An overview on test generation from
functional requirements

M.J. Escalona,
Aragédn,

J.J.

I.Ramos, J.

Gutierrez,
Torres,

M. Mejias, G.
F.J. Dominguez

ABSTRACT

Despite the fact that the test phase is described in the literature as one of the most relevant for quality
assurance in software projects, this test phase is not usually developed, among others, with enough

Keywords:

resources, time or suitable techniques.

To offer solutions which supply the test phase, with appropriate tools for the automation of tests

Testing
Early testing
Functional test generation

generation, or even, for their self-execution, could become a suitable way to improve this phase and
reduce the cost constraints in real projects.
This paper focuses on answering a concrete research question: is it possible to generate test cases from

functional requirements described in an informal way? For this aim, it presents an overview of a set of
relevant approaches that works in this field and offers a set of comparative analysis to determine which

the state of the art is.

1. Introduction

Nowadays, there is an important research community focus-ing
on the necessity of an efficient test phase in software project and
there are interesting discussions and research works deal-ing with
the way of getting this efficiency. The test phase is one of the most
relevant to both assure the quality of a system and measure the
correspondence of the system with the users’ expectations.

The objective of software testing is the evaluation of a system or
component through its execution, starting from given initial con-
ditions and observing the results (IEEE, 2008). The establishment
of such initial conditions consumes much of the effort spent in the
development of test cases and testing techniques.

However, despite software community supports the importance
of the test phase, it is not always scheduled, executed or faced up
with enough resources in real projects. This fact has to do with some
aspects such as delays in the development process that commonly
generate resources scraps or lack of initial structure of the test in
project planning.

In the wide range of tests that can be analyzed, this paper
focuses on functional test cases. One of the most important aspects
to consider in tests is both the degree of coverage of the initial
require-ments defined at the beginning of the project and its
validation with final users. Thus, the term early testing (Gutiérrez
et al.,, 2006) is used to define a line in test research oriented to
enhance the systematic

implementation of test cases based on system requirements or
business models.

Information systems are designed to fulfill a set of requirements.
These requirements describe, among other aspects, the function-
ality of the system. The set of requirements that describes the
functional necessities of the system is named in this paper Func-
tional Requirements. Probably, these functional requirements are
based on system objectives or are in need of future users of the
system.

For these reasons, a critical task is to assure the right implemen-
tation of the expected functionality in the final software. One of the
main tools to achieve this goal is system testing, which is a mecha-
nism to verify that the system performs the behavior expressed in
its requirements. Thus, test cases must exercise the system under
the scope of the requirements. This task makes the requirements,
not only a right tool to validate the execution of test cases, but also
a source of test cases. Functional Test Cases is the name given in this
paper to the set of system tests cases that enables the validation
of functional requirements, independently how they are obtained.
When mentioning test cases 2 from functional requirements, we are
referring to the set of functional test cases that is obtained in a
systematic way from the functional requirement definition.

Therefore, some interesting questions to investigate are
whether it would be possible to obtain the total functional test
cases from functional requirements and how easy and automatic
this process would be.

This systematic generation can be a suitable way to facilitate
the execution of the test phase for it offers systematical processes
that enable the test generation and test definition in a formal, eco-
nomic and efficient way. Besides, it guarantees the traceability of
the final system with the initial requirements. Thus, this paper

dx.doi.org/10.1016/j.jss.2011.03.051
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:mjescalona@us.es
dx.doi.org/10.1016/j.jss.2011.03.051

Table 1
Detailed name of the studied approaches.

Year Title Reference

1988 Category-Partition Method Ostrand and Balcer (1988)

1997 Software Requirements and Acceptance Testing Hsia (1994, 1997)

1999 Testing Object-Oriented Systems Binder (1999)

1999 Test Cases Generation from UML State Diagrams Kim et al. (1999)

2000 Automated Test Case Generation from Dynamic Models Frohlich and Link (1999, 2000)

2000 Writing Effective Use Cases Cockburn (2000)

2002 Testing From Use Cases Using Path Analysis Technique Naresh (2002)

2002 Generating Test Cases from Use Cases Heumann (2002)

2002 A UML-Based Approach to System Testing (TOTEM) Labiche and Briand (2002)

2002 Use Cased Derived Test Cases Wood and Reis (2002)

2002 Quality Web Systems Dustin (2002)

2003 Scent: A Method Employing Scenarios to Systematically Derive Test Cases for System Test Ryser and Glinz (2003)

2003 What Is Requirements-Based Testing? Mogyorodi (2001, 2002, 2003)

2003 Statistical Usage Testing Based on UML Huebner et al. (2003), Riebisch et al. (2002)
2003 Traceability from Use Cases to Test Cases Zielczynski (2006)

2004 RETNA: From Requirements to Testing in Natural Way Boddu et al. (2004)

2004 PLUTO: A Test Methodology for Product Families Bertolino and Gnesi (2004)

2004 A UML-based Test Generation and Execution Ruder (2004)

2006 Automatic Test Generation: A Use Case Driven Approach Nebut and Fleurey (2003), Nebut et al. (2006)
2007 An Automatic Tool for Generating Test Cases from the System’s Requirements Ibrahim et al. (2007), Ismail et al. (2007)
2008 REED. Requirement Editor Oh et al. (2008)

2007 Test Cases Generation from Use Cases Gutiérrez et al. (2008a,b)

2009 Software Product Line Testing Pérez et al. (2009)

2009 Bridging Test and Model-driven Approaches in Web Engineering Robles et al. (2009)

presents an overview to quantify the degree of maturity, systemati-
zation and automation of the existing works about the generation
of functional test cases from functional requirements described in
natural languages or, at least, in an informal language. In the litera-
ture, there are several approaches like (Liu and Yuting, 2008; Stocks
and Carrington, 1996) or (TerMaat, 2001) that offer suitable results
in the systematic generation of test cases. Still, they start with a
formal definition of the requirements by using formal specifica-
tion. The use of formal languages to define requirements probably
provides the best solutions for both, test generation and require-
ments validation in general, as it is concluded in Ryser and Glinz
(1999). Nevertheless, they are difficult to apply in the enterprise
environment (Insfran et al., 2002). For these reason, the study only
considers approaches based on functional requirements described
in natural or informal language.

Survey generation has been driven by using the guide proposed
in SEG (2007). This process consists in three main activities:

1. Planning. In this phase, the survey is planned and delimited and
a specific protocol to set it up must be defined. Both, the aims
of the survey and the environment and sources to identify the
approach of study, must be clearly and completely defined.

2. Conducting the review. In this phase, after the initial constraints
have already been specified, the subject of study must be identi-
fied and reviewed with different sources. Then, the set of relevant
approaches to be analyzed is detected. SEG (2007) proposes to
establish a common characterization criterion to define each
approach before the comparative study is carried out. It enables
to obtain a uniform definition of each approach that may facili-
tate the comparative study.

3. Reporting the review. Finally, once the approaches have been
studied and the research situation has already been analyzed,
the process concludes with a report on the results of the review.
In fact, this paper represents the result of our review. Previous
phases were executed before writing this paper, as referenced in
it.

In order to present the overview results, this paper is organized
as follows: Section 2 introduces other related surveys about the
test cases generation from functional requirements and Section 3
describes the method used to select approaches in the study, and it

also introduces a characterization schema to normalize the infor-
mation of each of the approaches found. This section involves the
first and second phases of SEG.

In Section 4, by means of the characterization schema, the paper
sets out the characterization schema of the approaches analyzed in
this survey as well as other related approaches. From this global and
homogeneous view of every approach of study, Section 5 analyzes
the information obtained from the set of approaches and presents
some relevant studies. Finally, Section 6 states the conclusions and
ongoing work.

2. Related work

This paper is not the first one dealing with this subject. There
are, at least, three previous comparative studies written with the
same aim than this one. In this section, three previous surveys are
related and related to this comparative study.

A. The first study presented by Ryser and Glinz (1999) introduce
a division and characterization of approaches for validating and
testing requirements. In the scope of approaches for testing func-
tional requirements, this reference proposes a division among
approaches which work with informal requirements (defined,
for example, as text templates), approaches working with semi-
formal requirements (defined, for example, as state-machines)
and those which deals with formal requirements (defined, for
example, with algebraic languages). Nevertheless, this paper
puts forward that functional requirements defined in natural
language and with text templates are not valid for a process of
generating test cases.

B. The second study, developed by Denger and Medina (2003),
explains and analyzes 12 approaches for generating test cases
from functional requirements. In this comparative study, they
conclude that most of the analyzed approaches work with func-
tional requirements in natural language and the study, in turn,
reveals the low uniformity and lack of standards in this area.

C. The third survey was conducted by Gutiérrez et al. (2006) in a
previous research work. 8 out of 12 approaches are analyzed
in a different line from Denger and Medinais. Again, the main
conclusion is the lack of a common line and a global solution for
functional test cases generation.

