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Abstract 

 

Predictive model selection metrics are used to select models with the highest out-of-sample 

predictive power among a set of models. R
2
 and related metrics, which are heavily used in partial 

least squares path modeling, are often mistaken as predictive metrics. We introduce information 

theoretic model selection criteria that are designed for out-of-sample prediction and which do not 

require creating a holdout sample. Using a Monte Carlo study, we compare the performance of 

frequently used model evaluation criteria and information theoretic criteria in selecting the best 

predictive model under various conditions of sample size, effect size, loading patterns, and data 

distribution.  

 

Keywords: Partial Least Squares Path Modeling (PLS-PM), Structural Equation Modeling 
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1. Introduction 

 

As researchers our quest is to describe natural processes that interest us with fidelity and 

economy. We strive to create models that parsimoniously describe reality in the hope that they 

are generalizable across contexts. Several notions of generalizations exist; the first is statistical 

generalization, where the model estimated from the sample generalizes to the population from 

which the sample was drawn. In such a case, fitting the same model to a different sample from 

the same population should yield a similar model. A second type is scientific generalization, 

where the model estimated from the sample generalizes to other populations (e.g., to other 

contexts). A third type, which is the goal of this paper, is predictive generalization where the 

model estimated from the sample provides sufficiently accurate predictions for new records from 

that population (out-of-sample prediction). Using a model to generate out-of-sample predictions 

for new observations is both practically useful as well as essential for scientific model 

development. Predictive power is useful for assessing the relevance of models, for comparing 

competing theories, for developing new measures, and more (Shmueli and Koppius, 2011).  

In recent years, partial least squares path modeling (PLS-PM) has become increasingly 

popular in various disciplines to model complex relationships among multiple latent variables, 

each measured through a number of manifest variables (e.g., Hair et al., 2012a, b; Lee et al., 

2011; Ringle et al., 2012). As a composite-based method, PLS-PM has an advantage over factor-
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based structural equation modeling (SEM) methods because it yields determinate predictions. 

Thus, PLS-PM trades optimality for flexibility and the ability to predict (Becker et al., 2013). The 

ability to predict is one of the most common arguments for using PLS-PM over factor-based 

SEM, even though most researchers never use any predictive metrics (such as Q
2
) or hold-out 

samples to measure the actual out-of-sample prediction abilities of their models (Ringle et al., 

2012). In contrast, the use of R
2
 and related measures, which are often mistaken as predictive 

rather than measures of in-sample explanatory power (Shmueli and Koppius, 2011), is highly 

common. More precisely, of all the 532 models analyzed in Hair et al.’s (2012a, b) and Ringle et 

al.’s (2012) reviews of PLS-PM use, 470 models (88.35%) report the R
2
, 54 models (10.15%) the 

Q
2
, and 16 models (3.01%) the goodness-of-fit index (GoF), another R

2
-based model evaluation 

measure (Tenenhaus et al., 2004). This almost exclusive focus on a model’s explanatory power or 

in-sample prediction power is problematic as measures such as R
2
 or GoF improve with the 

model’s complexity. As a consequence, these indices will almost always favor complex models 

over simpler ones. In this light, Ringle et al.’s (2012) finding, that PLS models in MIS Quarterly 

are much more complex (e.g., in terms of the number of structural model relationships) compared 

to those used in factor-based SEM studies in related disciplines is not surprising. This general 

trend toward more complex PLS models is not restricted to the management information systems 

field. In marketing and strategic management literatures, Hair et al. (2012a, b) reported similar 

findings. More importantly, both author groups saw a significant increase in PLS model 

complexity for papers published in top journals since 2000. Thus, researchers are not only using 

PLS-PM to analyze more complex models than factor-based SEM, but they are also increasingly 

testing more complex models than ever before. While the focus on maximizing explanatory 

power and in-sample prediction using complex models is a worthy goal, there is a real risk that an 

over-reliance on corresponding measures might tempt researchers to overfit their models when 

their goal is in fact out-of-sample prediction and replicability.  

