting which
outgoing branch corresponds to a given assignment of property values. Specifi-
cally, for each configurable node, a classification tree is created (cf. Figure4.5
(2)) using the property values of the variants as input variables and the outgoing
branches as target variables (cf. Example25).

Example 25.Figure4.6(d) shows the classification tree which comes of using the
CART algorithm (Breiman, 1984) when using the table of Figure4.6(b) as input
variables and the strings lower and upper as target variables. As can be seen,
in the resulting classification tree, the variants for whichT > 5 correspond to the
upper branch. In contrast, the variants for which T≤ 5 correspond to the upper
branch if R≤ 10, or to the lower branch otherwise.

4.3.3 Creating Questions

A set of questions is then created for each decision tree (cf.Figure4.5 (3)). To
create such questions according to the business language, aset of well-defined
business properties must be provided. This way, one question is automatically
generated for each intermediate node of the tree. The possible answers for such
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question are the different labels which are written on the outgoing branches of this
node. The text of the questions is automatically generated from the information of
the provided business properties (cf. Example26). As stated, these questionnaires
are in charge of narrowing down the variants of the configurable BP model.

Example 26. A simple questionnaire related to the decision tree of Figure4.6(d)
is shown in Figure4.7(a). Since this decision tree has two intermediate nodes
(i.e., T and R), two questions are created. Moreover, since each node has two
branches, each question has two options. Initially, only the question related to
T is enabled. Considering that the well-defined business properties stated that T
is related to theclosing timeof the office, the generated question would look like
What time would you close the office?.1 The second question has to be answered
only if the user selects the second option of the first question (i.e.,In 5hrs. or less)
which is related to the branch T≤ 5 of the decision tree.

4.3.4 Incremental Configuration

Whenever a questionnaire is answered, the configurable BP model is narrowed
down by removing the variants that do not belong to the edge selected in this con-
figuration step. Thereafter, the proposed method continuesat Step 1 (cf. Figure
4.5) considering the narrowed configurable BP model and continuing the execu-
tion from the last executed activity.

Such method is repeated until only one variant remains in theconfigurable BP
model, i.e., the configuration has finished (cf. Example27).

Example 27. Supposing that the user selects the first answer of the first question
of the questionnaire of Figure4.7(a) (i.e.,In more than 5hrs.), Variants 2 and 4 are
removed from the configurable BP model since they have a time property ”≤ 5”.
This results in the configurable BP model of Figure4.7(b). Note that the second
and forth configurable node of Figure4.6(c) are not depicted in Figure4.7(b)
since Variants 1 and 3 share the same outgoing branches for these nodes, i.e., the
upper branch. However, the third configurable node requiresselecting one of the
two branches, and hence, a new questionnaire is generated.

4.4 Related Work

The Declare language (Pesic, 2008) has previously extended in Chapter3. In
this chapter, as a major contribution of SDeclare 2.0 regarding existing proposals

1Note that, the semantic of the generated questions highly depends on the information provided
for the business properties. Such information can be used tomake the questions more user-friendly.
No depth details are given since it is out of the scope of this Thesis.
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(Westergaard and Maggi, 2012; Montali et al., 2013; Montali, 2009), it allows
specifying the input uncertainty of real scenarios by usingstochastic values.

In addition, none of the approaches which can be used to generate imperative
models from declarative specifications (Pesic, 2008; Montali, 2009; Krogt et al.,
2010; Lu et al., 2009; Rychkova et al., 2008; Hummer et al., 2013) considers the
uncertainty of the scenario through stochastic attributes.

As mentioned, several approaches exist for dealing with flexibility issues (Ci-
cerone et al., 2012; Aissi and Roy, 2010), even in the context of BP (Reichert
and Weber, 2012; Schonenberg et al., 2008a). However, in this chapter as a novel
contribution, it proposes quantitative definitions for both robustness and flexibil-
ity which allow an analyst to measure how the uncertainty of areal scenario is
supported by an enactment plan and by a configurable BP model respectively.

In literature, different approaches deal with the variability of BPs (Schnieders
and Puhlmann, 2006; Hallerbach et al., 2010; Rosa et al., 2011; Kumar and Yao,
2012; Rosemann and van der Aalst, 2007; Schunselaar et al., 2012). In PE-
SOA (Schnieders and Puhlmann, 2006) and C-EPC (Rosemann and van der Aalst,
2007; Rosa et al., 2011) configurable BP models are used as basis. Variation points
are either defined by a set of annotations of activities (Schnieders and Puhlmann,
2006) or by including configurable BP nodes (Rosemann and van der Aalst, 2007;
Rosa et al., 2011). In turn, the work (Rosa et al., 2011) improves the C-EPC
language by incorporating both resource and data notation in the C-EPC models.
Unlike C-EPC and PESOA, Provop (Hallerbach et al., 2010) and RULE (Kumar
and Yao, 2012) consider a base process model which is configured using a set
of predefined change operations (Hallerbach et al., 2010) or applying some bu-
siness rules (Kumar and Yao, 2012). Furthermore, there are other approaches
which mix declarative specifications with configurable BP models, e.g., ConfDe-
clare (Schunselaar et al., 2012) presents a declarative language in which activities
can be hidden and constraints can be omitted. Regarding how configurable BP
models are created, essentially, there are two ways: manually and automatically.
On the one hand, the manual creation of configurable BP modelscan be car-
ried out from scratch by manually specifying the variation points (Schnieders and
Puhlmann, 2006; Hallerbach et al., 2010; Kumar and Yao, 2012; Rosemann and
van der Aalst, 2007; der Aalst et al., 2006; Gottschalk et al., 2008). The main
problems of the manual creation is that it is typically a verytime consuming task
and requires deep skills on the modelling language. On the other hand, an auto-
matic method has been proposed to generate a configurable BP model, in C-EPC
language, from a set of BP models by analyzing the similarities of the source BP
models and including variation points where they differ (Rosa et al., 2010, 2012).
The main problem of the automatic creation of configurable BPmodels is that it
requires a family of BP models independently specified. Since this chapter pro-
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poses to automatically create configurable BP models, the current approach builds
upon these techniques.
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Chapter 5

Empirical Evaluation

5.1 Introduction

To evaluate the approach which is detailed in this Thesis Dissertation, in this chap-
ter a wide empirical study over a real scenario is performed.This way, this chapter
includes the description of the real scenario where the evaluation took place (cf.
Section5.2) as well as the case study which was followed to carry out sucheva-
luation (cf. Section5.3).

5.2 A Real Example: A Beauty Salon of Seville

This section introduces a real example related to a beauty salon that is used to
validate the proposed approach in the considered case study. Specifically, in Sec-
tion 5.2.1the selection of the considered scenario for carrying out the empirical
evaluation is motivated, Section5.2.2explains how the proposed approach is in-
tended to be used for improving the current situation, Section 5.2.3 details the
considered scenario, Section5.2.4includes the SDeclare specification of the con-
sidered scenario, and, finally, Section5.2.5explains how the proposed approach
can be used in the considered scenario.

5.2.1 Motivation

The considered business has grown considerably in the last years. It has expanded
from a small salon with three employees to more than six and included additional
facilities to be able to offer additional services. In addition, the uncertainty re-
garding different aspects of the business has become an important problem, e.g.,
the arrival time of the clients or the availability of some resources during the day
(e.g., due to a resource who feels sick at the beginning of theday but not enough

97
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to leave the salon). These changes, including the quick growth together with the
complex constraints which need to be obeyed, resulted in problems related to the
management of the salon. In particular, long waiting time for clients and missing
schedules for employees are causing problems, affecting customer satisfaction and
profit of the business.

Furthermore, such scenario has been selected since:

1. It faces a complex problem which goes far beyond a toy problem since it
presents several challenges that can also be found in other domains (i.e., it
highly depends on the managers skill to take decisions, uncertainty is inherit
to the business and the declarative language ameliorate it specification).

2. Unlike more common scenarios, this kind of business has not been widely
supported by previous research and thus, it is considered aninnovative ap-
plication.

3. Access to the data was possible in that scenario and therefore, the analyst
was able to collect data for a long period of time for the evaluation.

5.2.2 Goal of the Business

The goal of the business is to improve the current situation through the optimiza-
tion of some business objective functions. Since our approach generates an opti-
mized configurable BP model, a set of optimized schedules foremployees can be
suggested each one facing a different possible uncertain scenario, and therefore,
the aforementioned problems can be overcome. Moreover, since multi-objective
optimization is considered, several important objectives(i.e., minimizing waiting
times for clients and maximizing profit) can be optimized. Furthermore, due to
the high expressiveness of SDeclare, all the constraints which are given in the
scenario together with its uncertainty can be specified.

5.2.3 Scenario details

The beauty salon offers various services1 like dye, clean&cut, manicure and fa-
cial services. It requires its clients to make appointment calls to know how many
clients are coming as well as the booked services. There are several full-time em-
ployees, e.g., Amparo (A), Rosa (R), Lisset (L) and Marta (M). Each employee
has different skills, and hence some activities can be performed by certain em-
ployees only. For all activities which are performed in the salon, the manager

1For the sake of clarity, the depicted scenario is a subset of the actual beauty salon, i.e., the
salon offers more services and has more employees.
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knows the average estimated duration, the profit which is obtained after their exe-
cution, and the employees which can execute that activity. The manager of the
salon wants to plan and schedule a working day with several clients taking the
following considerations into account:

1. The profit (P) of the resulting working plan has to be maximized (objective
function 1).

2. The waiting time (WT) of the clients has to be minimized anddistributed
uniformly among all the clients (objective function 2):

WT =

√
∑c∈C ((s.endT(c)−c.appT)−(∑b∈c.servedb.estimate))2

C.size , whereC is the set of
clients,s is the considered solution,s.endT(c) is the time when the client
c has finished,c.appT is the appointment time ofc, c.servedis the set of
services which are applied toc (i.e., included in the plan), andb.estimateis
the estimated duration for serviceb.

