Maximum Weight Triangulation of A Special Convex Polygon ${ }^{1}$

Jianbo Qian ${ }^{2}$ and Cao An Wang ${ }^{3}$.

Abstract

In this paper, we investigate the maximum weight triangulation of a special convex polygon, called 'semi-circled convex polygon'. We prove that the maximum weight triangulation of such a polygon can be found in $O\left(n^{2}\right)$ time.

1 Introduction

Triangulation of a set of points is a fundamental structure in computational geometry. Among different triangulations, the minimum weight triangulation (MWT for short) of a set of points in the plane attracts special attention $[1,2,3]$. The construction of the $M W T$ of a point set is still an outstanding open problem. When the given point set is the set of vertices of a convex polygon (so-called convex point set), then the corresponding $M W T$ can be found in $O\left(n^{3}\right)$ time by dynamic programming [1,2].

On the contrast, there is not much research done on maximum weight triangulation (MAT for short). From the theoretical viewpoint, the maximum weight triangulation problem and the minimum weight triangulation problem attracts equally interest, and one seems not to be easier than the other. The study of maximum weight triangulation will help us to understand the nature of optimal triangulations.

The first work in the MAT [4] showed that if an n-sided polygon P inscribed on a circle, then $\operatorname{MAT}(P)$ can be found in $O\left(n^{2}\right)$ time.

In this paper, we study the $M A T$ of the following special convex polygon: let P be a convex n-sided polygon such that the entire polygon P is contained inside the circle with an edge of P as diameter. We call such a polygon as semi-circled. We propose an $O\left(n^{2}\right)$ algorithm for computing the $M A T(P)$ of a semi-circled convex polygon P. Recall that a straightforward dynamic programming method will take $O\left(n^{3}\right)$ to find $\operatorname{MAT}(P)$.

[^0]
2 Preliminaries

Let S be a set of points in the plane. A triangulation of S, denoted by $T(S)$, is a maximal set of non-crossing line segments with their endpoints in S. It follows that the interior of the convex hull of S is partitioned into non-overlapping triangles. The weight of a triangulation $T(S)$ is given by

$$
\omega(T(S))=\sum_{\overline{s_{i} s_{j} \epsilon T(S)}} \omega(\overline{i, j}),
$$

where $\omega(\overline{i, j})$ is the Euclidean length of line segment $\overline{s_{i} s_{j}}$.
A maximum weight triangulation of $S(M A T(S))$ is defined as for all possible $T(S)$, $\omega(M A T(S))=\max \{\omega(T(S))\}$.

Figure 1: An illustration of semi-circled convex polygon.
Let P be a convex polygon (whose vertices form a convex point set) and $T(P)$ be its triangulation. A semi-circled convex polygon P is a special convex polygon such that its longest edge is the diameter and all the edges of P lie inside the semi-circle with this longest edge as diameter. (Refer to Figure 1).

The following two properties are easy to verify for a semi-circled convex polygon $P=\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{n-1}, p_{n}\right)$.
Property 1: Let $\overline{p_{i} p_{k}}$ for $1 \leq i<k \leq n$ be an edge in P. Then the area bounded by $\overline{p_{i} p_{k}}$ and chain $\left(p_{i}, \ldots, p_{k}\right)$ is a semi-circled convex polygon.
Property 2: In P, edge $\overline{p_{i} p_{j}}$ for $1 \leq i<j<n$ or $1<i<j \leq n$ is shorter than $\overline{p_{1} p_{n}}$.

3 Finding an MAT of a semi-circled convex polygon

Lemma 1 Let $P=\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{n-1}, p_{n}\right)$ be a semi-circled convex polygon. Then, one of the edges: $\overline{p_{1} p_{n-1}}$ and $\overline{p_{n} p_{2}}$ must belong to its maximum weight triangulation $M A T(P)$.
proof: Suppose for contradiction that none of the two extreme edges: $\overline{p_{1} p_{n-1}}$ and $\overline{p_{n} p_{2}}$ belongs to $\operatorname{MAT}(P)$. Then, there must exist a vertex p_{k} for $2<k<n-1$ such that both $\overline{p_{1} p_{k}}$ and $\overline{p_{n} p_{k}}$ belong to $M A T(P)$. Without loss of generality, let p_{k} lie on one side

Figure 2: For the proof of Lemma 1.
of the perpendicular bisector of edge $\overline{p_{1} p_{n}}$, say the lefthand side (if p_{k} is on the bisector, the following argument is still applicable), The two edges $\overline{p_{1} p_{k}}$ and $\overline{p_{n} p_{k}}$ partition P into three areas, denoted by R, L, and C. Both L and R are semi-circled convex polygons by Property 1. (Refer to part (a) of Figure 2.)