It is a well-confirmed fact among statisticians and applied mathematicians that more 

complex models often predict poorly out of sample (e.g. Forster and Sober, 1994; Hitchcock and 

Sober, 2004). A complex model, due to its additional flexibility, might tap spurious patterns in a 

sample (Myung, 2000). Because such patterns are sample-specific, an overly complex (i.e., 

overfitted) model will predict poorly and may not be generalizable or replicable by other 

researchers. In contrast, models with fewer parameters stand a better chance of having higher 

predictive power and being scientifically replicable (Bentler and Mooijaart, 1989). Thus, 

researchers using PLS-PM should be aware of the trade-off that exists between model complexity 

and predictive accuracy. Akaike (1973) showed that this trade-off is achievable, and that an 

unbiased estimate of a model’s out-of-sample predictive accuracy can be obtained by taking into 

account the fit to the data as well as the model’s simplicity. Thus, parsimony plays a crucial role 

in defining predictive accuracy as a goal in model selection (Hitchcock and Sober, 2004). 

Therefore, researchers interested in models with predictive power should develop a manageable 

set of theoretically motivated competing models and then use a set of out-of-sample prediction 

criteria to select a model that offers the best compromise with model fit and parsimony (Burnham 

and Anderson, 2002).  

Recent research has started to systematically explore PLS-PM’s out-of-sample predictive 

capabilities. For example, Becker et al. (2013) examined the predictive ability of PLS-PM with 

models including formative constructs, using a modified version of the R
2
—which involves a 

comparison of sample and population composite scores—as a criterion. Evermann and Tate 

(2014) recently extended this study by comparing out-of-sample prediction of PLS-PM with a 
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range of different methods, including CBSEM. While both studies make valuable contributions to 

the literature on PLS-PM, their focus is on researching the method’s predictive capabilities. 

Correspondingly, both author groups rely on a limited set of out-of-sample prediction criteria, 

which do not directly penalize model complexity and require the construction of a holdout 

sample for model comparison and selection. Our aim in this paper is to provide researchers with 

model selection criteria that are tuned to out-of-sample prediction yet do not require a holdout 

set. Selecting the model with the highest out-of-sample prediction power among a set of potential 

models is especially useful in exploratory analysis. PLS-PM typically involves some level of 

exploration. The technique’s originator characterized the process of PLS modeling as follows 

(Wold 1980, pp. 70): “The arrow scheme is usually tentative since the model construction is an 

evolutionary process. The empirical content of the model is extracted from the data, and the 

model is improved by interactions through the estimation procedure between the model and the 

data and the reactions of the researcher.”  

With this issue in mind, our paper introduces predictive information theoretic model 

selection criteria to PLS-PM. These criteria allow researchers to guide their model selection 

efforts in the direction of predictive power, especially in exploratory settings—that is, with an 

evolving theory base, and under a set of competing models and hypotheses. Each of the model 

selection criteria described in this study is aimed at selecting the model with the highest out-of-

sample prediction power by penalizing model complexity while rewarding model fit. While the 

information theoretic model selection criteria have a solid standing in the econometrics field 

(from which PLS-PM originated; Wold (1974)), this is the first study that considers them for 

model selection in a PLS-PM context. Using a Monte Carlo study, we analyze and compare the 

performance of the criteria in selecting the best predictive model under various conditions of 

sample size, effect size, loading patterns, and data distribution.  

 

2. Information theoretic model selection criteria 

 

Model selection criteria that optimize out-of-sample prediction must strike a balance 

between fitting the particular sample while not over-fitting that sample, so that the model 

generalizes beyond the particular sample. Achieving this goal is commonly done by combining a 

measure of model fit with a penalty for model complexity. In the case of linear regression 

models, one such metric is the adjusted R
2
, which includes a penalty proportional to the number 

of predictors (k) in the model: 

Adjusted R
2
 = 1 – [(1-R

2
) ((n-1)/(n-k-1)] 

However, the adjusted R
2
 lacks formal justification and is not considered a good predictive power 

metric (Berk, 2008). An alternative specifically designed for predictive purposes is the Final 

Prediction Error (FPE; Burnham and Anderson, 1998): 

 

Where, SSEk is the sum of squared errors from a model using k predictors, MSE is the mean 

squared error using the saturated model with all p>k predictors, and n,k is a penalty parameter 

for a model with k predictors and n observations. Two main metrics grounded in information 

theory emerged from the FPE: Akaike’s Information Criterion (AIC; Akaike, 1973) and the 

Bayesian Information Criterion (BIC; Schwarz, 1978), with variations for small samples (AICU, 

AICC, Cp, GM, HQ, and HQC; McQuarrie and Tsai, 1998): 

 

kn
k k

MSE

SSE
FPE ,
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AIC and BIC represent two streams of model selection criteria, which differ 

fundamentally in their conceptual underpinnings and assumptions. Most importantly, BIC 

assumes that one of the models in the consideration set is the underlying data generating model 

and is designed to select the model most likely (in the Bayesian sense) to coincide with the 

underlying model. In contrast, AIC does not assume that the underlying data generating model is 

among the set of models under consideration. Instead, AIC is designed to estimate the relative 

amount of information lost (using the Kullback-Leibler divergence measure between 

distributions) when a given model estimated from data is compared to a “true” but unknown data 

generating process.  