3. The employees can offer some additional services to the client directly in
the salon, and the client can accept or refuse. However, these additional
services should only be proposed if this leads to optimized plans.

5.2.4 SDeclare Specification

Typically, as illustrated in Figure5.1, a client visit starts with the reception in the
beauty salon. After that, the staff applies some services tothe client and, finally,
the client is charged. Complex activityServicesis composed of other activities2

(e.g., dye, clean&cut, facial and manicure, cf. Figure5.2), while Receptionand
Chargeare S-Activities (cf. Definition24). For each S-Activity two attributes
are considered: (1) estimated activity duration, and (2) profit which is obtained
after executing the activity.3 Moreover, the set of alternative resources which can
perform the S-Activity is also included (cf. Example28).

Example 28. In Figure 5.1, activity Reception has an estimated duration of 1
minute and a profit of 0, and can be performed by A, R, M or L.

Notice that each instance created from the model of Figure5.1represents one
client visiting the beauty salon. The current problem dealswith N clients (re-
presented by the Existence constraint of Figure5.1, stated by the label N) which
come to the salon at different times and with different bookings during a working
day which are specified as data information.

2In a similar way to PSL (PSL, 1977), SDeclare allows hierarchical modelling (i.e., complex
activities aggregate activities).

3As can be seen in Figs.5.1 and 5.2, the profit of the services is associated to one of the
activities of the related services.
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The data perspective also appears in Figure5.1. TheClient-Data includes
all the information which is related to the client bookings,and consists of: (1)
clientName, (2) bookedServices, which represents the mandatory services that
the salon staff has to cover, and (3)appointmentTime, which is the time when the
client is supposed to arrive at the salon. Through the data perspective, it is possible
to model that activityReceptioncannot start before the client appointment time
(cf. Figure5.1). Moreover, a data constraint is used (in conjunction with the
choice constraint) to ensure that all the services the client has booked are selected,
i.e., the generated plans will always include the booked services (cf. Figure5.2).

5.2.5 Applying the Proposed Approach

Given a SDeclare modelSDM= (Acts, Data, CBP, AvRes, OFs) for the beauty
salon problem, whereActs, Data, CBP andAvResare shown in Figs.5.1and5.2,
and OFs are described in scenario details (i.e., maximization of the profit and
minimization of the waiting time), the proposed tool generates multi-objective
optimized enactment plans. These plans are, in turn, represented as a configurable
BP model by following one of the available policies. Such model will support the
manager of the beauty salon in managing the working day in an optimized way.
In addition, our approach will guide the individualizationof the configurable BP
Model through questionnaires.

In this way, the proposed approach provides support to the manager of the
beauty salon by suggesting (cf. Example29): (1) a resource for executing each
activity, (2) the start and end time of the activities, and (3) the services which will
be offered to each client (i.e., services which were not booked by the client).

Example 29. As examples, two Pareto optimal plans for serving 10 clientsin the
beauty salon are depicted in Figure5.3and Figure5.4.
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5.3 Case Study

In this section, the case study protocol for the software engineering field proposed
by (Brereton et al., 2008) is followed to improve the rigour and validity of the
study. Such protocol suggests the following sections: background, design, case
selection, case study procedure, data collection, analysis and interpretation, and
validity evaluation.

5.3.1 Background

In this section, previous research related to the topic of this Thesis is identified.
Different proposals related to (1) the generation of optimized BP enactment plans
and the related optimized configurable BP models from declarative specifications,
(2) flexibility and robustness concerns, and (3) the generation of questionnaires for
individualizing configurable BP models are discussed in theprevious chapters (cf.
). In particular, our proposal uses the SDeclare language for the declarative speci-
fication of a BP and generates a set of optimized enactment plans out of it. After
that, a configurable BP model is created using those plans which more contribute
to the flexibility and robustness. Thereafter, a questionnaire is automatically crea-
ted for individualizing the generated configurable BP modelin run-time.

In such context, thepurpose of this studyis the evaluation of the proposed
approach for guiding the execution of declarative models through automatically-
generated questionnaires. Taking the purpose of the study into account, three main
research question (MQs) are defined (cf. Table5.1) as follows:

1. MQ1 checks the suitability of Alg. 1, i.e., evaluates if the obtained op-
timized BP enactment plans are uniformly distributed over the solution
space4 and if the algorithm performs well when dealing with complexpro-
blems. For this,MQ1 is divided in two additional research questions (AQs):

(a) AQ1 checks whether Alg. 1 finds solutions within the different regions
in which the solution space is divided.

(b) AQ2 evaluates if Alg. 1 behaves successfully (i.e., finds a uniformly
distributed set of solutions) when solving problems of different com-
plexity.

2. MQ2 assesses if the current approach can be useful to deal with real pro-
blems involving uncertainty. For this,MQ2 is divided into two additional
questions:

4Note that one of the goals of Alg.1 consists of obtaining an uniformly distributed set of
solutions.
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(a) AQ3 checks whether the solutions which are obtained by our approach
improves the actual solutions which are manually obtained by the do-
main expert for the real scenario in terms of their objectivefunctions.

(b) AQ4 evaluates the generated configurable BP models in terms of its
robustness and flexibility against the input uncertainty, which is im-
portant in order to avoid replanning.

3. MQ3 evaluates the proposed method for automatically creatingquestion-
naires for configurable BP models as well as the method for incrementally
configuring them. For this,MQ3 is divided in four additional questions:

(a) AQ5 checks if the approach behaves properly against configurable
nodes of different sizes.

(b) AQ6 evaluates the suitability of the questions which are generated.

(c) AQ7 is concerned about the performance which is achieved usingthe
current approach.

(d) AQ8 checks if replanning can be avoided.

5.3.2 Design

Theobject of studyis the approach which is proposed for guiding the executions
of declarative models. For this, three different designs are carried out in this case
study.

1. A first embeddeddesign (ED1 in the following) concerning Alg.1. Partic-
ularly, this first design considers one analysis unit: the generation of opti-
mized BP enactment plans through solving MO-COPs. In this design, for
addressingMQ1 (i.e.,AQ1 andAQ2), a set of different non-stochastic SDe-
clare models are randomly generated leading to different complexities of
the MO-COPs which have to be solved. Note that stochastic variables are
not considered in this design.

2. A secondembeddeddesign (ED2 in the following) which considers the
generation of configurable BP models from declarative specifications for
addressingAQ3 andAQ4. Specifically, the method is applied over diffe-
rent SDeclare models in which stochastic variables are considered for the
appointment time of the clients and for the availability of resources. For
dealing with such variables, the sampling step is configuredto generate 30
different samples (cf. Section4.2.1).
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Table 5.1: Case study research questions

Id Research Question

MQ1 Is Alg. 1 appropriate for finding a uniformly distributed set of Pareto opti-
mized solutions for SDeclare models of different complexity?

AQ1 Can Alg. 1 find solutions within the different regions in which the solution
space is divided?

AQ2 Does Alg.1 behave successfully independently of the complexity of thepro-
blems?

MQ2 Is the proposed approach useful for a business expert?
AQ3 Can the proposed approach improve the results which are manually obtained

by an expert?
AQ4 Can the proposed approach generate an unified artifact whichbehaves prop-

erly against the input uncertainty?
MQ3 Is our method appropriate for individualizing configurableBP models during

run-time?
AQ5 Can the proposed method be used to generate questions for configurable nodes

of different sizes (i.e., nodes with different number of branches)?
AQ6 Are the generated questionnaires appropriate to be answered in a real envi-

ronment (i.e., adequate number of questions)?
AQ7 Is the business performance improved by using the proposed method?
AQ8 Is the proposed method preventing replanning (i.e., changing the variant

which is being executed)?

3. A third embeddeddesign (ED3 in the following) considering the creation
of questions for addressingAQ5 andAQ6. In this design, the method for
generating questionnaires from a configurable node (cf. Section 4.3) is con-
sidered as the analysis unit. For this, such method is applied over a set of
configurable nodes of different sizes.

4. A forth embeddeddesign (ED4 in the following) which considers the con-
figuration of configurable BP models using questionnaires for answering
AQ7 andAQ8. Specifically, the proposed approach is applied over different
configurable BP models each one presenting a different complexity (i.e.,
different number of activities).

For addressing the designED1 andED2, Alg. 1 considers dividing the so-
lution space in 4 regionsrx (rx ∈ {r1, r2, r3, r4}) and the constraint-based search
algorithm is run until a 5-minutes CPUTIME LIMIT is reached (cf. Algs.2 and
3), which is considered a reasonable amount of time for this business.
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Table 5.2: Quantified variables forED1

Variable Description

minWT, minP,
MaxWT,
MaxP

Initial ranges for each objective function, which are calculated in the
initial searches of Alg. 1.

%SFrx The percentage of SDeclare models in which, at least one solution
is found within region regionrx (rx ∈ {r1, r2, r3, r4}) regarding the
total number of SDeclare models which are considered.