Starting with these studies and with future work oriented
towards finding a suitable solution for test generation, the follow
up of this paper is an in-depth analysis of the present situation,
focusing on approaches that describe requirements in an infor-
mal way, and tries to formalize the comparative study by means
of characterization schemas (in the next section). It also enlarges
on new approaches not studied in any of the previous surveys and
compares the results of these previous surveys.

3. Planning and conducting the review

One of the most important tasks in carrying out a survey is to
clearly delimit the scope of the approaches that are relevant for the
study. However, one problem is how to present each approach in
a homogeneous way to be compared. As introduced, according to
SEG (2007), the characteristics that approaches should fulfill must
be consistent with the thesis of this survey: generation of test cases
from functional requirements described in informal language. Thus,
following the terminology described in Brereton et al. (2007) for a
concrete planning and development of our review, we define:

Context: The systematic, or even automatic generation of test
cases from functional requirements, could be a solution to improve
the test phase and reduce its cost. There are several approaches
that offer different solutions in this area, so a critical overview will
be introduced in order to quantify the degree of maturity, system-
atization and automation of the existing works about generation
of functional test cases from functional requirements. This study
will focus on approaches that deal with requirements described in
informal languages since a previous comparative study, introduced
in Section 2, concludes that the formal description of functional
requirements makes easier test cases generation. Nevertheless, this
notation is not commonly used in the enterprise environment. We
want to analyze approaches that define functional requirements
in informal languages, like scenarios, patterns, etc., but are widely
used in real projects.

Thus, approaches presented in our study must conform to our
research line of argumentation

1. The generation process must start from the functional specifica-
tion of the tested system.

2. The functional specification must be written in non-formal lan-
guages.

3. The result must be system test cases.

The relevant approaches for this survey are those that start from
the functional specification of the system, should be expressed in
the form of functional requirement, use case or usage scenarios
and are written in a natural language or similar. There are no con-
straints on either the structure or size of the approaches. In the
survey, the only approaches that are included are the ones which
describe how to obtain functional system test cases. This means
that generated test cases allow verifying the right implementation
of the functional specification in the tested system. Following these
criteria, if an approach does not follow these constraints will not
be included in the survey. In Section 4.14, an overview of some
excluded approaches is presented and reasons for their exclusion
are analyzed.

Objectives: After defining the context, the objectives of this study
are listed and grouped attending to four points:

¢ Identify the solutions that have been proposed to address the
systematic or automatic generation of functional test cases from
functional requirements described in informal languages.

* Analyze, with a set of indicators, if they offer a suitable solution
for real projects and improve the test phase with the reduc-

tion of cost and time and the coverage increase of functional
test.

¢ Identify the gaps in current research.

e Propose future works about the automatic generation of func-
tional test cases from functional requirements.

Methods: The search strategy for the review consists in three
main stages:

e Find published surveys similar to the one used in this paper. Con-
sequently, three previous surveys were found. The search started
with approaches included in these papers and the analysis of
those which covered the constraints defined.

Design a Web-search to find other relevant and new approaches.
Several sets of keywords were used by combining the start and
end artifacts. Some examples are: “test, case, generation, require-
ment”, “test case, use case”, “system test case approach”, etc.
These sets were used both in specific and general search engines
such as Google, Google Scholar, Scopus, EI Compendex, ISI Web
of Knowledge, IEEEXplore, ACM Digital Library and CiteSeerX.

¢ Look into references of papers included in previous reviews.

Results: The final result of searching approaches (including all
the references from previous surveys and new approaches found)
was grouped in 24 approaches which are presented in Table 1.

This table includes 11 approaches (in grayed way) which have
a little mismatch with the characteristics set up in the survey.
When looking for related works, it is realized that there are some
approaches which set out similar ideas to other approaches with-
out introducing a new idea of valuable content. These approaches
are not included in the characterization study of Section 4, although

the reasons for not analyzing them are specifically mentioned.
In the same way, some of the approaches included in Denger and

Medina (2003), Gutiérrez et al. (2006) do not appear in this survey,
either. Firstly, despite the reference it has been impossible to find
a copy of some approaches included in Denger and Medina (2003),
even asking their authors for them. In addition, some of them are
no longer maintained. Secondly, there are some approaches in both
surveys that do not match the criteria defined at the beginning of
this section. For example, some approaches define test cases at
a different level of detail than system test level, or some others
use formal techniques to define requirements instead of natural
languages.

3.1. A characterization schema

Although the approaches shown in Table 1 are described sepa-
rately and offer a different level of depiction, they are, still, defined
within the same context. In line with the definition of characteri-
zation schema, our next step in presenting the survey is to define a
common pattern to depict in each approach. This schema enables
the storage of information of every approach in a common pattern
in order to make the comparison among them easier. This charac-
terization schema solves the questions proposed in the survey in
order to answer the main question of this research study: is it possi-
ble the automatic generation of test cases from functional requirements
described in an informal way? These questions are

¢ Q1: Which are the main characteristics of the approach? We want
to know if the approach offers a global vision in the survey, which
its inputs are, how requirements are defined, etc.

e Q2: Does it offer suitable tools for support? Suitable tools for
supporting the development are essential to demonstrate a real
generation of test cases from functional requirements.

® Q3: How are test cases obtained? It is necessary to evaluate how
test cases are obtained and presented as a result.

Table 2
Characterization Schema for approach description in the survey.

Elements Attributes Dominion
Technique Inputs {String+}

Format of the inputs {no, *}

Coverage criterion *

Notation *

Systematization degree {High, Medium, Low}

Test values definition {Yes, no}

Tool Tool name *

License *

Available {Yes, no}

Automation degree {total, partial}

Environment *

Test case Amount of test cases generated *

Format of test cases generated *

Benefits *

Problems *

Documentation References to projects {Yes, no}

Format {Paper, short paper,
inner report, book
chapter}, {journal,
proceedings, journal,
book}

Size * (number)

References {String+}

e Q4: Is the approach well-documented? Sometimes it is impos-
sible to apply an appropriate approach because it is not
well-documented.

Several indicators are selected to answer every question in each
approach. They are described in Table 2 and the next paragraphs.
Previous works, such as Denger and Medina (2003), Gutiérrez et al.
(2006) (cited in Section 2), have been used as worthy sources of
information to define elements, attributes and dominions of this
characterization schema. The study of testing techniques cited in
Vegas et al. (2009) has also been used as an additional source of
information about characterization schemas.

In Table 2, each attribute is formalized by defining either the set
of possible values (domain) or, in other cases, their format. Domains
have been determined through a simplified and auto-explicative
notation for regular expressions. Sometimes, it is necessary to allow
a free text as a value for an attribute.

To delimit a domain for some fields has been an impossible task,
due to the fact that they present a wide disparity of values. These
attributes are marked with an “*” in Table 2. Domains between
keys “{..}” define a set of options for the value of the attribute.
There are some exceptions in the attributes Inputs and References.
Both attributes are described with a list of strings. The domain for
the attribute size is a number instead of a text string (as indicated
in the table). Next paragraph provides a further description of the
attributes in Table 2.

As seen in the preceding section and taking into consideration
Table 2 above, we now turn to the depiction of each attribute and
their corresponding elements. Firstly, we look at the Technique ele-
ment which describes the test cases generation process which, in
turn, answers to question Q1 and is composed of:

e [nput. It offers the information needed for the process of gener-
ating test cases. Its domain consists in a list of strings with the
needed artifacts.

e Format of the input. It determines how the input information must
be defined. Its domain consists in a string which describes this
format.

e Coverage criterion. It explains which is the testing technique used
for generating test cases and so on, when the generation process
is finished. This technique is highly based on the definition of
the input requirements, for example, if one functional require-

ment is defined as a state-chart, the coverage criterion may be
covering all states or all transitions, but, if the functional require-
ment is defined as natural text, the coverage criterion may be
encompassing all the possible scenarios.

e Notation. It analyzes the format used during the generation pro-
cess such as state-machines or UML activity diagrams.

e Systematization degree. It measures the degree of formalism when
defining the transformation process. Thus, a high systematization
degree will allow the process to be applied as appeared in the doc-
umentation. However, a medium and, even, a low automation
degree will imply that additional support and human personal
decisions are needed in the process. Systematization degree also
affects the repeatability of the process. A low degree implies arel-
evant human support. For this reason, two different persons may
obtain different results from the same functional requirement.

e Test values definition. It describes if the information required for
the test case is widely indicated by the approach.

The second group of indicators oriented to answer question
Q2 is Tool. The Tool field group attributes indicate the degree of
tool development to support each approach. For this reason, these
attributes have only been evaluated in the approaches which cite
or define a tool. They are as follows:

e Tool name. It describes the name of the tool and is a free field.

e Licenses. It puts forward information about tool licenses policies.