AIC’s strength as a model selection criterion in terms of predictive power has been shown 

empirically as well as theoretically (Burnham and Anderson, 1998). For example, Stone (1977) 

showed that the AIC and leave-one-out cross-validation are asymptotically equivalent. One 

disadvantage of AIC is that it is asymptotically inconsistent, in the sense that if the set of models 

includes the “true” model (as in the case of a simulation), then the probability of selecting the 

correct model does not converge to one as the sample size approaches infinity (Shao, 1993). On 

the contrary, BIC is consistent and, at the same time, puts a heavier penalty than AIC on model 

complexity.
1
 BIC is also related to cross-validation and was shown to be asymptotically 

equivalent to leave-out cross-validation, where  = n (1- 1/ (log(n) – 1)).  

In light of the criteria’s differences, there is no general agreement whether AIC or BIC 

should be given preference in empirical applications (Shi and Tsai, 2002). Bearing this in mind, 

this paper considers AIC, BIC and related metrics in the context of out-of-sample prediction in 

PLS-PM. Prior research has examined the efficacy of these model selection criteria under various 

conditions in different methodological context such as mixtures of normal distributions (e.g., 

Biernacki et al., 2000; Bozdogan, 1994; Celeux et al., 1996), mixture regression models (e.g., 

Andrews and Currim, 2003a; Hawkins et al., 2001; Becker et al., 2014), and mixture logit models 

(e.g., Andrews and Currim, 2003b). However, the behavior of these criteria for predictive model 

selection under various model and data conditions is unknown in the context of PLS-PM with the 

specific goal of out-of-sample prediction. Against this background, we are currently running a 

Monte Carlo simulation study to explore their performance in the context of PLS-PM.  

 

3. Monte Carlo simulation study 

 

3.1. Study design 

 

The Monte Carlo study analyzes the out-of-sample predictive power of standard model 

evaluation criteria (i.e, R
2
, adjusted-R

2
, Q

2
, GoF) and the following information theoretic model 

selection criteria: AIC, AICc, AICu, BIC, Cp, FPE, GM, HQ, and HQc. 

The following experimental conditions will be manipulated: 

 Six conditions of sample size (50, 100, 150, 200, 250, and 500).  

 Five conditions of varying effect size on a structural path (0.1, 0.2, 0.3, 0.4, and 0.5). 

                                                 
1
 The BIC penalty on the number of predictors k increases with sample size n, unlike in AIC 
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 Four data distributions (normal, chi-squared distributed with df =3, t distributed with df 

=5, and uniform) to reflect normal, positively-skewed, heavy-tailed, and uniform 

distributions, respectively. 

 Four factor loading patterns with different levels of average variance extracted (AVE): 

o Higher AVE & homogenous loadings: (0.9, 0.9, 0.9), 

o Higher AVE & heterogeneous loadings: (0.9, 0.8, 0.7), 

o Lower AVE & homogenous loadings: (0.7, 0.7, 0.7), and 

o Lower AVE & heterogeneous loadings: (0.5, 0.6, 0.7)    

In addition to the training data, a holdout set (n=1,000) will be created for each 

experimental condition to mimic the population that the training sample originates from. The 

dependent variable of interest is a binary variable that will assume the value 1 if the model 

selection criteria select the model with the highest out-of-sample predictive accuracy (measured 

in terms of the RMSE), 0 otherwise.   

   

3.2. Expected results 

 

In light of prior research on the efficacy of information theoretic model selection criteria 

vis-à-vis their in-sample prediction counterparts, we expect the criteria to clearly outperform the 

R
2
, adjusted R

2
, and GoF metrics in terms of out-of-sample prediction. At the same time, we 

expect Q
2
 to perform better than R

2
 based criteria. Also, we expect some variation in the 

information criteria’s performance, depending on the factor level constellations. For example, we 

expect that AICc performs favorably for small sample sizes compared to AIC. In addition, BIC is 

expected to perform well because the set of models include the data generating model. We are in 

the midst of running the simulation study and expect to present results at the conference. 
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