NActsrx Size of the enactment plans which are generated within region rx,
which is measured as the number of activities.

WTrx, Prx Value for each objective function which is obtained within regionrx.

SAddrx Number of additional services per client which are includedin the
solutions which are found within regionrx (i.e., those services which
where not initially booked but are included in the plan)

%PSrx Percentage of Pareto optimized solutions obtained within regionrx
regarding the total number of Pareto optimized solutions which are
obtained for the considered problem

All the aforementioned designs are run on a Intel(R) Xeon(R)CPU E5530,
2.40GHz, 8GB memory, running Debian 6.0.3. After carrying out the four de-
signs, the generated information (i.e., optimized BP enactment plans and ques-
tionnaires) is analyzed to answer the research questions (cf. Table5.1).

As follows, the data which is quantified for each design is detailed. First,
for ED1, the data described in Table5.2 is quantified (cf. Example30) for each
SDeclare model which is considered.

Example 30. Figure 5.5 depicts the set of solutions which are found during the
search process for a specific problem. As can be seen, Alg.1 divides the solu-
tion space in 4 regions. In order to state the limits of each region (i.e., minWT,
MaxWT, minP and MaxP), the solutions which are found in the first step of Alg.
1 (cf. Alg.2) are used (depicted by squares in Figure5.5).

In this example, as only one problem is considered,%SFr1=%SFr2=%SFr3=
100%since at least one solution is found within r1, r2 and r3, and%SFr4 = 0%.
As stated in Alg.3, since a solution is found in r1 and it dominates r4, r4 is not
explored. Note that the solutions which are depicted withinr4 were obtained in
the first step.
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Figure 5.5: Solutions which are found for a specific setting of the beauty salon problem

Within the overall solution space, 22 different solutions are found. Of these 22
solutions, 9 are Pareto optimized while 13 are dominated (cf. Definition7). From
the 9 Pareto optimized solutions, 2 solutions belong to r1, 4 to r2 and 3 to r3,
which means that%PSr1 = 22.2%, %PSr2 = 44.4% and%PSr3 = 33.3%. As r4
is not solved, i.e.,%PSr4 = 0%.

For theED2 design, the data described in Table5.3is quantified (cf. Example
31) for the different non-stochastic SDeclare models which are generated for each
considered SDeclare model. In order to measureFlex, MaxRobandminRob, all
plans which are generated for each non-stochastic SDeclaremodel are kept, i.e.,
the ”all plans” policy (cf. Section4.2.4) is applied.

Example 31. Figure 5.6shows the set of solutions which are obtained when sol-
ving a specific problem related to the beauty salon scenario.As can be seen, many
Pareto optimized solutions (i.e., squares in Figure5.6) are obtained since the pro-
blem is solved several times because of the uncertainty variables (i.e., different
samples are generated and solved, cf. Section4.2.1). The maximum and minimum
values (i.e., minWT=3, MaxWT=18, minP=350 and MaxP=730) aswell as their
average values (i.e.,WT=10.3 andP=601) are depicted in each axis.

In addition, the real execution plan is depicted by a circle in Figure5.6. The
difference betweenWT (P) and WT=14.8 (P=515) in the real execution plan is
equal to∆WT=4.5 (∆P=86). Therefore, applying the proposed approach, the
waiting time has been reduced (i.e.,%∆WT=30.4%) in average and the profit has
been incremented (i.e.,%∆P=16.7%) in average.

Finally, as depicted, the real enactment plan is dominated by some Pareto
optimized solutions (cf., arrows in Figure5.6) which means that solutions which
improve both objective functions are found. Therefore, as only one problem is
considered in this example,%Dominated= 100%.

For the designED3, the data described in Table5.4 is quantified for each
configurable node. In addition, the business manager specified that answering
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Table 5.3: Quantified variables forED2

Variable Description

minWT, minP,
MaxWT,
MaxP

Average of the minimum and maximum values of the objective func-
tions (i.e., waiting time and profit) which are obtained by applying
the proposed approach.

WT, P Average values of the objective functions which is obtainedapplying
the proposed approach.

%∆WT, %∆P Average values of the percentage of increment of the objective func-
tions of the plans which are obtained through the proposed approach
versus the real execution plan.

%Dominated Percentage of problems whose real execution plan is dominated (cf.
Definition6) by the Pareto front generated by our approach.

Flex Average flexibility (cf. Definition38) of the generated configurable
BP models against the uncertainty provided by the input SDeclare
model.

minRob,
MaxRob

Average values of the minimum and maximum robustness (cf. Def-
inition 37) of the plans which are included in the generated config-
urable BP models.

more than 10 questions would be inefficient and thus,AQ2 can be answered as
true if #MQ stays under 10 independently of the size of the configurable node.

Lastly, for the designED4, the data described in Table5.5 is quantified for
each configurable BP model.

5.3.3 Case Selection

For this case study, the beauty salon problem is studied. This is considered a
good and suitable case since it fulfills the following selection criteria: (1) it has
been created foran actual business, (2) the business has grown up and now it has
scheduling problems(i.e., involves resource allocation, complex constraintsand
multi-objective optimization), (3) the business performancehighly relies on run-
time decisions(i.e., the knowledge of the domain expert has a great influence
on the performance), and (4) the problem issubject to uncertainty, and such
uncertainty can be measured, i.e., the manager can detect the uncertainty of the
scenario which can be manually specified in the SDeclare models.
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Figure 5.6: Solutions which are found for a specific problem related to the beauty salon
problem with some stochastic variables

Table 5.4: Quantified variables forED3

Variable Description

OB The number of outgoing branches .
#MQ, #mQ The minimum and maximum number of questions which need to be

answered for resolving the questionnaire associated to such node.

5.3.4 Case Study Procedure

The execution of the study is planned as follows.

1. The business is selected according to the selection criteria.

2. The selected business is modeled as a SDeclare model by thebusiness an-
alyst. Initially, only the activities and the constraints which relate them are
included.

3. A different procedure is performed depending on the case design which is
being carrying out:

• In the case of theED1 design, different data for the SDeclare model
of the Beauty Salon problem (cf. Section5.2) are randomly gene-
rated. Therefore, each generated model includes the same activities,
relations and resources, but differs in the number of clients (N), their
booked services (S), and their appointment times (T). Considering the
information which is provided by the manager of the salon (i.e., there
are normally between 10 and 20 clients per day and a client typically
books one or two services) values{1, 1.5, 2} are considered for the
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Table 5.5: Quantified variables forED4

Variable Description

#Acts The number of activities of the configurable BP model.
#Q The number of questions which the user actually answers for indi-

vidualizing the configurable BP model.

∆$ The increment of profit which is obtained by using the currentap-
proach versus not using it.

%R The percentage of cases in which replanning is avoided by using the
current approach.

average number of booked services of the clients (i.e.,NS) and the
values{10, 15, 20} for the number of clients (i.e.,N). Based on this
information, to average the results over a collection of randomly gene-
rated SDeclare models, 30 data instances are randomly generated for
each pair<N,NS> by varying S and T.5

After that, the optimized BP enactment plans are obtained byapplying
Alg. 1.

• In the other cases (i.e.,ED2, ED3, andED4 designs), the model of
Figure5.1 has been extended to reflect the reality better, i.e., the real
model includes 21 different services and 7 resources. In addition,
some services are related to each other to prevent non-senseexecu-
tions, e.g., to avoid performing the cleaning nails serviceafter the
painting nails service. Furthermore, the number of services per client
is limited to 4.

In addition, for theED3 andED4 designs, the salon manager provided
a set of properties in form of functions (i.e., the well-defined properties
written in the business language) which can be calculated from each
enactment plan.

As mentioned, this case design considers real data which is obtained
from the log of the beauty salon. For this, the staff of the beauty salon
manually logged data for a period of 90 days. In particular, for each
day they logged: (1) the number of clients (i.e.,N), (2) their booked
services (i.e.,S), (3) their appointment times (i.e.,T), and (4) the re-
source availability of each day (AvRes). In addition, for each event
that occurs during the day (e.g., when a client arrives, an activity starts

5The set of problems which are used for the empirical evaluation is available at
http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalon.zip.

http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalon.zip
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or finishes), its time-stamp is recorded by the receptionist. In turn, the
manager of the beauty salon provided some stochastic variables re-
lated toT (i.e., some unpunctual clients) and toAvRes(i.e., staff who
probably become unavailable during the day, cf. Example32). These
stochastic variables were defined with flat PMFs (cf. Section4.1).

Example 32. Let 14:30 be the appointment time of certain client. The
manager knows that such client used to be unpunctual; therefore, she
specifies in the SDeclare model her appointment time throughthe flat
PMF appT={14:25, 14:30, 14:35, 14:40}.6 In addition, before start-
ing the day (and before generating the configurable BP model), one
of the resources has informed the manager that she does not feel well;
therefore, the manager specifies her availability through the flat PMF
avR={0 ,1} in the SDeclare model.