¢ Availability. It indicates the possibility of obtaining a copy of the
tool from either the Web or the author.

* Automation degree. It measures the part of the process that has
been implemented in the tool. That is, if the whole process has
been implemented in the supporting tool or only a piece of the
process is executed automatically.

e Environment. It describes the execution environment of the tool:
operative system, libraries, etc.

Attributes grouped in Test Case describe the results obtained
after applying the generation process. They try to answer Q3 and
consist of the following:

e Amount of test cases generated. It offers a reference to the amount
of test cases generated by the approach, depending on the used
technique.

e Format of test cases generated. It indicates how the test cases are
defined.

e Benefits. It studies the advantages detected in the generation pro-
cess according to our own experience.

e Problems. It describes the most important disadvantages detected
in our evaluation.

Finally, attributes for the element Documentation, which
answers to question Q4, describe the documentation found about
every approach. They are as follows:

e References to projects. It indicates if the documentation includes
either references to real projects or empirical experiences, in
cases where the approach was used.

e Format. It describes the format of the available documentation for
the approach.

e Size. It analyzes the amount of documentation measured by the
number of pages about the approach.

e References. It lists the most relevant references about each
approach.

As it was the aim of this section, with this pattern we offer a
homogeneous way to describe the approaches of study. The evalu-
ation of these four elements and their specific attributes offer a wide

Table 3
Characterization Schema for the Approach “Software Requirements and Acceptance
Testing”.

Attributes Values

Inputs
Format of the inputs

Functional requirements
Scenario tree (as described in Hsia
(1994))

Coverage criterion State coverage in a state-machine

Notation Scenario tree and state-machines, both
with their own notation described in
the references

Systematization degree High

Test values definition No

Tool name Unknown

Amount of test cases generated Proportional to the number of states in
the state-machine

Format of test cases generated Transitions in the state-machine

Benefits None in particular or none
specifically
Problems No reference to real projects
This approach uses its own notations
instead of standard (or widely used)
notations
No reference about automation
issues
References to projects No
Format Paper
Size 2 papers, 53 total pages
References (Hsia, 1994; Hsia, 1997)

vision of each approach, essential for the conclusions presented at
the end of the paper.

4. Characterization of approaches

Based on the characterization schema presented in Table 2, this
section provides an instance of this schema for each approach num-
bered in Table 1. At the same time, each approach is presented
with its most relevant references and a global description which is
completed with its characterization in the common schema.

Nevertheless, a set of approaches of study numbered in Table 1
is not characterized in detail in this section, either because they do
not include any new process or idea comparing them with the set of
approaches characterized in next paragraphs or because they are
not completely focused on the line of the paper. They are briefly
presented at the end of this section.

4.1. Software requirements and acceptance testing

The approach for Software Requirements and Acceptance Test-
ing, presented in Hsia (1994, 1997), focuses on the generation of
acceptance test cases.

However, the scope of this acceptance test case is the same
than the scope of functional system test case defined in previous
sections, thus it was included in the survey.

The approach is divided into two parts: the first one describes
a requirement elicitation process, mainly focused on functional
requirements elicitation, with a specific model introduced by the
approach based on Scenario tree. They are the input for the sec-
ond part which describes the generation of test cases from these
requirements. Table 3 shows the characterization schema for this
approach.

4.2. Testing object-oriented systems
The approach presented in Binder (1999) adapts the Category-

Partition Method (Ostrand and Balcer, 1988) to a use case in natural
language context. The starting point is the group of functional

Table 4

Characterization Schema for the approach “Testing Object-Oriented Systems”.
Attributes Values
Inputs Functional requirement

Format of the inputs

Coverage criterion

Notation
Systematization degree
Test values definition

Tool name

Amount of test cases generated
Format of test cases generated

Templates (the structure of the
template is not defined in the
approach)

All combinations for the operational
variables defined

Tabular text

Low

Yes

Unknown

Satisfactions of a coverage degree
Description of the values for

operational variables

This approach offers a clear
reference of the starting date of the
testing process

This approach includes a reference to
the IEEE982.1 standard as a way of
measuring the coverage of the
generated test cases

The approach describes which
information must appear in an
extended requirement, although it
does not describe any template for the
requirements

The approach is fully based on
natural language, what makes its
automation highly difficult

The approach does not include
references to real applications

Benefits

Problems

References to projects No

Format Book

Size 9 pages
References Binder (1999)

requirements written in natural language extended with oper-
ational variables. In this approach, an operational variable is a
synonym of a category. For this reason, an operational variable is
a variable factor whose value determines which scenario of a use
case will be exercised in each moment. For example, if there is a use
case with two scenarios for valid and invalid data, it is represented
as an operational variable. At the end of the process, a table with
all test cases for testing and operational variables is obtained.

Table 4 represents the characterization schema for this
approach.

4.3. Automated test case generation from dynamic models

This approach, previously explained in Frohlich and Link (1999,
2000), is divided into two blocks:

a. The first block describes how to translate a functional require-
ment in natural language into a state-chart diagram.

b. The second block describes how to generate a set of functional
test cases from that state-chart diagram.

This second block is based on the language for problems plan-
ning called STRIPS (Fikes and Nilsson, 1971). The state-chart is
translated into STRIPS operations, which change in the state of the
system, and test cases are automatically generated from a plan-
ning tool, which supports STRIPS language. Table 5 displays the
characterization schema for this approach.

Table 5
Characterization Schema for the approach “Automated Test Case Generation from
Dynamic Models”.

Table 6
Characterization Schema for the approach “Testing from Use Cases using Path Anal-
ysis Techniques”.

Attributes

Values

Attributes

Values

Inputs
Format of the inputs

Coverage criterion
Notation
Systematizations degree
Test values definition

Tool name

Amount of test cases generated

Format of test cases generated

Benefits

Problems

Functional requirements

Template (this approach does not
include the structure of the template,
however, it suggests to follow the
structure introduced in Cockburn
(2000))

All states or all transitions

UML state diagram

High

No

Any tool supporting STRIPS language

It depends on the coverage criterion
chosen
Test cases are defined with pre and
post-conditions and sequence of
transitions

This process may be applied with the
help of any tool supporting STRIPS

It includes a guide on how to
measure the coverage of the selected
test cases

The generation of the activity
diagram is described in a very
systematic way

The approach indicates how to
manage related functional
requirements. Nevertheless, this fact
implies creating state machines with
states which are, in turn, other state
machines and this fact raises up the
complexity

Although it is a very systematic
process, the state-machine is not

Inputs
Format of the inputs

Coverage criterion
Notation
Systematization degree
Test values definition

Tool name

Amount of test cases generated
Format of test cases generated

Benefits

Problems

References to projects
Format

Size

References

Functional requirements

Template. This approach does not
indicate any format

All paths from a flow diagram

Own notation for flow diagrams

Low

No (it is cited in the approach, but it
does not describe how to manage tests
values)

Unknown

Number of different paths from the
flow diagram
Descriptions of the steps from the test
case

It offers a guide on how to measure
paths and how to detect low-value
path that may be omitted

Includes a step-by-step example

Many parts of the process are
performed using natural language,
what makes its automation highly
difficult

The approach does not indicate how
to generate test cases from
requirements that depend on other
requirements

It does not indicate how to select and
quantify the attributes used for
measuring the relevance of a path

No

Paper

1 Paper, 20 total pages
Naresh (2002)

automatically generated and must be
performed by hand

The translation from the state-chart
into STRIPs operation is not automatic.
It is not fully systematic due to the
approach that allows the user to
include supplementary operations,
such as the ones related to test values

References to projects No

Format Paper

Size 2 papers, 40 total pages
References Frohlich and Link (1999, 2000)

4.4. Testing from use cases using path analysis technique

The starting point of this approach, proposed by Naresh (2002),
is a functional requirement written in natural language and for-
matted in tabular text. However, this approach does not indicate
a template format or rules to define functional requirements,
although it uses an ad-hoc example. Inits development process, this
approach translates a functional requirement into a flow diagram
and performs a path coverage technique to generate test cases. The
result of this process is a table with all the possible paths of execu-
tion extracted from the diagram and expressed in natural language.
Table 6 shows the characterization schema for this approach.

4.5. Generating test cases from use cases

This process, proposed by Heumann (2002), begins with the def-
inition of functional requirements without defining any specific
model to describe them. Nonetheless, the approach lists the mini-
mum elements necessary for a functional requirement to perform
the generation process. The result of this approach is a table with
the system test cases represented as usage scenarios also in nat-

ural language. Table 7 shows the characterization schema for this
approach.