Let the edges of $\operatorname{MAT}(P)$ lying inside area L be $\left(e_{1}, e_{2}, \ldots, e_{k-3}\right)$ and let $E_{L}=$ $\left(e_{1}, e_{2}, \ldots, e_{k-3}, \overline{p_{1} p_{k}}\right)$. Let E_{L}^{*} denote the edges: $\left(\overline{p_{n} p_{2}}, \overline{p_{n} p_{3}}, \ldots, \overline{p_{n} p_{k-1}}\right)$. Then, there is a perfect matching between E_{L} and E_{L}^{*}. This is because E_{L} and E_{L}^{*} respectively triangulate the same area $L \cup C$, hence the number of internal edges of the two triangulations must be equal. Let us consider a pair in the matching $\left(e_{i}, \overline{p_{n} p_{j}}\right)$ for $1<i, j<k$. It is not hard to see that $\omega\left(e_{i}\right)<\omega(\overline{n, j})$ because any edge in E_{L} is shorter than $\overline{p_{1} p_{k}}$ by Property 2, any edge in E_{L}^{*} is longer than $\overline{p_{n} p_{k}}$, and $\overline{p_{n} p_{k}}$ is longer than $\overline{p_{1} p_{k}}$ (due to p_{k} lying on the lefthand side of the perpendicular bisector of $\left.\overline{p_{1} p_{n}}\right)$. Therefore, $\omega\left(E_{L}\right)$ is less than $\omega\left(E_{L}^{*}\right)$. Now, we shall construct a new triangulation, say $T(P)$, which consists of all the edges in $M A T(P)$ except replacing the edges of E_{L} by E_{L}^{*}. We have that $\omega(T(P))>\omega(M A T(P))$, which contradicts the $M A T(P)$ assumption. Then, such a p_{k} cannot exist and one of $\overline{p_{1} p_{n-1}}$ and $\overline{p_{n} p_{2}}$ must belong to $M A T(P)$.

By Lemma 1 and by Property 1, we have a recurence for the weight of a $\operatorname{MAT}(P)$. Let $\omega(i, j)$ denote the weight of the $\operatorname{MAT}\left(P_{i, j}\right)$ of a semi-circled convex polygon $P_{i, j}=$ $\left(p_{i}, p_{i+1}, \ldots, p_{j}\right)$. Let $\omega(\overline{i, j})$ denote the length of edge $\overline{p_{i} p_{j}}$.
$\omega(i, j)= \begin{cases}\omega(\overline{i, i+1}) & j=(i+1) \\ \max \{\omega(i, j-1)+\omega(\overline{j-1, j}), \omega(i+1, j)+\omega(\overline{i, i+1})\}+\omega(\overline{i, j}) & \text { otherwise }\end{cases}$
It is a straight-forward matter to design a dynamic programming algorithm for finding the $\operatorname{MAT}(P)$.

ALGORITHM MAT $-F I N D(P)$
Input: a semicircled convex n-sided polygon: $\left(p_{1}, \ldots, p_{n}\right)$.
Output: $\operatorname{MAT}(P)$.
Method:

1. for $i=1$ to $n-1$ do

$$
\omega(i, i+1)=\omega(\overline{i, i+1})
$$

2. for $l=2$ to $n-1$ do
3. for $i=1$ to $n-l$ do

$$
\begin{aligned}
\omega(i, i+l)= & \max \{\omega(i, i+l-1)+\omega(\overline{i+l-1, i+l}), \omega(i+1, i+l)+\omega(\overline{i, i+1})\} \\
& +\omega(\overline{i, i+l})
\end{aligned}
$$

4. Identify the edges of $M A T(P)$ by checking the ω 's.
5. end.

Since the loop indices i and l range roughly from 1 to n and each evaluation of $\omega(i, j)$ takes constant time, all $\omega(i, j)$ for $1 \leq i, j \leq n$ can be evaluated in $O\left(n^{2}\right)$ time. If we record these ω 's, we can find the edges in $M A T(P)$ by an extra $O(n)$ time to examine the record.

Therefore, we have the following theorem.

Theorem 1 The maximum weight triangulation of a semi-circled convex $n-$ gon P, $M A T(P)$, can be found in $O\left(n^{2}\right)$ time.

Proof: The correctness is due to Property 1. It is clear that the number of executions of Step 3 dominates the time complexity. The number of executions is $(n-3)+(n-$ 4) $+\ldots+2+1) \epsilon O\left(n^{2}\right)$.

4 Conclusion

In this paper, we proposed an $O\left(n^{2}\right)$ dynamic programming algorithm for constructing the $\operatorname{MAT}(P)$ of a semi-circled convex n-sided polygon.

It is still an open problem whether one can design an $o\left(n^{3}\right)$ algorithm for finding the $M A T(P)$ for a general convex n-sided polygon P.

References

[1] Gilbert P., New results on planar triangulations, Tech. Rep. ACT-15 (1979), Coord. Sci. Lab., University of Illinois at Urbana.
[2] Klincsek G., Minimal triangulations of polygonal domains, Annual Discrete Mathematics 9 (1980) pp. 121-123.
[3] Preparata F. and Shamos M., Computational Geometry (1985), Springer-Verlag.
[4] Wang C., Chin F., and Yang B., Maximum Weight triangulation and graph drawing, The Information Processing Letters, 70(1999) pp. 17-22.

[^0]: ${ }^{1}$ This work is supported by NSERC grant OPG0041629 and the National Natural Science Foundation of China under Grant No. 70221001.
 ${ }^{2}$ Institute of Applied Mathematics, Chinese Academy of Science, Beijing, China. (email: jbqian@mail.amss.ac.cn)
 ${ }^{3}$ Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5 (email: wang@garfield.cs.mun.ca)