Therefore, for each day, the same SDeclare model is considered (i.e.,
they have the same activities, relations and estimates) buteach day
differs in N, S, T, AvResand the associated stochastic variables (i.e.,
problem data).7

These problems are grouped consideringN and the average number
of booked services (i.e.,NS=|S|/N) in order to enable the compar-
ison with theED1 design. For this,N is divided into three ranges
[8,12], [13,17] and[18,22], andNS is also divided into three ranges,
i.e., [1,1.4], (1.4,1.8], (1.8,2.2].
Then, the configurable BP models are obtained by applying thepro-
posed approach. As mentioned, only the best variants are kept when
generating the configurable BP model.
In addition, for 30 of those 90 days, the salon manager was supported
by our tool to manage configurable BP models for theED3 andED4
designs. Using such a tool, after the configurable BP model isgene-
rated for each day, the variant which was selected by the salon man-
ager before starting the execution (i.e., before the first client arrived)
is logged. In addition, each time a configurable node appears(i.e.,
a decision needs to be taken), a questionnaire was prompted and she
answered it. At the end of each day, the #Q and the selected variant
(i.e., the result of the individualization) were stored. Inaddition, such
variant was compared with the variant selected before starting the exe-
cution and∆$ was calculated and stored for each day. Furthermore, the

6In this example, 5 minutes is considered as the minimum amount of time which can be mea-
sured.

7The set of data logged which is used for this experiment is available at
http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalonReal.zip.

http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalonReal.zip
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variant which was selected before starting the execution was checked
if could withstand the events logged for that day. In case it would
not, it was stored if replanning was avoided by using our approach,
i.e., %R is stored.8 The value for %R is calculated as the percentage
of times that our approach avoided replanning against the total num-
ber of times that replanning was required. To analyze the behavior
of the method against different complexities, the 30 configurable BP
models (each one corresponding to a day of work) are grouped con-
sidering #Q. In particular 4 groups are considered: #Q ∈ [40,60),
#Q∈ [60,80), #Q∈ [80,100), and #Q∈ [100,120).

In turn, after the period of 30 days passed, for theED3 design, all
the configurable nodes which appeared in the configurable BP mo-
dels which were stored were gathered. Specifically, 259 configurable
nodes were obtained and the current approach was applied to generate
the questionnaire associated to each node. For each node,OB, #mQ
and #MQ were stored. To analyze the behavior of the method against
different complexities, the 259 configurable nodes were grouped con-
sideringOB. In particular 4 groups were considered:OB∈ [2,5),
OB∈ [5,8), OB∈ [8,11) andOB∈ [11,14).

4. All the relevant information is collected following the collection plan.

5. Finally, the analysis and the interpretation of the collected data is conducted
and the validity of the case study procedure is studied.

5.3.5 Data Collection

Different data collection plans are conducted depending onthe case study design.

1. In theED1 design, for each pair<N,NS>, the data related to the quantified
variables (cf. Table5.2) is collected in three phases while generating the
optimized BP enactment plans from the SDeclare models. Suchphases are
detailed as follows. (1) After the initial searches are performed (i.e., Alg.2
is executed, the solution space is divided into four regions, and the values
of the variablesminWT, MaxWT, minPandMaxPare recorded). (2) After
such division,r1 is the first region to be solved (note that, as mentioned,
r4 is dominated byr1, cf. Section3.2.2and Example30). Then, the data
related to %SFr1, WTr1, Pr1, NActsr1, %PSr1, andSAddr1 is stored. (3)

8Note that cases in which replanning becomes necessary may exist although run-time configu-
ration is applied. In such situations, a new configurable BP model is created ensuring that all the
included variants cover the given situation as discussed in(Barba et al., 2013a,b).
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Table 5.6: Quantified variables for theED1 design (1)

Problem Unconstrained
N NS minWT MaxWT minP MaxP

10 1 0.1 29.0 273.3 660.0
10 1.5 1.0 31.5 350.5 793.4
10 2 2.1 36.3 492.7 956.3
15 1 3.0 32.4 360.3 782.0
15 1.5 9.7 43.4 538.4 891.5
15 2 8.0 49.6 741.8 1092.1
20 1 15.5 56.3 405.6 859.1
20 1.5 17.8 59.5 715.6 1108.0
20 2 16.5 59.4 950.6 1252.8

Finally, r2 andr3 are solved. In the case that no solution is found inr1, r4
is also solved. Similarly to the previous phase %SFrx, WTrx, Prx, NActsrx,
%PSrx, andSAddrx are recorded for such regions. Tables5.6, 5.8, 5.7, 5.9,
and5.10show the values related to all the quantified variables whichare
involved in the complete data collection plan.

2. In theED2 design, for each pair<N,NS>, once the configurable BP model
is generated, the data related to the quantified variables (cf. Table 5.3)
is recorded, i.e.,minWT, MaxWT, minP, MaxP, WT, P, %∆WT, %∆P,
%Dominated, Flex, minRob, andMaxRob. The aforementioned values are
shown in Tables5.11and5.12.

3. In ED3 design, after the period of 30 days has passed, the information re-
lated to eachOB is quantified, i.e., #mQ and #MQ (cf. Table5.4). Such
values are shown in Table5.13.

4. InED4 design, at the end of each day, the quantified variables of this design
(i.e., #Q, ∆$, and %R, cf. Table5.5) are calculated and associated to the
#Actsof this day. Table5.14shows the values which are obtained.

5.3.6 Analysis and Interpretation

The data which is collected is analyzed to answer each research questions and to
draw conclusions, as detailed as follows:

1. In order to address questionMQ1, sub-questionsAQ1 andAQ2 need to be
answered (cf. Tables5.6, 5.8, 5.7, 5.9, and5.10). Regarding the problems
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Table 5.7: Quantified variables for theED1 design (2)

Problem Region 1
N NS %SFr1 WTr1(m) Pr1(e) NActsr1 %PSr1 SAddr1

10 1 74.2 14.3 479.0 90.1 10.0 2.5
10 1.5 63.8 15.2 491.0 98.3 9.2 1.5
10 2 67.0 17.6 615.2 145.6 11.5 1.8
15 1 70.5 15.8 515.0 116.9 11.1 2.1
15 1.5 61.4 22.3 698.4 154.8 9.6 1.4
15 2 64.9 24.2 918.4 179.3 9.5 0.9
20 1 72.6 29.6 625.0 150.5 10.4 1.2
20 1.5 59.9 30.9 859.7 172.1 10.5 0.6
20 2 45.2 30.1 1105.2 196.0 8.9 1.0

which are solved within each region (i.e., columns %SFrx), %SFr1 is lower
than both %SFr2 and %SFr3 sincer1 is the most constrained region. In
turn, the low value for %SFr4 can be explained by the fact that solutions
are not searched inr4 in the case that at least one solution is found inr1.
In addition, as the complexity of the problem increases (i.e., N and NS in-
crease), %SFr1 decreases and therefore, %SFr4 increases. However, %SFr2

and %SFr3 keep similar values and close to 100%, which means that at least
one solution can be found inr2 andr3 regardless of the complexity of the
problems. Therefore,AQ1 can be answered as true as solutions can be found
in all regions.

Furthermore, some differences can be observed when analyzing the objec-
tive function values (i.e., columns WT and P). As expected, as the comple-
xity of the problems increases, the value of P increases since more services
are included in the generated enactment plans. Moreover, with increas-
ing complexity of the problem the value of WT increases as well since the
clients are subject to more delays. Note that these columns are also directly
dependent on the number of activities of the plan (cf. columns NActs), i.e.,
when NActs increases, P and WT increase too. In general,r1 andr4 in-
clude the most balanced solutions according to the values ofboth objective
functions, while the solutions with the best values for P andWT belong
to r2 and r3 respectively. This distribution is kept independently ofthe
complexity of the problem. Moreover, for all problems Pareto optimized
solutions were obtained (cf. columns %PSrx), which means that a repre-
sentative Pareto front can be depicted. However,r4 contributes less to the
Pareto front since most of the solutions which were found within r4 are
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Table 5.8: Quantified variables for theED1 design (3)

Problem Region 2
N NS %SFr2 WTr2(m) Pr2(e) NActsr2 %PSr2 SAddr2

10 1 100.0 19.6 502.4 118.6 38.2 2.7
10 1.5 100.0 26.2 517.4 128.4 43.5 1.9
10 2 100.0 26.9 694.8 157.5 44.0 2.2
15 1 100.0 29.6 521.0 130.0 42.1 2.6
15 1.5 100.0 34.5 712.4 166.0 39.6 1.8
15 2 96.7 39.7 982.4 181.7 42.3 1.4
20 1 100.0 39.0 621.5 139.5 40.8 1.2
20 1.5 96.2 42.9 902.8 180.6 39.1 0.9
20 2 96.2 49.0 1193.6 201.1 47.9 1.1

dominated by solutions found withinr2 or r3. In turn, %PSr1 also presents
low values sincer1 is the hardest region to be solved (i.e., the most cons-
trained). Furthermore, in all regions %PSrx seems to be independent of the
complexity of the problem. Therefore, although the time spent by Alg. 1
is only based on theTIME LIMIT constant, it behaves as intended against
all the different complexities (i.e., %SFr2, %SFr3 and columns %PSrx are
independent on the complexity of the problems, whileWTrx andPrx values
are directly dependent on the complexity of the problems), and hence,AQ2
can be answered as true.

Finally, for each problem, a relation among the number of additional ser-
vices per client (cf. columns SAdd), P and WT exists. Specifically, as the
number of services which are included increases, the profit also increases
to the detriment of the waiting time. However, as the problems become
more complex, SAdd decreases in all the regions since it is more compli-
cated to include more services since more clients and services have to be
considered. Considering these values and thatAQ1 andAQ2 are answered
as true,MQ1 is concluded as true, i.e., the proposed algorithm is suitable
for generating a distributed set of Pareto optimized solutions starting from
a SDeclare model.