4.6. Quality web systems

As previous approaches, Dustin (2002) starts the process
with the requirement elicitation process that includes functional
requirements and some others like feasibility or accessibility
requirements. Due to the fact that this approach focuses on Web
systems, its process may be easily applied to other types of sys-
tems. As described in the approach, it sets out from the functional
requirements written in some specific templates. The results are
system functional test cases defined in natural language by using a
template also specified in the proposal. Table 8 presents its charac-
terization schema.

4.7. Scenario-based validation and test of software

SCENT (Ryser and Glinz, 2003) is a scenario-based approach to
elicit, validate and verify functional requirements. It also includes a
process for generating test cases from the scenarios. For this reason,
this approach may be divided into two blocks:

a. The first one describes how to create and define scenarios.
b. The second block explains how to generate test cases.

The generation approach starts from a set of use case scenarios
defined in natural language by using a specific template proposed in
the approach. The results are a set of test cases to validate scenarios
defined in tables and in natural language.

Table 7

Characterization Schema for the approach “Generating test cases from use cases”.

Table 9

Characterization Schema for the approach “SCENT”.

Attributes

Values

Attributes

Values

Inputs

Format of the inputs
Coverage criterion
Notation
Systematization degree
Test values definition

Tool name

Amount of test cases generated
Format of test cases generated

Benefits
Problems

References to projects
Format

Size

References

Functional requirement
Text template

All scenarios

Ad-Hoc

Low

No

Unknown

Number of scenarios from the
functional requirement
Textual descriptions of the steps of a
test case

None specifically

It is an approach designed to treat
the functional requirements
independently. It cannot offer
dependencies among functional
requirements

It is very difficult to automate
because it is based on natural language

To identify all its possible
combinations may result a hard task in
cases of complex functional
requirements

No

Paper

1 document, 10 pages
Heumann (2002)

This approach is illustrated with a real application in

Inputs

Format of the inputs
Coverage criterion
Notation

Systematization degree
Test values definition

Tool name

Amount of test cases generated
Format of test cases generated
Benefits

Problems

References to projects

Functional requirements defined as
scenarios according to Ryser and Glinz
(2003)

Scenarios templates

Each node and transition

State diagrams and dependency
diagrams with its own notation

Low

No

Unknown

Alternative states of a scenario
They are rows in a table

It offers practical examples and
enterprise applications

It enables the verification of the
behavior of a functional requirement
including its dependencies with other
functional requirements

Although the approach offers a
complete definition of scenarios, test
generation description is not
sufficiently detailed

SCENT defines some steps in a very
informal way without specific
guidelines to apply them. It is quite
negative for automatic generation

Although it can be automatic, several
elements depend on engineers’
experiences and decisions and require
a manual process

Yes. Itschner et al. (1998)

two real projects which are documented in Itschner et al.
(1998). Table 9 represents the characterization schema for this
approach.

Table 8
Characterization Schema for the approach “Quality Web Systems”.

Attributes

Values

Inputs
Format of the inputs

Coverage criterion

Notation
Systematization degree
Test values definition

Tool name

Amount of test cases generated

Format of test cases generated
Benefits

Problems

References to projects
Format

Size

References

Functional requirements

Own templates defined by the
approach

It is a heuristic criteria, an engineer
should value if there are enough
scenarios and test values

No

Medium

Yes

Unknown

It depends on the number of scenarios
and test values available
Test cases are defined as a text pattern

It proposes a specific template for
test cases

There is no direct correspondence
between a test pattern and a functional
requirement. The same test pattern can
include a test case referenced to
several use cases

The approach is based on its own
definition of functional requirements.
It can only be applied if requirements
are grouped according to the approach

No

Section in a book chapter
13 pages

Dustin (2002)

Format Paper

Size 2 documents, 123 pages and a specific
document with practical examples

References Ryser and Glinz (2003)

4.8. Requirement-based testing

This approach, whose characterization schema is presented in
Table 10, was proposed by Mogyorodi (2003) and it is also divided
into two parts with 12 steps. The first part (steps from 1 to 4)
starts with the formal revision of a set of requirements described
in natural language. This revision is executed by a set of experts
who check if requirements agree with general objectives. The sec-
ond one explains how to generate test cases; all requirements are
described with a cause-effect diagram and test cases are generated
from this diagram (steps 5 and 6). A detailed example is presented
in Mogyorodi (2001), although this paper does not offer a specific
description about the automation of the processes, which depends
on the expert’s experience. These diagrams are translated into a
decision table with different combinations which are mixed to
select each test case. Later on, from steps 7 to 12, they are reviewed
and checked with users. This approach neither defines nor cites any
format for the input functional requirements. It results in a set of
functional test cases in natural language. A test case is composed
of a set of causes and its subsequent effects.

This approach offers a tool named CaliberRBT, although it is not
available for downloaded.

4.9. Traceability from use cases to test cases

This approach, proposed by IBM, is not in fact an approach. This
paper presents a tool, named IBM Rational RequisitePro, which
defines a set of functional requirements, presented as use cases
and described by means of activity diagrams and natural languages.
This tool also defines test cases and offers a set of traceability matrix

Table 11
Characterization Schema for the approach “Traceability from Use Cases to Test

Table 10

Characterization Schema for the approach “Requirements-based testing”.
Attributes Values
Inputs Functional Requirements in natural

Format of the inputs
Coverage criterion

Notation
Systematization degree
Test values definition

Tool name

License
Availability
Automation degree
Environment

Amount of test cases generated
Format of test cases generated
Benefits

Problems

References to projects
Format

Size

References

language

No

Other (coverage of a cause/effect
diagram)

Cause/effect diagram

Medium

No

CaliberRBT
Proprietary
No

Partial
Unknown

Unknown
Natural language

It offers a support tool

This approach provides few details in
the generation process. Only 2 out of
the 12 steps of the process are related
with the generation

Its documentation is not specifically
explained and its steps are not
described in detail

There are not references to real
projects

There is no clear justification about
the use of cause/effect diagrams,
because decision tables offer the same
information

The approach does not consider how
dependencies among functional
requirements must be treated

No, but it includes a detailed example
Paper

3 work, 22 total pages

Mogyorodi (2001, 2002, 2003)

Format of the inputs
Coverage criterion
Notation
Systematization degree
Test values definition

Cases”.
Attributes Values
Inputs Functional Requirements in

RequisitePro

Scenarios in RequisitePro
Coverage of Scenarios
Activity diagrams

Low

Yes

Tool name RequisitePro
License Proprietary
Availability No
Automation degree Partial

Environment

Amount of test cases generated
Format of test cases generated
Benefits

Problems

Microsoft Windows Operating System

Depends on the tester selection
Scenarios in RequisitePro

It offers a support tool

It provides a commercial solution
used in companies

It is not an approach

It is completely closed to
RequisitePro

The test case generation depends on
the tester and it is completely manual

References to projects No

Format Paper and handbooks of the tool
Size A 21-page paper and handbooks
References Zielczynski (2006)

to connect each scenario of a functional requirement with its test
cases. Despite the fact that it is not an approach (Zielczynski, 2006),
it was included on the paper because it offers a detailed explana-
tion about the definition of different scenarios from a use case. It
also adds how to generate, manually, test cases from them. Table 11
presents its characterization schema.

4.10. RETNA: from requirements to testing in natural way

The approach “RETNA”, proposed in Boddu et al. (2004), is
divided into two blocks:

a. The first block describes a natural language analyzer. This ana-
lyzer is used for the study of functional requirements written in
a paragraph no longer than 399 characters. After the analysis, the
process continues with the elaboration of a state machine which
is obtained in MONA language.

b. The second block of the approach describes how to generate
functional test cases from the state machine. It introduces sev-
eral constraints with the natural language analyzer. In fact, no
tabular text or template may be used.

Table 12 presents its characterization schema.
4.11. A UML-based test generation and execution

Once again, this approach presented by Ruder (2004), starts with
functional requirements written in natural language. The result is

a set of functional test cases obtained from a coverage criterion
based on combinations that support boolean propositions defined

in Test Specification Language (TSL) (Balcer et al., 1990). TSL is a
language used for writing format test specifications of the functions
of a software system. This language defines the Category-Partition

Method in Ostrand’s paper.

Format of the inputs
Coverage criterion
Notation
Systematization degree
Test values definition

Tool name

License
Availability
Automation degree
Environment

Amount of test cases generated

Format of test cases generated
Benefits

Problems

References to projects
Format

Size

References

Table 12
Characterization Schema for the approach “RETNA”.
Attributes Values
Inputs Functional requirements described

with a single paragraph no longer than
399 characters

No

Scenarios (coverage of a state diagram)
State-diagram (MONA notation)

High

No

No (it is a set of scripts in different
languages that using different libraries
Proprietary

No

Total

Unknown

Coverage criteria up in the state
diagram
It is not detailed in the approach

The process to obtain a set of test
cases from functional requirements in
natural language is completely
automatic

Obtained results are not detailed
enough and there are no examples on
how state diagrams are obtained

It is based on a natural language
analyzer, thus, it can only be used with
requirements written in English

No

Paper

9 pages

Boddu et al. (2004)

Table 13
Characterization Schema for the approach “A UML-based test generation and
execution”.

