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Abstract

Given an orthogonal polygon P , let |Π(P )| be the number of rectangles that result when we partition P by
extending the edges incident to reflex vertices towards INT(P ). In [4] we showed that |Π(P )| ≤ 1 + r + r

2, where
r is the number of reflex vertices of P . We shall now give sharper bounds both for maxP |Π(P )| and minP |Π(P )|.
Moreover, we characterize the structure of orthogonal polygons in general position for which these new bounds
are exact.
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1. Introduction

We shall call simple polygon P a region of a plane
enclosed by a finite collection of straight line seg-
ments forming a simple cycle. This paper deals only
with simple polygons, so that we call them just
polygons, in the sequel. We will denote the interior
of the polygon P by INT(P ) and the boundary by
BND(P ). The boundary shall be considered part
of the polygon, that is P = INT(P ) ∪ BND(P ). A
vertex is called convex if the interior angle between
its two incident edges is at most π; otherwise it is
called reflex (or concave). We use r to represent the
number of reflex vertices of P . A polygon is called
orthogonal (or rectilinear) iff its edges meet at right
angles. O’Rourke [2] has shown that n = 2r + 4
for every n-vertex orthogonal polygon (n-ogon, for
short).
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Definition 1 A rectilinear cut of an n-ogon P is
obtained by extending each edge incident to a reflex
vertex of P towards INT(P ) until it hits BND(P ).
We denote this partition by Π(P ) and the number
of its elements (pieces) by |Π(P )|. Each piece is a
rectangle, so that we call it r-piece.

Generic n-ogons may be obtained from a partic-
ular kind of n-ogons – the so-called grid orthogonal
polygons [3], as illustrated in Fig. 1 (The reader
may skip Definition 2 and Lemmas 3 and 4 if he/she
has already read [3].)

Fig. 1. Three 12-ogons mapped to the same grid 12-ogon.

Definition 2 An n-ogon P is in general position
iff P has no collinear edges. We call “grid n-ogon”
each n-ogon in general position defined in a n

2 × n

2
square grid.
Lemma 3 follows immediately from this definition.
Lemma 3 Each grid n-ogon has exactly one edge
in every line of the grid.
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Each n-ogon not in general position may be
mapped to an n-ogon in general position by
ǫ-perturbations, for a sufficiently small constant
ǫ > 0. Consequently, we shall first address n-ogons
in general position.
Lemma 4 Each n-ogon in general position is
mapped to a unique grid n-ogon through top-to-
bottom and left-to-right sweeping. And, recipro-
cally, given a grid n-ogon we may create an n-ogon
that is an instance of its class by randomly spacing
the grid lines in such a way that their relative order
is kept.

The number of classes may be further reduced
if we group grid n-ogons that are symmetrically
equivalent. In this way, the grid n-ogons in Fig. 2
represent the same class.

Fig. 2. Eight grid n-ogons that are symmetrically equiva-
lent. From left to right, we see images by clockwise rota-
tions of 90◦, 180◦ and 270◦, by flips wrt horizontal and
vertical axes and flips wrt positive and negative diagonals.

Definition 5 Given an n-ogon P in general posi-
tion, GRID(P ) denotes any grid n-ogon in the class
that contains the grid n-ogon to which P is mapped
by the sweep procedure described in Lemma 4

The following result is a trivial consequence of
the definition of GRID(P ).
Lemma 6 For all n-ogons P in general position,
|Π(P )| = |Π(GRID(P ))|.

2. Lower and Upper bounds on |Π(P )|

In [4] we showed that Π(P ) has at most 1+r+r2

pieces. Later we noted that this upper bound is
not sufficiently tightened. Actually, for small va-
lues of r, namely r = 3, 4, 5, 6, 7, we experimentally
found that the difference between 1 + r + r2 and
max |Π(P )| was 1, 2, 4, 6 and 9, respectively.
Definition 7 A grid n-ogon Q is called FAT iff
|Π(Q)| ≥ |Π(P )|, for all grid n-ogons P . Similarly,
a grid n-ogon Q is called THIN iff |Π(Q)| ≤ |Π(P )|,
for all grid n-ogons P .

The experimental results supported our conjec-
ture that there was a single FAT n-ogon (except for
symmetries of the grid) and that it had the form
illustrated in Fig. 3.

Fig. 3. The unique FAT n-ogons (symmetries excluded),
for n = 4, 6, 8, 10, 12.

Clearly, each piece r-piece is defined by four ver-
tices. Each vertex is either in INT(P ) (internal ver-
tex) or is in BND(P ) (boundary vertex). Similar
definitions hold for edges. An edge e of r-piece R

is called an internal edge if e∩ INT(P ) 6= ∅, and it
is called boundary edge otherwise.
Lemma 8 The total number |Vi| of internal ver-
tices in Π(P ), when the grid n-ogon P is as illus-
trated in Fig. 3 is given by (1)

|Vi|=











3r2 − 2r

4
, for r even

(3r + 1)(r − 1)

4
, for r odd

(1)

where r is the number of reflex vertices of P .