2. In order to address questionMQ2, sub-questionsAQ3 andAQ4 need to be
answered (cf. Tables5.11and5.12). As can be seen, the columnWT shows
that the solutions provided by our approach are shifted to the lowest part of
the range [minWT, MaxWT]. This means that more solutions were found in
the region related to that part than in the other regions. In turn, the values of
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Table 5.9: Quantified variables for theED1 design (3)

Problem Region 3
N NS %SFr3 WTr3(m) Pr3(e) NActsr3 %PSr3 SAddr3

10 1 100.0 17.0 340.6 79.5 49.3 1.1
10 1.5 100.0 14.5 365.5 80.1 45.4 0.9
10 2 97.0 15.8 511.3 109.7 42.4 1.4
15 1 100.0 15.1 394.2 83.4 45.3 1.1
15 1.5 96.7 22.1 566.3 129.1 50.1 0.7
15 2 100.0 21.5 735.0 162.0 44.9 0.9
20 1 95.0 26.3 498.7 99.9 46.6 0.8
20 1.5 96.2 27.6 725.9 160.4 46.4 0.7
20 2 100.0 28.4 997.2 191.8 39.1 0.6

P are more balanced though still being within the lowest part of the range
[minP, MaxP]. To overcome this issue, the solution space canbe divided in
more regions in order to get more balanced solutions. Moreover, %∆WT
increases as the complexity of the problems increases, which highlights the
benefits of using the proposed approach in real cases. The opposite happens
with %∆P since the more complex the problem is, the fewer free time slots
are available to offer more services. Nonetheless, in all the cases the values
%∆WT and %∆P show that our approach improves the mean of both ob-
jective functions compared to plans which were manually created (i.e.,WT
decreases andP increases). Moreover, the solutions which are provided by
our approach dominate the associated real plan in all the cases (cf. column
%Dominated). That means that, regarding these objective functions, Alg. 1
provides at least one solution which improves both profit andwaiting time
when compared with the real solutions. Therefore,AQ3 is answered as true.

Regarding the flexibility of the generated configurable BP models (cf. col-
umn Flex), in most cases it achieves 100%, which means that the uncer-
tainty which was specified by the manager is totally covered by the gene-
rated models. In fact, the value ofFlex is over 83.3% even in the most
complex problem, which represents a very high degree of flexibility. Re-
garding the robustness, as the complexity of the problems increases, both
upper and lower limits of the robustness decrease (cf. columns minRob and
MaxRob). This is due to the fact that the more activities exist in the plan,
the less slack appears. However, these columns present rather good values
since a value of 13.3% of robustness means that the related plan will avoid
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Table 5.10: Quantified variables for theED1 design (5)

Problem Region 4
N NS %SFr4 WTr4(m) Pr4(e) NActsr4 %PSr4 SAddr4

10 1 25.8 19.1 413.2 86.6 2.5 1.5
10 1.5 36.2 25.0 451.1 89.0 1.9 1.4
10 2 30.1 24.6 515.2 115.2 2.1 1.4
15 1 29.5 27.7 435.0 89.3 1.5 1.3
15 1.5 37.0 35.4 610.4 138.9 3.6 0.9
15 2 35.1 36.1 779.7 163.6 3.3 1.0
20 1 27.4 31.5 525.4 115.3 2.2 0.9
20 1.5 39.1 40.7 775.9 168.7 4.0 1.1
20 2 52.8 43.4 1004.5 292.5 4.1 0.8

Table 5.11: Quantified variables for theED2 design (1)

N NS minWT MaxWT minP MaxP WT(m) P(e) %∆WT %∆P

[8,12] [1,1.4] 0.3 26.3 210 1501 7.1 574.2 -26.6 38.3
[8,12] (1.4,1.8] 0.1 31.0 305 1561 10.1 681.6 -29.3 32.5
[8,12] (1.8,2.2] 3.2 36.5 396 1492 9.9 805.6 -36.8 20.0

[13,17] [1,1.4] 3.1 51.6 364 1690 12.2 721.8 -31.2 29.7
[13,17] (1.4,1.8] 5.8 59.3 419 1632 18.5 905.0 -27.7 21.8
[13,17] (1.8,2.2] 5.1 63.2 538 1681 19.0 984.3 -29.4 16.4
[18,22] [1,1.4] 6.0 63.1 515 1877 24.4 851.2 -32.4 21.7
[18,22] (1.4,1.8] 7.3 60.7 638 1838 21.5 969.5 -36.8 16.1
[18,22] (1.8,2.2] 8.7 69.2 801 1845 30.8 1252.4 -41.3 8.9

replanning in this 13.3% of cases. Then,AQ4 and consequentlyMQ2 are
answered as true.

Comparing bothED1 andED2 designs, it can be said that using both ran-
domly generated data and real data from a log a similar behavior is ob-
served in the bounds of the objective function values (cf. columns minWT,
MaxWT, minP and MaxP in Tables5.6 and 5.11). However, the upper
bounds in theED2 design (cf. columns MaxWT and MaxP in Tables5.11)
tend to be slightly different since the SDeclare model has been extended in
this experiment (i.e., more services, more resources and uncertainty are in-
cluded). The size of the ranges of the waiting time (i.e., differences between
columns minWT and MaxWT) increases as the average number of services
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Table 5.12: Quantified variables for theED2 design (2)

N NS %Dominated Flex minRob MaxRob

[8,12] [1,1.4] 100 100.0 22.2 44.4
[8,12] (1.4,1.8] 100 100.0 16.7 38.9
[8,12] (1.8,2.2] 100 95.6 22.2 27.8

[13,17] [1,1.4] 100 100.0 25.0 41.7
[13,17] (1.4,1.8] 100 95.6 16.7 33.3
[13,17] (1.8,2.2] 100 95.6 16.7 20.8
[18,22] [1,1.4] 100 88.9 16.7 30.0
[18,22] (1.4,1.8] 100 95.6 13.3 23.3
[18,22] (1.8,2.2] 100 83.3 13.3 16.7

per client increases (i.e., column NS). Such dependency is due to the fact
that when NS is high, including additional services involves more complex
schedules and therefore, it increases the waiting time morethan when NS is
low. However, the opposite happens with the size of the ranges of the profit.
This is the expected behavior since the simpler the problemsare (i.e., the
lower values of NS), the more chances to include services exist. Therefore,
the approach behaves similarly against both sources of problems.

3. In order to answerMQ3, the sub-questionsAQ5, AQ6, AQ7, andAQ8 need
to be answered. For this, Tables5.13is analyzed. The values of the columns
#mQand #MQ reveal that the number of questions that need to be answered
for each node seems to be independent of the number of branches (cf. OB)
of the related node. In addition, no errors were observed when generating
the questionnaires and, thus,AQ5 can be answered as true. Furthermore,
#MQ is lower than 10 (i.e., the number that the salon manager specified as
maximum) and, thus,AQ6 can be answered as true.

In order to answerAQ7 andAQ8, Table5.14is analyzed. As expected, #Q
increases as #Acts increases, which indicates that more effort is required
by the domain expert to individualize more complex configurable BP mo-
dels. Even though, #Q is lower than 10 in all the cases, meaning that our
approach can efficiently deal with real problems. Moreover,∆$ increases
as #Actsincreases, which highlights the benefits of using the proposed ap-
proach in real cases and thus,AQ7 can be answered as true. Regarding the
values of %R, it can be concluded that the number of times that the salon
manager needs to change her initial plan due to unexpected events (e.g., a
client arrives later than expected or a resource becomes unavailable) is dras-
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Table 5.13: Quantified variables for the
ED3 design

OB #mQ #MQ

[2,5) 1.2 6.3
[5,8) 1.1 5.0

[8,11) 1.2 5.9
[11,14) 1.1 6.1

Table 5.14: Quantified variables for the
ED4 design

#Acts #Q ∆$ %R

(40,60] 3.1 141.5 70.0
(60,80] 4.1 189.1 60.0
(80,100] 7.6 219.4 66.7
(100,120] 8.0 239.8 75.0

tically reduced (i.e., almost 43% in most complex cases). Therefore,AQ8
and consequentlyMQ3 can be answered as true.

5.3.7 Validity Evaluation

This section evaluates if the results are valid and not biased. Three types of valid-
ity are addressed in this section: construct, internal and external.

Firstly, with relation to the construct validity, it has to be addressed in how
far the measures which have been used are appropriate to address the research
questions which have been planned. Three different threatsare identified related
to the acquisition of the data. The first threat is related to how the problems have
been randomly generated in theED1 design. In this design, unsolvable problems
were not considered in order to evaluate the algorithm better. This is checked
considering a simple rule: the generated appointment time of a client plus the time
which her booked services consume cannot overpass the closing time of the beauty
salon. Due to the parallelism which may exist because of the temporal constraints
(i.e., a client can be served by different employees at the same time), this rule
leaves out some problems which might be solvable. To mitigate this threat, a
more elaborated algorithm can be performed to avoid eliminating problems which
may be solvable. Secondly, the complexity of the problems which are generated
is controlled only by varying the number of clients and her booked services (in
the ED1 design), by the number of branches of the configurable nodes(in the
ED3 design) and the number of activities of the configurable BP models (in the
ED4 design). Although the beauty salon is considered a suitable business due
to its complexity, different ways of controlling this complexity can be applied to
mitigate this threat, e.g., by changing the type of constraints or by changing the
properties specified by the salon manager. The third threat concerns the duration
of the logged data in the designs (i.e, 90 days in case ofED2 design, and 30 days
in caseED3 andED4 designs). To the best of the acquired knowledge there is
no metric which states how long data must be logged to obtain ameaningful log.
To mitigate this threat, longer durations can be consideredto get more data and
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therefore to increase the probability of finding situationswhere the algorithm does
not perform well. Finally, in all of the designs some values have been fixed in the
algorithms, i.e., the number of regions into which the solution space is divided
(fixed to 4) and the number of samples which are generated in the ED2 design
(fixed to 30). Increasing these values would increase the accuracy of the proposal.