Table 14
Characterization Schema for the approach “An automatic tool for generation test
cases from the system’s requirements”.

Attributes

Values

Attributes

Values

Inputs
Format of the inputs

Coverage criterion

Notation

Systematization degree
Test values definition

Tool name

License
Availability
Automation degree
Environment

Amount of test cases generated

Requirements written in natural
language

Functional requirements with tabular
structure

Other (combination that support
boolean propositions defined by TSL
Language)

Activity diagrams described with
stereotypes, categories and partitions
Medium

Yes

TDE-UML
Proprietary
No
Medium
Unknown

Depends on different alternatives and

Inputs

Format of the inputs
Coverage criterion

Notation

Systematization degree
Test values definition

Tool name

License
Availability
Automation degree
Environment

Amount of test cases generated
Format of test cases generated

None. Requirements are defined with
the own tool

Not applicable

A combination of main steps and
alternative steps

UML functional requirements diagrams
like use cases, sequences diagrams and
tabular text

High

No

GenTCase

Unknown

No

Total

Microsoft Windows Operating System

Depends on alterative steps
Textual description of test steps

paths in the activity diagram
Paths and a set of partitions (they can
be defined with a set of test scripts)

The use of stereotypes permits to
add information to automate the test
generation process under UML rules

It groups two techniques to test
definition

It focuses on graphical interfaces.
Consequently, it does not permit test
generation for other kind of external
interfaces of a system, for example,
two systems communication

It does not describe the in-depth
process of building activity diagrams

It does not clarify whether each
functional requirement needs an
activity diagram or only one activity
diagram is required for the whole
system

We could not find an available
version of the tool to test it

Format of test cases generated

Benefits

Problems

References to projects No

Format Paper

Size 1 papers, 20 pages
References Ruder (2004)

The approach claims that these test cases may be executed in
tools that interact with graphical interfaces, which allows to auto-
mate test cases execution. They use a set of heterogeneous tools
and scripts ad-hoc that are not now available on the Web. Some of
them are: JTrek to test oracles definition, MONA languages and a
tool to translate formulae into state-machines.

Table 13 shows the characterization schema for this approach.

4.12. An automatic tool for generating test cases from the
system’s requirements

One of the most relevant aspects of this approach included
in Ibrahim et al. (2007), Ismail et al. (2007) is that it introduces
a tool, called GenTCase, for generating test cases automatically.
The process starts with the definition of use case diagram which
is supported by the tool. Every use case may be completed
with some event flow that contains a tabular description of
the steps of a use case in natural language, including precon-
ditions, post-conditions, alternative steps and a UML sequence
diagram. After the analysis of different paths, the generation
results in a text file with the generated test cases. Due to
the references found, the tool is described instead of the pro-
cess, thus it may be concluded that the process is the tool

Benefits A tool to support the process

Problems It does not offer a theoretical base,

the approach is the tool
It could be redundant because an

execution flow and a sequence diagram
have to be defined at the same time. In
references, the use of this sequence
diagram for test generation is not clear

References to projects No

Format 2 Papers

Size 20 Total pages

References Ibrahim et al. (2007), Ismail et al.
(2007)

in itself. Table 14 shows the characterization schema for this
approach.

4.13. Test cases generation from use cases

This approach represents in our study a general tendency to the
use of models in the test phase. This tendency, named model-based
testing (MBT) (Legeard and Model-based Testing:, 2010), has been
widely used in different areas of software testing. For instance,
the approach MODEST (Rutherford and Wolf, 2003) starts with a
domain model, described in XML, and generates a test code. Our
survey includes three approaches on MBT environment quite close
to the survey aims. Nevertheless, the only study in detail is the one
presented by Gutierrez et al.; the two left are described in the next
section.

Gutierrez et al.’s approach enriches the MBT with the use of
the model-driven paradigm for the systematic generation of test
cases from functional requirements represented as use cases. The
approach is based on the UML Testing profile for this aim and is
supported by a set of tools. The metamodels used are described in
Gutiérrez et al. (2008a), but transformations are not included in
edited papers, with the exception of a part of them that appears in
Gutiérrez etal.(2008b). However, the approachisincluded in a free-
available tool named NDT-Suite. NDT-Suite is a tool case designed
to support a methodology, named NDT (Navigational Development
Techniques) (Escalona and Aragén, 2008), which is led to Web Engi-
neering. This methodology is being widely used in real projects.
Besides, the approach presents an automatic generation of test
cases from use cases described by means of scenarios or activ-
ity diagrams. In www.iwt2.org a video with its use is available to
download. Table 15 introduces its characterization schema.

http://www.iwt2.org/

Table 15

Characterization Schema for the approach “Test cases generation from use cases”.

Attributes

Values

Inputs

Format of the inputs

Coverage criterion

Notation

Systematization degree
Test values definition

Tool name
License

Availability
Automation degree
Environment

Amount of test cases generated
Format of test cases generated

Requirements described either as a
specific linguistic pattern or an activity
diagram

It offers its own linguistic patterns or a
specific extension of UML activity
diagrams to describe functional
requirements

A combination of main steps and
alternative steps

UML functional requirements diagrams
like use cases, sequences diagrams and
tabular text

High

Yes

NDT-Suite

Free, although the Website defines the
profile over Enterprise Architect,
which is a non-free tool

Yes

Total

Microsoft Windows Operating System

Depends on alternative steps
Textual description of test steps or

graphical presentation as an UML
diagram

It is a tool to support the process

It is used by several companies

It is integrated in a framework for
the development of Web systems

It offers a large number of examples,
videos, etc

Transformations are not completely
published

Its documentation is mainly in
Spanish

Data to be put to the test must be
included manually

Benefits

Problems

References to projects Yes

Format 2 Papers and a Website to support
Size 12 Total pages

References Gutiérrez et al. (2008a,b)

4.14. Other related approaches

As introduced at the beginning, there are several approaches
in Table 1 that are not described in detail in previous sections. It
mainly happened for two reasons:a. On one hand, some approaches
are either quite similar to the newest one or they are extended by
the newest approaches. This is the case of the following three:

e First, the book Writing Effective Use Cases (Cockburn, 2000)
includes a chapter about generation of functional system test
cases from functional requirements. This chapter proposes iden-
tifying every possible scenario from the use case and using them
as test cases. This strategy is widely applied in the characterized
approaches (for example in Heumann (2002) and Naresh (2002))
and the inclusion of this approach does not offer any new visions
with regard to the newest one, which offers other new ideas apart
from the scenario identification.

e Second, the approach named in Table 1 as Test Cases Generation
from UML State Diagrams included in Kim et al. (1999) applied
ideas quite similar to other approaches in the survey. From state
diagrams, it generates a set of test cases that cover a set of paths
of the state diagram. There are some current approaches that also
offer this solution.

e Finally, the work by Wood and Reis (Use Cased derived Test Cases)
(Wood and Reis, 2002) also sets out the same strategy to gen-

erate test cases and, once again, it does not encompass more
information than other similar approaches.

b. On the other hand, another reason for not describing an approach
deeply is that it does not completely match with the aims of the
paper. Some of them are listed below:

e The Category-Partition Method (Ostrand and Balcer, 1988) does
not match with the aims of this paper, even though it was
included because several of the presented approaches (as it was
previously introduced in Section 4) use it for its generation meth-
ods.

e The next approach chronologically presented is TOTEM (Labiche
and Briand, 2002) which is organized into two parts:

a. The first part describes how to generate test cases with exercise
sequences of functional requirements by using parameters for
the functional requirements in a similar manner to Requirement
Based Contract.

b. The second part generates test cases for each functional require-
ment. However, this approach starts from UML sequence
diagrams instead of text templates.

e After TOTEM, the next approach is defined in Riebisch et al. (2002)
and Huebner et al. (2003) (Statistical Usage Testing Based on UML).
Both works describe a process to generate statistical test cases
from functional requirements defined as tabular text. Although
statistical test cases may also be included in a system test level,
they are different from functional test cases. The main objective
of a statistical test case is not to identify the right implemen-
tation of a functional requirement, but to verify the feasibility
defined in the requirements. The process begins with creating a
state-chart diagram annotating each transition with a percentage
that indicates the probability of execution of that transition. For
example, if an S state has two outcoming transitions, S1 with 30%
and S2 with 70%, this means that 3 out of 10 times that this state
is reached, the transition S1 will be fired, and 7 out of 10 times,
the transition S2 will be fired. Finally, test cases are defined with
random paths over the state machine. According to this represen-
tative example, if 100 test cases are randomly generated, about 30
of them should execute the transition S1 and 70 of them should
execute the transition S2 approximately.

e The approach Product Lines Use case Test Optimization (PLUTO),
proposed by (Bertolino and Gnesi, 2003) and (Hsia, 1994), sets out
a process to generate test cases for the functional requirements
of product lines. This approach starts with functional require-
ments for products lines as described in Bertolino (2002). The
notation for the functional requirements is the approach stated
in the book (Cockburn, 2000) plus a new element called variability
point, which describes the concrete characteristics of each prod-
uct in the family. The result of this approach is both, a set of test
cases common to all the products in the family and a different
set of test cases specific for each product in the family. These test
cases are described through templates in natural language and
defined within the approach.