Regarding the internal validity, the main threat is that theobtained results re-
lated to flexibility and robustness concerns could be biasedsince their interpre-
tation can be subjective since it depends on the business which is analyzed. In a
similar way, the results concerning #MQ can be biased due to that the value for
the upper bound of the number of questions to be answered to configure a specific
configurable node (specified by the salon manager) represents a subjective point
of view. This threat is difficult to eradicate. To mitigate it, other business experts
can be consulted in order to state what is a successful value for flexibility and
robustness and the upper bound of the number of questions perquestionnaire.

Finally, the external validity considers in how far the obtained results could be
generalized to any business. This generalization is threatened by the fact that the
beauty salon was the unique scenario which was studied. Other scenarios can be
considered to replicate this study in order to mitigate thisthreat.





Chapter 6

Discussion and Limitations

The manual specification of BP models, which are traditionally specified through
an imperative language, can consume great quantity of resources, cause failures,
and lead to non-optimized models, resulting in a very complex problem (Ferreira
and Ferreira, 2006). The current approach allows modelling the considered pro-
blems in an easy way, since the considered declarative specifications (i.e., an ex-
tension of the Declare language (Pesic, 2008)) are based on high-level constraints.
Moreover, with the proposed extension, the expressivenessof the process designs
is enhanced compared to (Barba and Del Valle, 2011; Jimenez-Ramirez et al.,
2013b,a) (e.g., stochastic values for modelling the uncertainty ofthe scenario can
be included), and hence more realistic problems can be managed, e.g., the Beauty
Salon detailed in Chapter.5. Therefore, the current approach is intended to reduce
the human work in scenarios with high variability in variousways:

• Since declarative BP model specifications allow their usersto specify what
has to be done instead of how (Pesic, 2008) and the tacit nature of hu-
man knowledge is often an obstacle to eliciting accurate process models
(Ferreira and Ferreira, 2006), declarative specifications facilitate the human
work which is involved in the process design and analysis phase compared
to imperative specifications. Specifically, using a declarative specification,
the user only has to define the constraints of her models without being aware
of how they are fulfilled. Therefore, several ways of executing such decla-
rative model exist. In turn, imperative specifications entail more complexity
since all the possible execution alternatives need to be specified. Such com-
plexity is even higher when a high flexibility is required, inthe presence of
input uncertainty, or when the resources need to be allocated in a suitable
way considering the optimization of certain objective functions

• Typically, executing a declarative model (which presents high variability)
usually entails bigger effort for the involved users compared to executing an
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imperative model (Reichert and Weber, 2012; Schonenberg et al., 2008b)
since deciding how to exactly execute the process is difficult for the user
and this can lead to bad executions (i.e., very bad values forsome objective
functions). For this, the current approach extracts a desirable part of the
variability of a declarative model through the generation of multi-objective
optimized enactment plans while discarding bad execution alternatives (ac-
cording to the optimization of some objective functions as well as high flex-
ibility and robustness). This way, the proposed approach facilitates the hu-
man work which is involved in the process enactment phase.

• Such optimized plans are then merged into a configurable BP model which
supports the analysts in the management of these plans and helps the ana-
lysts in understanding what the different plans share, whattheir differences
are, and why and how these differences occur (Rosemann and van der Aalst,
2007).

Since these kind of problems are NP-complete, getting optimal solutions can-
not be ensured in general (this is the reason why the term optimized plans is
used instead of optimal plans). This way, the quality of the solution which is
calculated depends on the time limit which is establish in the search algorithm.
Note that, as mentioned, efficient filtering rules have been developed. Despite
the NP-complexity of the considered problems, such filtering rules have demon-
strated their effectiveness for improving performance in previous works (Barba
and Del Valle, 2011; Barba et al., 2013a,b).

In addition, to further improve the quality of the resultingexecution alterna-
tives, flexibility and robustness concerns are considered.For this, quantitative
definitions are provided in order to measure how the uncertainty of the scenario
is supported by each generated enactment plan. Therefore, execution alternatives
that are not desirable for the business regarding both the quality and a set of given
objective functions are avoided.

Furthermore, in contrast to related proposals (Sadiq et al., 2005; Lu et al.,
2009; Ferreira and Ferreira, 2006; Westergaard and Maggi, 2012; Krogt et al.,
2010), not only a single enactment plan but a set of optimized enactment plans are
considered when generating the imperative model. This way,the flexibility of the
resulting imperative model is not unnecessarily restricted.

The optimized plans which are included in the generated configurable BP
model can be used, as discussed in previous works, for:

1. Assisting users during the process execution to optimizeperformance through
recommendations (Barba et al., 2011, 2013b).

2. Providing predictions, e.g., predict the completion time of all the running
instances (Barba et al., 2013a).
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3. Performing simulations, e.g.,what-if scenarios (Barba et al., 2013a).

Moreover, the automatic generation of optimized configurable BP model can
deal with complex and real problems in a simple way as demonstrated in Chapter
5. Therefore, a wide study of several aspects can be carried out by simulation.
Nonetheless, an evaluation with more complex scenarios is required to improve
the generalizability of the results and is planned for future work.

However, this approach also presents a few limitations. In general, different
resource patterns can be taken into account. Motivated by the considered scenar-
ios, the proposed approach considers that a resource can only perform an activity
at the same time (i.e., the same resource cannot be used to perform more than one
activity in parallel) and that activities are executed without preemption. The busi-
ness analysts must deal with a new language for the constraint-based specification
of BPs, thus a period of training is required to let them become familiar with the
proposed language, i.e., SDeclare.1 Furthermore, the optimized configurable BP
model is generated by considering estimated values for the number of instances
to execute, and hence the current proposal is only appropriate for processes in
which this number is known a priori. As a real example, the beauty salon problem
is detailed and an extensive empirical evaluation is carried out with the goal of
supporting the contributions of the proposed approach. Some previous works also
dealt with scenarios in which the number of process instances to be executed in a
specific timeframe is known a priori (e.g., (Barba et al., 2013a) describes a travel
agency problem and (Barba et al., 2012) considers computer support for clinical
guidelines as an application example). In a related way, activity attributes and
resource availability need to be estimated. Although this can be done more easily
through the stochastic feature of SDeclare, the problem complexity increases as
the number of stochastic variables increases. However, if the actual values deviate
from the estimated values during the execution of the model,P&S techniques can
be applied to replan the activities at runtime by considering the actual values of
the estimates, as discussed in a previous work (Barba et al., 2013a).

In addition, motivated by the requirements of the considered scenarios, the
data perspective which is considered in the current approach mainly includes data
constraints which can be applied to input data and activity relations. However,
more advanced features like dynamic data or data-flow perspective have been left
out since they are not part of the design requirements of the considered scenarios
and will be addressed in future work when applying the current proposal to BPs
with different characteristics.

1To support the graphical specification of SDeclare models the existing Declare tool (available
at http://www.win.tue.nl/declare/) has been adapted for allowing resource specification, temporal
and data constraints, as well as stochastic estimates.



126 CHAPTER 6. DISCUSSION AND LIMITATIONS



Chapter 7

Conclusions

Nowadays, there exists a growing interest in aligning information systems in a
process-oriented way as well as in the effective and flexiblemanagement of busi-
ness processes (BPs) since real scenarios are commonly subject to uncertainty. In
order to manage such BPs, the traditional BP management lifecycle involves four
phases: (1) process design & analysis (i.e., a design of the BP is created following
the requirements), (2) system configuration (i.e., the software defined in the BP
design is implemented), (3) process enactment (i.e., the software is executed fol-
lowing the BP design) and (4) evaluation (i.e., monitoring information or logs are
analyzed to look for design improvements).

In such context, analysts are in charge of designing BP models which capture
the behavior of the business under analysis. To do this, suchanalysts must face
certain design requirements, e.g., dealing with uncertainty estimates, resource al-
location as well as control-flow, data and temporal constraints. In addition, the
designed BP models typically have to optimize some objective functions –which
may be opposed- while they must be able to withstand the inputuncertainty to
some extent (i.e., flexibility and robustness are required).

To address the aforementioned requirements, declarative BP models (e.g.,
constraint-based BP models) are increasingly used since the tacit nature of hu-
man knowledge is often an obstacle to eliciting accurate BP models. However,
due to their flexible nature, there exist several ways of executing a declarative
BP model, i.e., there are different imperative BP models associated to the same
declarative specification. In such context, existing proposals (Pesic, 2008; Sadiq
et al., 2005; Pesic et al., 2007; Lu et al., 2009; Ferreira and Ferreira, 2006; Mon-
tali, 2009; Westergaard and Maggi, 2012; Krogt et al., 2010; Hummer et al., 2013)
generate a single execution plan from the declarative BP model. Nonetheless, if
BPs are subject to uncertainty and conditions may change during BP execution, it
might turn out that the generated enactment plan is not applicable and replanning
might be required.
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For overcoming this, the first part of this work (cf. Chapter3) proposes the
automatic generation of optimized enactment plans from constraint-based specifi-
cations at design-time. Such specifications consider the control-flow and resource
perspectives as well as the specification of the input uncertainty of the scenario.
For dealing with them, these plans are merged into a flexible configurable BP
model in the second part of this work (cf. Chapter4). Before the execution of
such model, a single BP model has to be selected from it (i.e.,it needs to be in-
dividualized). To individualize such models, unlike existing approaches (Rosa
et al., 2009), a totally automated method to create a questionnaire-based applica-
tion for guiding a business expert on individualizing the configurable BP model
during run-time is proposed. This way the decision of how theenactment plan to
be executed looks like is deferred to run-time.

To be more precise, the proposed approach includes the following contribu-
tions:

1. The definition of a suitable language, SDeclare, which allows the constraint-
based specification of BPs be defined in a suitable form (both control-flow
and resource perspectives are considered). Furthermore, such a language
allows the analyst to include temporal and data constraints(cf. Chapter
3) as well as the input uncertainty which may exist (cf. Chapter 4). The
proposed language significantly extends the existing proposals by conside-
ring multi-objective optimization, choice (Pesic, 2008), temporal (Montali,
2009; Westergaard and Maggi, 2012) and data constraints (Montali, 2009;
Montali et al., 2013), alternative resources, and stochastic attributes.

2. A constraint-based proposal for planning and schedulingthe BP activities in
a multi-objective optimized way in order to obtain optimized BP enactment
plans related to a SDeclare model (cf. Chapter3). Unlike other related
approaches (Pesic, 2008; Montali, 2009; Krogt et al., 2010; Lu et al., 2009;
Rychkova et al., 2008; Hummer et al., 2013), the proposed method enables
the optimization of several objective functions, resourcereasoning and the
specification of high level constraints.

3. A filtering algorithm which selects those plans which present an outstanding
performance and which can deal with the highest uncertainty(cf. Chapter
4). Using such filtered plans, a configurable BP model is created out of
them. For this, quantitative definitions of both flexibilityand robustness are
proposed unlike existing approaches (Cicerone et al., 2012; Aissi and Roy,
2010; Reichert and Weber, 2012; Schonenberg et al., 2008a).

4. Finally, a method for creating a questionnaire from the configurable BP
model to allow the user individualize such model during run-time (cf. Chap-
ter4). Unlike (Rosa et al., 2009) which needs the intervention of an analyst
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for creating the questionnaires, the current approach proposes a totally au-
tomatic method for generating such questionnaires.

In this way, once the analyst has designed the declarative BPmodel, the user
is supported during the execution of it. Therefore, the loose of control which is
commonly associated to the constraint-based specifications is ameliorated since
the current approach enables the optimized execution of such flexible models.

The proposed approach is appropriate for managing scenarios which (1) present
high variability, (2) pursue the optimization of some objective functions, (3) are
subject to uncertainty, (4) have a well-defined set of business properties which
can be extracted for a variant , and (5) highly rely on domain expert’s skills (i.e.,
decisions influence business performance) and thus, decisions can not be prede-
fined. Following this criteria, the beauty salon problem is selected (cf. Chapter
5) as case study. In order to validate the proposals of this Thesis Dissertation, a
wide empirical evaluation is developed using such scenario. The results of such
evaluation can be summarized as follows:

1. Although the optimization of enactment plans is a highly constrained pro-
blem, the proposed approach produces a satisfactory numberof suitable
solutions which, in addition, are well distributed in the solution space.

2. In most cases, the generated solutions help the user to improve the perfor-
mance of her business.

3. In several cases, the current approach avoids making replanning due to the
run-time feature. Therefore, selecting an execution plan incrementally du-
ring run-time produces a more suitable solution than selecting such plan
before starting the execution.

In addition, the motivation and the interest related to the approach presented in
the current document is strongly justified. Furthermore, discussions related to the
advantages, drawbacks and limitations of each step of the approach are included.
Moreover, the most related work together with the overcomings and innovations
of the proposed approaches are also presented.
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Chapter 8

Future Work

In this Thesis Dissertation a method for supporting the users during the execution
of declarative business process models is presented. Such method includes a set
of steps. Each one of these steps can be extended to widen the applicability of the
proposed approach in different aspects, as explained as follows:

1. Related to the modelling language (i.e., SDeclare), the data perspective
which is considered in the current approach mainly includesdata constraints
which can only be applied to input data and activity relations since it was
motivated by the requirements of the considered scenarios (cf. Chapter5).
However, more advanced features like dynamic data or data-flow perspec-
tive have been left out since they are not part of the design requirements of
the considered scenarios and will be addressed in future work when apply-
ing the current proposal to BPs with different characteristics. Furthermore,
further resource patterns can be considered in the SDeclarelanguage.

2. Regarding the algorithm which generates optimized enactment plans from
SDeclare specifications, various additionally constraint-based solving tech-
niques are planned to be explored in order to analyze their suitability for the
generation of multi-objective optimized plans.

3. In the current approach the main application of the generated multi-objective
optimized enactment plans (cf. Chapter3) is the generation of configurable
BP models to create the related questionnaires (cf. Chapter4). Nonetheless,
two additional scenarios are discusses in this Thesis Dissertation (i.e., user
recommendations for optimized BP execution and the generation of opti-
mized imperative BP models, cf. Section3.3). However, other scenarios
might be interesting to explore:

• Performing simulations to investigatewhat-if scenarios or to generate
a fast-forward view of the current process instance of a business pro-
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cess model. For future work, the generated enactment plans can be
used as a part of a simulation engine for declarativex models.

• Providing reliable time predictions (van der Aalst et al., 2011), e.g.,
to know when all the current process instances will terminate. Since
all the temporal information is available in the generated enactment
plans, these data can be used, as future work, for creating a prediction
engine for declarative models.

4. An extended empirical study is intended to be carried out with the goal of
measuring the impact of the robustness and flexibility on theprocess perfor-
mance in different real businesses with more variety of activities, resources
and sources of uncertainty, e.g., scenarios from information processing or
manufacturing processes. In a related way, the tools associated to the pro-
posed approach still need some refactoring in order to make it ready to use
by others and thus, to make it publicly available.

5. Lastly, with relation to the automatic generation of questionnaires (cf. Chap-
ter4), some tasks are planned as future work:

• Improve the semantics of the questions which are created since they
seem too artificial in some cases. For this, the semantics of the busi-
ness properties need to be improved. Therefore, a deeper research of
the area of linguistics is required.

• Analyze more in depth the different classification algorithms for cre-
ating the decision trees since the characteristics of them directly in-
fluence the questionnaire which is shown to the user.

• Conduct experiments over other real scenarios for being able to gen-
eralize the results which are obtained.
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Acronyms

AI Artificial Intelligence.

BP Busines Process.

BPM Busines Process Management.

BPMS Busines Process Management System.

COP Constraint Optimization Problem.

CP Constraint Programming.

CSP Constraint Satisfaction Problem.

MO-COP Multi-objective Constraint Optimization Problem.

P&S Planning and Schedulling.

RCPSP Resource-Constrained Project Scheduling Problem.
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Appendix A

SDeclare Basic Templates

As stated, in general, if not restricted by any constraints BP activities are assumed
to be executed several times (Pesic and van der Aalst, 2006). Henceforth,nt(A)
refers to the number of times that the repeated activityA is executed;Ai represents
the P&S activity related to the i-th execution ofA; andst(Ai) andet(Ai) repre-
sent the start and the end times ofAi , respectively. It should be clarified that the
constraints∀i : 1≤ i < nt(A) : et(Ai)≤ st(Ai+1) hold for each repeated activityA.

In FigureA.1, some representative examples of SDeclare templates are graphi-
cally represented. Specifically, three precedence relations between two repeated
activities,A andB, are shown. As stated earlier, several executions of the same
BP activity can be modelled as a sequence of single P&S activities. In this figure,
the P&S activityAi represents the i-th execution of the repeated activity A (Ai),
and the arrow represents:

• A precedence relation between two P&S activitiesAi andB j , when it ap-
pears between two activities, which means thatet(Ai)≤ st(B j).

• A precedence relation between a P&S activityAi and a setS of P&S ac-
tivities, when it appears between an activity and a dotted rectangle which
encloses a set of activities, which means that∃B j ∈ S: et(Ai)≤ st(B j).

• A precedence relation between a setS of P&S activities and a P&S acti-
vity B j , when it appears between a dotted rectangle which encloses aset of
activities, and an activity, which means that∃Ai ∈ S: et(Ai)≤ st(B j).

In a similar way, a special arrow (wider than the other arrowsand with a big
dot in its origin) which appears between two P&S activities,A andB, shows that
A must be executedimmediately beforeB (et(A) = st(B)). In a similar way, this
can be defined for a set of activities. More details about Figure A.1 are shown in
the definition of the related templates.
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(a) Precedence(A,B)

A1

A2

Ant(A)

...

B1

B2

Bnt(B)

...

(b) Alternate Precedence(A,B)

A1

Ai

Ant(A)

B1

Ai-1

...

Ai+nt(A)

-nt(B)

Bi

Bnt(B)

Bi-1

...

...
...

...
...

(c) Chain Precedence(A,B)

A1

Ai

Ant(A)

B1

Ai-1

...

Ai+nt(A)

-nt(B)

Bi

Bnt(B)

Bi-1

...

...
...

...
...

Figure A.1: Precedence templates when nt B 0.Figure A.1: Precedence templates whennt(B)> 0.