PLUTO is another application of the Category-Partition Method,

similar to other characterized approaches like (Binder, 1999) in

Section 4.2. The main difference of PLUTO is that the categories

are the variability point of the product family.

e A quite younger approach considered in this list is Automatic Test
Generation: A Use Case Driven Approach, proposed by Nebut and
Fleurey (2003), Nebut et al. (2006). This approach is divided into
two parts:

1. The first one describes how to extend the UML use cases with
contracts which are defined in a logic propositional language

OHigh (5)
B Medium (3)

OLow (5)

Fig. 1. Systematization degree.

determined in the own approach. The language is used to define
preconditions, post-conditions and input parameters for the use
case.

2. The second part describes the way to generate test cases from the
extended UML use cases in an automatic way. Reference (Nebut
and Fleurey, 2003) describes the application of this approach
to product families and in Nebut et al. (2006) this approach is
extended to generate test cases based on the behavior of each
functional requirement.

It is similar to TOTEM because neither TOTEM nor Nebut’s
approach include objectives oriented to test cases generation from
functional requirements. Both generate test cases from correct exe-
cution sequences in use cases, and, even though both of them are
interesting, they are not close to the studied approaches.

e Another relevant approach within this group is REED (Oh et al.,
2008) which generates test cases from a single requirement. Nev-
ertheless, it is not included on the paper because, in fact, it is
not an approach, but a tool to represent requirements in a spe-
cific notation and generate test case. The tool is close to this own
representation and it does not focus on functional requirements.

In the environment of the model-driven testing, two approaches
were referenced in Fig. 1, but they are not included in the paper
either:

e The first one, by Pérez et al. (2009), is not widely described
because it completely focuses on product lines. It uses the model-
driven paradigm for the systematic generation of test cases in
product lines described with a dynamic model. Despite the fact
that some ideas of the approach, like the systematic generation
of test cases, are closely linked to the final goal of this paper, it is
not focused on functional requirements.

e The second one, by Robles et al. (2009), is a model-driven
approach that begins with a set of requirements, described by
means of some mockups, generates user interfaces from them
and, simultaneously, a set of tests to prove them. The approach
uses XML to describe the system.

The use of the model-driven engineering in test generation is a
new tendency that is solving the automatic, or, at least, systematic
generation of test cases, as it is presented in final conclusions.

5. Analysis

With the previous overview of the state of art and with the
definition of the characterization schema for each approach, this
section points out the level of maturity in the generation of system
test cases from functional requirements.

5.1. Test generation strategy
Afirst aspect to be taken into consideration to group approaches

that may be extracted from the existing ones is the test generation
strategy. There are two clear strategies: scenario analysis and test

Table 16
Test generation strategy in each approach.

Approach Category- Scenario
Partition Analysis
method

Software Requirements and 1

Acceptance Testing (1997)

Testing Object-Oriented Systems 1

(1999)

Automated Test Case Generation from 1

Dynamic Models (2000)

Testing From Use Cases Using Path 1

Analysis Technique (2002)

Generating Test Cases From Use Cases 1

(2002)

Quality Web Systems (2002) 1

SCENT (2003) 1

Requirement Based Testing (2003) 1

Traceability from Use Case to Test 1

Cases (2003)

RETNA (2004) 1

A UML Based Test Generation and 1 1

Execution (2004)

An Automatic Tool for Generating Test 1

Cases from the System’s Requirements

(2007)

Test Cases Generation from Use Cases 1

(2007)

Total 12 2

value analysis. With a total of 13 characterized approaches, 11 of
them work with test value strategy, mainly based on the Category-
Partition method. There is only 1 that is dealing with scenario
analysis, and another one that supports both strategies. Table 16
provides that information.

As observed in the table, most of the approaches work with the
identification of usage scenarios from a functional requirement.
This identification may be performed either directly over the func-
tional requirement or by representing the functional requirement
on a diagram (for example a state-chart diagram) firstly and, then,
by using a coverage criterion over the diagram, like all states, all
transitions, etc. There are few of them that use the analysis of test
cases (based on the Category-Partition method, aforementioned).
Only one of the approaches (A UML Based test generation and Exe-
cution) uses both strategies.

5.2. The grade of systematization

Another relevant attribute is the systematization degree of the
approaches. Fig. 1 shows an abstract of the automation degree.

Functional requirements in natural languages are generic and
informal artifacts. However, Fig. 1 confirms the possibility of devel-
oping a systematic and precise set of steps or tasks to generate
functional test cases. Specifically, five out of all the analyzed
approaches have become highly systematized. It may also be rel-
evant when comparing the degree of systematization with the
existence of a supporting tool for the approaches analyzed. Table 17
enumerates a list of the systematization degree and the inclu-
sion of a tool obtained from these fields in the characterization
schema.

As can be concluded, columns 2 and 3 are a mismatch within
Table 17. Some of the approaches with a high degree of systemati-
zation do not offer a tool support. They are analyzed with the next
factor.

It is important to stick out the lack of free and wide availability
of the supporting tools in general in the approaches, as it can be
deduced from their characterization tables. As aforementioned in
Section 5.3, this tendency of changing approaches oriented to MBT
was based on UML profiles. The use of UML-based tool is opening

Table 17
Systematization degree and tools.

Table 19
Notation used for formal models in requirements.

Approach Systematization Tool Approach Notation

Software Requirements and High No Software Requirements and Acceptance Tree scenarios
Acceptance Testing Testing

Testing Object-Oriented Systems Low No Automated Test Case Generation from State diagrams
Automated Test Case Generation from High Yes (Partial) Dynamic Models

Dynamic Models Testing From Use Cases Using Path Analysis Execution flow diagrams
Testing From Use Cases Using Path Low No Technique

Analysis Technique SCENT State diagrams
Generating Test Cases From Use Cases Low No Requirement Based Testing Cause/Effect diagrams
Quality Web Systems Medium No Traceability from Use Case to Test Cases Activity diagrams
SCENT Low No RETNA State diagrams
Requirement Based Testing Medium Yes (partial) A UML Based Test Generation and Execution Activity diagrams
Traceability from Use Case to Test Low Yes (partial) An Automatic Tool for Generating Test Cases Sequence diagrams
Cases from the System'’s Requirements

RETNA High Yes (total) Test Cases Generation from Use Cases Activity diagrams

A UML Based Test Generation and Medium Yes (partial)

Execution

An Automatic Tool for Generating Test High Yes (total) use different notations systems among them and only one, out of
Cases from the System’s Requirements h

Test Cases Generation from Use Cases High Yes (total) these three, uses a notation defined by UML.

a new path to offer suitable tools in order to support test cases
definition and connection.

5.3. Functional requirements models

Closer to the systematization degree is the fact that some
approaches work directly with functional requirement defined
as use cases in natural language, but other approaches build a
more formal model, as a first phase for generating functional test
cases. A brief list on these approaches may be found in Table 18.
The first row presents approaches that deal with requirements
in natural languages and the second one includes approaches
that generate an intermediate model. This information is directly
obtained from “format of the inputs” in the characterization
schema.

Looking at the previous table, it may be concluded that a high
number of approaches develop a model instead of directly working
with the functional requirements in natural language. Even more,
all the approaches which have a high degree of systematization
(Fig. 1) include a formalization of the requirements into some kind
of more formal model. As it has been checked in characterization
schemas, the step for generating a more formal model from a func-
tional requirement in natural text may also be described with a high
degree of systematization. As a complement to Table 18, Table 19
lists the notations and languages used in the analyzed approaches
for generating a more formal representation of the requirements.
This detail is not implicitly included in the characterization schema
but it is mentioned in the description of each approach in the sur-
vey.

It may be observed that there is a wide range of notations. How-
ever, state-machines, activity diagrams and flow diagrams are quite
similar. In fact, the whole UML introduces the activity diagram as a
specialization of a state-chart and they both share many elements
and semantics. Thus, the state diagram notation is then the nota-
tion frequently used, since seven of the approaches make use of it
or of a similar one, for that matter. The three remaining approaches

Table 18
The use of formal models for requirements in test generation process.
Totals
Approaches that deal with requirements without an 3
intermediate formal model
Approaches that deal with requirements of an 10

intermediate formal model

The tendency to the use of UML diagrams, like activity diagrams,
is increasing in the last years, due, mainly, to the use of model-
driven paradigm. The possibility of defining profiles, like the UML-
Testing profile, is making the new approach use formal extensions
of UML to define their solutions. For instance, the last approach
showninTable 19, defines an extension of UMLincluded in an UML-
based tool to support the development. Besides, the use of standard
models, like UML activity diagrams, assures that the approach will
be more understandable for the development team because they
are well-known by the software community.

5.4. Notation for functional requirements inputs and test cases

Another relevant aspect to consider is the disparity at the time
of defining the functional requirements which are the source for
the generation process. Table 20 shows the analyzed approaches
and the notation used for the input requirements.

If the inputs (functional requirements) have a wide notation
variety in the analyzed approaches, the outputs (functional test
cases) are also defined in a wide range of formats and notations.
Table 21 represents a brief summary on how each approach defines
a functional system test case.

With regard to Table 21, it can be concluded that few of the
approaches define a test case as a set of test steps, plus their input
values and a set of constraints to validate the test case. This means
that an additional work to include all lost information into the test
cases is needed.

6. Conclusions and future work

This paper offers an overview about the situation of test cases
generation from functional requirements. It starts with the pro-
cedure defined by SEG (2007) to follow a defined process when
facing up this overview. This paper uses the terminology proposed
by Brereton et al. (2007) in order to specify the strategy used in the
development of the survey.

The research begins with the analysis of previous surveys and
comparatives studies as well as the definition of the scope of the
work.

After selecting the approaches of study, Table 2 represents
a characterization common schema to describe each of them.
The overview is presented with a briefly introduction of every
approaches and their characterization schema samples. Section 5
puts forward a set of comparative analysis with relevant conclu-
sions about the present day situation.

A set of conclusions of this survey may be summarized from the
previous works analyzed in Section 2.

Table 20
Notation for functional requirements input.

Approach Tree Scenarios Test patterns

Text without structure

Without specific notation

With a specific notation Implemented on the tool

Software Requirements and X

Acceptance Testing

Testing Object-Oriented Systems X
Automated Test Case Generation X
from Dynamic Models

Testing From Use Cases by Using X
Path Analysis Technique

Generating Test Cases From Use X
Cases

Quality Web Systems

SCENT

Requirement Based Testing

Traceability from Use Case to Test

Cases

RETNA

A UML Based Test Generation and X
Execution

An Automatic Tool for Generating

Test Cases from the System’s

Requirements

Test Cases Generation from Use

Cases

First, the conclusions from Denger and Medina’s survey indicate
that the authors of the approaches and processes do not follow any
standards for the definition of templates (for functional require-
ments). On the contrary, each approach uses its own templates and
format. Therefore, this conclusion is still valid, as it was mentioned
in the previous section.

Another idea from Denger and Medina’s report is that none of
the approaches uses path analysis techniques and, as a previous
step, the approaches build a more formal representation of the
functional requirements. Once again, this conclusion is still appro-
priate.

According to Gutiérrez et al. (2006) one of the conclusions
from the previous survey is that many of the existing approaches
have to formalize the requirements as a first step to generate
functional test cases. Again, this conclusion is still valid. In fact,
this is a mandatory step in the approaches which offer a high
degree of systematization and have supporting tools. However,
it can be pointed out that some approaches, as it is presented in
Gutiérrez et al. (2008b) offer a systematic way or even automatic
ways (for instance with NDT-Suite) to generate more formal mod-
els to automate the process. In this case, this is possible because,
although requirements are described in natural language, they are
metamodels and some transformations from this description per-
mit to translate requirements in natural language into activity
diagrams.

Table 21
Notation for test case.

As a conclusion, we can observe that three know surveys
have similar results. This state of the art indicates that, there
is not a definitive approach that closes the problem of generat-
ing functional text cases automatically in a satisfactory way. In
fact, it implies a lack of evolution among the existing approaches.
Thus, there are some aspects that may be improved, like the
use of standards for the inputs and outputs, the application of
the standards and more formal methods to describe the pro-
cess itself, the need for empirical results, the measurement
of the possible automation and a profitable tool supporting,
etc.

One of the most recent ideas carried out in the last years by
several authors is the use of the model-driven paradigm (MDE) in
test generation (Brambilla et al., 2009; Hartman and Nagin, 2003).
MDE is a new paradigm that focuses on defining a set of metamod-
els, which are instanced in the development process, and a set of
transformations among them. Consequently, in the last year, some
related works are emerging in this line. Thus, MDT (Model-Driven
Testing) is providing important results in the research (Heckel and
Lohmann, 2003; Kuliamin et al., 2003).

When reviewing the literature about MDT as a solution for our
research question, we found a high number of papers, nevertheless
only one is included with a detailed description and two others
are briefly mentioned. The reason is that, despite the high number
of MDT approaches, they do not match with the aim of the sur-

Approach

Test case notation

Software Requirements and Acceptance Testing
Testing Object-Oriented Systems

Automated Test Case Generation from Dynamic Models
Testing From Use Cases Using Path Analysis Technique
Generating Test Cases From Use Cases

Quality Web Systems

SCENT

Requirement Based Testing

Traceability from Use Case to Test Cases (2003)

RETNA

A UML Based Test Generation and Execution

An Automatic Tool for Generating Test Cases from the System'’s Requirements
Test Cases Generation from Use Cases

Path in a state diagram
Rows in a table (a set of values in operational variables)
Transition Sequence
Flow diagram paths

Text patterns

Text patterns

Path in a state diagram
Natural language

Path in a state diagram
Path in a state diagram
Path in a activity diagram
Text patterns

Text patterns

vey. Thus, we only include several general references in this area
because they are offering quite suitable results.

In fact, an added conclusion of the survey that guides to future
works is the use of this paradigm when improving test phase. As
commented in Section 5.3, this paradigm could also be useful in the
coverage of other aspect that need to be improved; the definition
of tools in order to support the application of each method.

Finally, we highly recommend as a basic need for future works
the real application of the approaches. There are very few practical
references, thus, a final feeling could be that, in the research area,
we are promoting new advances in the improvement of testing
but, are we sure that they are useful in the enterprise environ-
ment? If we try to apply some of the approaches presented in this
paper, mainly those that do not offer any tool support, we could
conclude that it is impossible when we have a high number of
functional requirements, which is the most common situation in
the enterprise environment.

Research groups must direct their approach to the enterprise in
order to offer a suitable answer to test software.

Acknowledgments

This research has been supported by the project QSimTest
(TIN2007-67843-C06.03) and by the Tempros project (TIN2010-
20057-C03-02) of the Ministry of Education and Science, Spain.

References

Balcer, M., Hasling, W., Ostrand, T., 1990. Automatic generation of test scripts from
formal test specifications. In: Proceedings of ACM SIGSOFT’89 - Third Sympo-
sium on Software Testing, Verification, and Analysis (TAVS-3),. ACM Press, pp.
257-271.

Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A., 2002. Use Case Description
of Requirements for Product Lines, REPL'02, Essen, Germany, Avaya Labs Tech.
Re ALR-2002-033.

Bertolino, A., Gnesi, S., 2003. Use Case-based Testing of Product Lines. ESEC/FSE’03,
Helsinki, Finland.

Bertolino, A., Gnesi, S., 2004. PLUTO: A Test Methodology for Product Families. Lec-
ture Notes in Computer Science, vol. 3014. Springer-Verlag, Heidelberg, pp.
181-197.

Binder, R.V., 1999. Testing Object-Oriented Systems. Addison Wesley.

Boddu, R,, Guo, L., Mukhopadhyay, S., 2004. RETNA: from requirements to testing in
natural way. In: 12th [EEE International Requirements Engineering RE'04.

Brambilla, M., Fraternali, P., Tisi, M., 2009. A transformation framework to bridge
domain specific languages to MDA. In: 4th Workshop on Model-Driven Web
Engineering. LNCS, vol. 5421 , France, pp. 167-181.

Brereton, P. Kitchenham, B.A., Budgen, D., Turner, M., Khalil, 2007. Lessons
from applying the systematic literature review process within the soft-
ware engineering domain. The Journal of System and Software 80,
271-583.

Cockburn, A., 2000. Writing Effective Use Cases, 1st ed. Addison-Wesley, USA.

Denger, C., Medina, M., 2003. Test Case Derived from Requirement Specifications.
Fraunhofer IESE Report. Germany.

Dustin, E., 2002. Quality Web Systems, 1st ed. Addison-Wesley, USA.

Escalona, M.J., Aragén, G., 2008. NDT: a model-driven approach for web
requirements. IEEE Transactions on Software Engineering 34 (3),
370-390.

Fikes, R.E., Nilsson, N.J., 1971. STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2.