The SDeclare templates, based on Declare templates, together with some ex-
amples of valid and invalid traces1, are listed as follows2. A full description of
the Declare templates is included in the report (van der Aalst and Pesic, 2006b).
These templates can be easily modified to include further possibilities.

• Existence(N,A): A must be executed more than or equal to N times,nt(A)≥
N.

• Absence(N,A): A must be executed less than N times,nt(A)< N.

• Exactly(N,A): A must be executed exactly N times,nt(A) = N.

• Responded Existence(A,B): If A is executed, then B must alsobe executed
either before or after A,nt(A) > 0⇒ nt(B) > 0. For example, when Res-
ponded Existence(A,B) holds,<B>, <AB> or<BA> are valid traces, and
<A> is an invalid trace since the execution of A requires the execution of
B.

1For the sake of clarity, no parallelism between the activities is considered in the examples,
i.e., trace<A1A2. . .An> means that∀i : 1≤ i < n,et(Ai) = st(Ai+1).

2For simplification, only non-branched templates are shown.
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• CoExistence(A,B): The execution of A requires the execution of B, and vice
versa,nt(A) > 0⇐⇒ nt(B) > 0. For example, when CoExistence(A,B)
holds,<AB> or<BA> are valid traces, and<B> is an invalid trace since
the execution of B requires the execution of A.

• Precedence(A,B): Before the execution of B, A must have beenexecuted,
nt(B) > 0⇒ (nt(A) > 0)∧ (et(A1) ≤ st(B1)). As can be seen in Figure
A.1(a), this relation implies thatA1 must precedeB1 in the case thatnt(B)>
0. For example, when Precedence(A,B) holds,<ABBBA> is a valid trace,
and<BAABB> is an invalid trace since the first B is executed before any
A.

• Response(A,B): After the execution of A, B must be executed,nt(A)> 0⇒
(nt(B)> 0)∧ (st(Bnt(B))≥ et(Ant(A))). For example, when Response(A,B)
holds,<BAABB> is a valid trace, and<ABBBA> is an invalid trace since
after the last execution of A, B is not executed.

• Succession(A,B): Relations Precedence(A,B) and Response(A,B) hold. For
example, when Succession(A,B) holds,<ABABB> is a valid trace, and
<BABBA> is an invalid trace since the first B is executed before any A
(moreover, after the last execution of A, B is not executed).

• Alternate Precedence(A,B): Before the execution of B, A must have been
executed, and between each two executions of B, A must be executed. This
implies that:

1. The number of times that A is executed must be greater than or equal
to the number of times that B is executed:nt(A)≥ nt(B).

2. Between each two executions of B, A must be executed at least once.
Specifically, between the(i − 1)-th and thei-th execution of B, the
earliest execution of A that can exist isi, and henceAi−1 must precede
Bi−1 (as can be seen in FigureA.1(b)). In a similar way, between the
(i−1)-th and thei-th execution ofB, the latest execution ofA that can
exist isi +nt(A)−nt(B), and henceBi must precedeAi+nt(A)−nt(B)+1.
This can also be seen in FigureA.1(b), where the possible activities
to be executed between the(i−1)-th and thei-th execution ofB are
framed within the dotted rectangle.∀i : 2≤ i ≤ nt(B) : ∃ j : i ≤ j ≤
i +nt(A)−nt(B) : st(A j)≥ et(Bi−1)∧et(A j)≤ st(Bi).

3. Before the execution of B, A must be executed:st(B1) ≥ et(A1).

For example, when Alternate Precedence(A,B) holds,<ABAABABA > is
a valid trace, and<ABAABBAA > is an invalid trace since between the
second and the third execution of B, there is not any A.
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• Alternate Response(A,B): After the execution of A, B must beexecuted,
and between each two executions of A, there must be at least one execution
of B. This implies:

1. The number of times that B is executed must be greater than or equal
to the number of times that A is executed:nt(B)≥ nt(A).

2. Between each two executions of A, B must be executed at least once.
Specifically, between thei-th and the(i + 1)-th execution of A, the
earliest execution of B that can exist isi, and henceBi−1 must precede
Ai . In a similar way, between thei-th and the(i +1)-th execution of
B, the latest execution of A that can exist isi +nt(B)−nt(A)−1, and
henceAi must precedeBi+nt(B)−nt(A). ∀i : 1≤ i < nt(A) : ∃ j : i ≤ j ≤
i +nt(B)−nt(A)−1 : st(B j)≥ et(Ai)∧et(B j)≤ st(Ai+1).

3. After the execution of A, B must be executed:st(Bnt(B))≥ et(Ant(A)).

For example, when Alternate Response(A,B) holds,<BABABBAB> is a
valid trace, and<BAABBABB> is an invalid trace since between the first
and the second execution of A, there is not any B.

• Alternate Succession(A,B): Both the relations AlternatePrecedence(A,B)
and AlternateResponse(A,B) hold. For example, when Alternate Succes-
sion(A,B) holds,<ABABAB> is a valid trace, and<ABABBA> is an
invalid trace since between the second and the third execution of B, there is
not any A.

• Chain Precedence(A,B):Immediately before the execution of B, A must be
executed. It implies that:

1. The number of times thatA is executed must be greater than or equal
to the number of times thatB is executed:nt(A)≥ nt(B).

2. Immediately before each execution ofB, A must be executed. Speci-
fically, before thei-th execution ofB, the earliest execution ofA that
can exist isi. In a similar way, before thei-th execution ofB, the latest
execution ofA that can exist isi +nt(A)−nt(B). ∀i : 1≤ i ≤ nt(B) :
∃ j : i ≤ j ≤ i +nt(A)−nt(B) : et(A j)=st(Bi).

This is shown in FigureA.1(c), where a special arrow (wider than the other
arrows and with a big dot in its origin) shows thatA must be executed
immediately beforeB. For example, when Chain Precedence(A,B) holds,
<ABAABABA > is a valid trace, and<ABAABBAA > is an invalid trace
since immediately before the third execution of B, there is not any A.
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• Chain Response(A,B):Immediately after the execution of A, B must be
executed. It implies:

1. The number of times thatB is executed must be greater than or equal
to the number of times thatA is executed:nt(B)≥ nt(A).

2. Immediately after each execution ofA, B must be executed. Specifi-
cally, before thei-th execution ofA, the earliest execution ofB that
can exist isi. In a similar way, after thei-th execution ofA, the lat-
est execution ofB that can exist isi +nt(B)−nt(A)−1. ∀i : 1≤ i ≤
nt(A) : ∃ j : i ≤ j ≤ i +nt(B)−nt(A)−1 : st(B j)=et(Ai).

For example, when Chain Response(A,B) holds,<BABABBAB> is a valid
trace, and<BAABBABB> is an invalid trace since immediately after the
first execution of A, there is not any B.

• Chain Succession(A,B): Both the relations Chain Precedence(A,B) and Cha-
in Response(A,B) hold. For example, when Chain Succession(A,B) holds,
<ABABAB> is a valid trace, and<ABABBA> is an invalid trace since
immediately before the third execution of B, there is not anyA.

• Responded Absence and Not CoExistence(A,B): If B is executed, then A
cannot be executed, and vice versa,((nt(A)> 0) · (nt(B)> 0)) == 0. For
example, when Responded Absence(A,B) holds,<A> or <B> are valid
traces, and<BA> is an invalid trace.

• Negation Response, Negation Precedence, Negation Succession(A,B): Af-
ter the execution of A, B cannot be executed, i.e., the last execution of B
must finish before the start of the first execution of A (nt(A)> 0∧nt(B)>
0)⇒ et(Bnt(B)) ≤ st(A1)). For example, when Negation Succession(A,B)
holds,<BBBA> is a valid trace, and<BBAB> is an invalid trace since the
third B is executed after A.

• Negation Alternate Precedence(A,B): Between two executions of B, A can-
not be executed,nt(B)≥ 2⇒∀i : 1≤ i ≤ nt(A) : et(Ai)≤ st(B1)∨st(Ai)≥
et(Bnt(B)). For example, when Negation Alternate Precedence(A,B) holds,
<AABBA> is a valid trace, and<ABABA> is an invalid trace since bet-
ween the first and the second execution of B, A is executed.

• Negation Alternate Response(A,B): Between two executionsof A, B can-
not be executed,nt(A) ≥ 2⇒ ∀1≤ i ≤ nt(B) : et(Bi) ≤ st(A1)∨ st(Bi) ≥
et(Ant(A)). For example, when Negation Alternate Response(A,B) holds,
<BBAAB> is a valid trace, and<BABAB> is an invalid trace since bet-
ween the first and the second execution of A, B is executed.
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• Negation Alternate Succession(A,B): Both the relations Negation Alternate
Precedence(A,B) and Negation Alternate Response(A,B) hold. For exam-
ple, when Negation Alternate Succession(A,B) holds,<AABB> is a valid
trace, and<AABBA> is an invalid trace since between the second and the
third execution of A, B is executed.

• Negation Chain Succession(A,B): B cannot be executed immediately after
the execution of A,∀i : 1≤ i ≤ nt(B) :¬∃ j : 1≤ j ≤ nt(A) : et(A j) = st(Bi).
For example, when Negation Chain Succession(A,B) holds,<BACBA>
is a valid trace, and<BABA> is an invalid trace since the second B is
executed immediately after A.

The SDeclare templates can be classified either in unary (only one parameter,
e.g., ExistenceN or AbsenceN) or binary (two parameters, e.g., Response or Chain
Succession) templates.
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