Frohlich, P., Link, J., 1999. Modelling dynamic behaviour based on use cases. In:
Proceedings of Quality Week Europe , Brussels.

Frohlich, P., Link, J., 2000. Automated test case generation from dynamic models.
ECOOP, 472-491, 2000.

Ryser, J., Glinz, M., 1999. A Practical Approach to Validating and Testing Software
Systems Using Scenarios Quality. Week Europe QWE’99 in Brussels. Institut fiir
Informatik, Universitat Ziirich.

Gutiérrez,].J., Escalona, M.J., Mejias, M., Torres, J., 2006. Generation of test cases
from functional requirements A survey. In: 4th Workshop on System Testing
and Validation , Potsdam, Germany.

Gutiérrez,].J., Escalona, M.J., Mejias, M., Torres,]., Torres-Zenteno, A.H., 2008a. A Case
Study for generating test cases from use cases. In: Proceedings of RCIS , Morocco,
pp. 223-228.

Gutiérrez, J.J., Nebut, C., Escalona, M.]J., Mejias, M., Ramos, 1., 2008b. Visualization of
use cases through automatically generated activity diagrams. In: ACM/IEEE 11th
International Conference on Model-Driven Engineering Languages and Systems.
LNCS, vol. 5301, pp. 83-96.

Hartman, A., Nagin, K., 2003. Model driven testing — AGEDIS architecture interfaces
and tools. In: 1st European Conference on Model Driven Software Engineering ,
Nuremberg, Germany, December, pp. 1-11.

Heckel, R., Lohmann, M., 2003. Towards model-driven testing. Electronic Notes in
Theoretical Computer Science 82 (6), 1-11.

Heumann, J., 2002. Generating test cases from use cases. Journal of Software Testing
Professionals.

Huebner, M., Philippow, L., Riebisch, M., 2003. Statistical usage testing based on
UML. In: Proc. of the 7th World Multi Conference on Systemics, Cybernetics and
Informatics , pp. 290-295.

Hsia, P., 1994. A usage-model based approach to test the Therac-25. Safety and
Reliability in Emerging Control Technologies. IFAC Workshop. Florida, USA, pp.
55-63.

Hsia, P., 1997. Software requirements and acceptance testing. Annals of software
Engineering, 291-317.

IEEE 829-2008, 2008. IEEE Standard for Software and System Test Documentation.

Ibrahim, R., Saringat, M., Ibrahim, Z., Ismail, N.N., 2007. An automatic tool for gen-
erating test cases from the system’s requirements. In: IEEE 7th International
Conference on Computer and Information Technology CIT2007 , Fukushima,
Japan.

Ismail, N., Ibrahim, R., Ibrahim, N., 2007. Automatic generation of test cases from
use-case diagram. In: International Conference on Electrical Engineering and
Informatics. Institut Teknologi, Bandung, Indonesia, June 17-19.

Itschner, R., Pommerell, C., Rutishauser, M., 1998. GLAS.S. Remote monitoring
of embedded systems in power engineering. IEEE Internet Computing 2 (3),
46-52.

Insfran, E., Pastor, O., Wieringa, R., 2002. Requirements engineering-based concep-
tual modelling. Requirements Engineering Journal Vol7 (1.).

Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., Cha, S.D., 1999. Test cases generation from
UML state diagrams. IEEE Proceedings-Software 146 (4), 187-192.

Kuliamin, V.V., Petrenko, AK., Kossatchev, A.S., Bourdonov, L.B., 2003. UniTesK:
Model based testing in industrial practice. In: 1st European Conference on
Model Driven Software Engineering , Nuremberg, Germany, December, pp.
55-63.

Labiche, Y. Briand, L.C., 2002. A UML-based approach to system test-
ing. Journal of Software and Systems Modelling (SoSyM) 1 (1),
10-42.

Legeard, B., 2010. Model-based testing: next generation functional software test-
ing. In: Dagstuhl Seminar Proceedings 10111. Practical Software Testing: Tool
Automation and Human Factors.

Liy, S., Yuting, C., 2008. A relation-based method combining functional and struc-
tural testing for test case generation. Journal of Systems and Software 81 (2),
234-248.

Mogyorodi, G., 2001. Requirements-based testing: an overview. In: 39th Interna-
tional Conference and Exhibition on Technology of Object-Oriented Languages
and Systems (TOOLS39), p. 0286.

Mogyorodi, G., 2002. Requirements-based testing: ambiguity reviews. Journal of
Software Testing Professionals, 21-24.

Mogyorodi, G.,2003. What is requirements-based testing? In: 15th Annual Software
Technology Conference, Salt Lake City, USA, April 28-May 1.

Naresh, A., 2002. Testing from use cases using path analysis technique. In: Interna-
tional Conference On Software Testing Analysis & Review.

Nebut, C., Fleurey, 2003. Requirements by contract allow automated system testing.
In: Proceedings of the 14th International Symposium of Software Reliability
Engineering (ISSRE’03), Denver, Colorado, EEUU.

Nebut, C., Fleury, F., Le Traon, Y., Jézéquel,].M., 2006. Automatic test generation: a
use case driven approach. IEEE Transactions on Software Engineering 32 (3).

NDT-Suite, 2008. Available from: www.iwt2.org/ndt (Last visit 2/2011).

Oh,], Lee, H., Park, H., Kim,]., Choi, K., Jung, K., 2008. A single requirement modelling
with graphical language for embedded system. The KIPS Transactions: Part D
15-D (4), 505-512, 2008.

Ostrand, T.J., Balcer, M.J., 1988. Category-partition method. Communications of the
ACM, 676-686.

Pérez, B., Polo, M., Piatini, M., 2009. Software product line testing - a systematic
review. In: 4th International Conference on Software and Data Technologies
(ICSoft 2009).

Riebisch, M., Philippow, 1., Gotze, Marco, 2002. UML-based Statistical Test Case Gen-
eration. Net Object Days, Erfurt, Germany, October 7-10.

Robles, E., Grigera, J., Rossi, G., 2009. Bridging Test and model-driven approaches in
web engineering. In: 9th International Conference on Web Engineering. LNCS,
vol. 5648, pp. 130-150.

Ruder, A., 2004. UML-based test generation and execution. In: Riickblick Meeting ,
Berlin.

Rutherford, MJ., Wolf, AL, 2003. A case for test-code generation in model-
driven systems. In: Proceedings of the Second International Confer-
ence on Generative Programming and Component Engineering , pp.
377-396.

Ryser, J., Glinz, M., 2003. Scent: A Method Employing Scenarios to Systematically
Derive Test Cases for System Test. Technical Report 2000/03, Institut fiir Infor-
matik, Universitdt Ziirich.

SEG (Software Engineering Group), 2007. Guidelines for Performing Systematic Lit-
erature Reviews in Software Engineering Version 2.3. EBSE Technical Report.
EBSE-2007-01. School of Computer Science and Mathematics, Keel University
and Department of Computer Science, University of Durham, United Kingdom.

Stocks, P., Carrington, D., 1996. A framework for specification-based testing. IEEE
Transaction on Software Engineering 22 (11).

http://www.iwt2.org/ndt

TerMaat, P., 2001. Adventures in automated testing! The Software Testing and Qual-
ity Engineering Magazine, May/June.

Vegas, S., Juristo, N., Brasili, V.R., 2009. Maturing software engineering knowledge
through classifications: a case study on unit testing techniques. IEEE Transac-
tions on Software Engineering 35 (4), 551-565.

Wood, D., Reis,], 2002. Use Cased Derived Test Cases. StickyMind.
www.stickymind.com.

Zielczynski, P., 2006. Traceability from use cases to test cases. Available from:
www.ibm.com/developerworks/rational/library/04/r-3217 (Last visit 02/2011).

http://www.stickymind.com/
http://www.ibm.com/developerworks/rational/library/04/r-3217

	An overview on test generation from functional requirements
	1 Introduction
	2 Related work
	3 Planning and conducting the review
	3.1 A characterization schema

	4 Characterization of approaches
	4.1 Software requirements and acceptance testing
	4.2 Testing object-oriented systems
	4.3 Automated test case generation from dynamic models
	4.4 Testing from use cases using path analysis technique
	4.5 Generating test cases from use cases
	4.6 Quality web systems
	4.7 Scenario-based validation and test of software
	4.8 Requirement-based testing
	4.9 Traceability from use cases to test cases
	4.10 RETNA: from requirements to testing in natural way
	4.11 A UML-based test generation and execution
	4.12 An automatic tool for generating test cases from the system's requirements
	4.13 Test cases generation from use cases
	4.14 Other related approaches

	5 Analysis
	5.1 Test generation strategy
	5.2 The grade of systematization
	5.3 Functional requirements models
	5.4 Notation for functional requirements inputs and test cases

	6 Conclusions and future work
	Acknowledgments
	References