PROOF. In case r is even,

|Vi| = 2

r

2
∑

k=1

(r − k)

and in case r is odd

|Vi| = (r −
r + 1

2
) + 2

r−1

2
∑

k=1

(r − k)

✷

Proposition 9 Every n-vertex orthogonal poly-
gon P such that the number of internal vertices of
Π(P ) is given by (1) has at most a single reflex
vertex in each horizontal and vertical line.

PROOF. We shall suppose first that P is a grid
n-ogon. Then, let vL1

= (xL1
, yL1

) and vR1
=

(xR1
, yR1

) be leftmost and rightmost reflex vertices
of P , respectively. The horizontal chord with ori-
gin at vL1

can intersect at most xR1
− xL1

vertical
chords, since we shall not count the intersection
with the vertical chord defined by vL1

. The same
may be said about the the horizontal chord with
origin at vR1

. There are exactly r vertical and r

horizontal chords, and thus xR1
− xL1

≤ r − 1. If
there were c vertical edges such that both extreme
points are reflex vertices then xR1

−xL1
≤ r−1−c.
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This would imply that the number of internal ver-
tices of Π(P ) would be strictly smaller than the
value defined by (1). Indeed, we could proceed to
consider the second leftmost vertex (for x > xL1

),
say vL2

, then the second rightmost vertex (with
x < xR1

) and so forth. The horizontal chord that
vL2

defines either intersects only the vertical chord
defined by vL1

or it does not intersect it at all. So, it
intersects at most r−2−c vertical chords. In sum,
c should be null, and by symmetry, we would con-
clude that there is exactly a reflex vertex in each
vertical grid line (for x > 1 and x < n

2 = r + 2).
Now, if P is not a grid n-ogon but is in general

position, then Π(P ) has the same combinatorial
structure as Π(GRID(P )), so that we do not have
to prove anything more.

If P is not in general position, then let we ren-
der it in general position by a sufficiently small
ǫ-perturbation, so that the partition of this lat-
ter polygon would not have less internal vertices
than Π(P ). ✷

Corollary 10 For all grid n-ogons P , the number
of internal vertices of Π(P ) is less than or equal to
the value established by (1).

PROOF. It results from the proof of Proposi-
tion 9. ✷

Theorem 11 Let P be a grid n-ogon, r = n−4
2 the

number of its reflex vertices. If P is FAT then

|Π(P )| =











3r2 + 6r + 4

4
, for r even

3(r + 1)2

4
, for r odd

and if P is THIN then |Π(P )| = 2r + 1.

PROOF. Suppose that P is a grid n-ogon. Let
V , E and F be the sets of all vertices, edges and
faces of Π(P ), respectively. Let us denote by Vi and
Vb the sets of all internal and boundary vertices
of the pieces of Π(P ). Similarly, Ei and Eb repre-
sent the sets of all internal and boundary edges of
such pieces. Then, V = Vi ∪ Vb and E = Ei ∪ Eb.
Being P in general position, each chord we draw
to form Π(P ) hits BND(P ) in the interior of an
edge and no two chords hit BND(P ) in the same
point. Hence, using O’Rourke’s formula [2] we ob-
tain |Eb| = |Vb| = (2r + 4) + 2r = 4r + 4. It is

easily seen that to obtain a FAT n-ogon we must
maximize the number of internal vertices.

By Corollary 10,

max
P

|Vi| =











3r2 − 2r

4
, for r even

(3r + 1)(r − 1)

4
, for r odd

and, therefore, maxP |V | = maxP (|Vi| + |Vb|) is
given by

max
P

|V | =











3r2 + 14r + 16

4
, for r even

3r2 + 14r + 15

4
, for r odd

From Graph Theory [1] we know that the sum of
the degrees of vertices in a graph is twice the num-
ber of its edges, that is,

∑

v∈V
δ(v) = 2|E|. Using

the definitions of grid n-ogon and of Π(P ), we may
partition V as

V = Vc ∪ Vr ∪ (Vb \ (Vc ∪ Vr)) ∪ Vi

Vr and Vc representing the sets of reflex and of
convex vertices of P , respectively. Moreover, we
may conclude that δ(v) = 4 for all v ∈ Vr ∪ Vi,
δ(v) = 3 for all v ∈ Vb \ (Vc ∪ Vr) and δ(v) = 2 for
all v ∈ Vc. Hence,

2|E|=
∑

v∈Vr∪Vi

δ(v) +
∑

v∈Vc

δ(v) +
∑

v∈Vb\(Vc∪Vr)

δ(v)

= 4|Vi| + 4|Vr| + 2|Vc| + 3(|Vb| − |Vr| − |Vc|)

= 4|Vi| + 12r + 8

and, consequently, |E| = 2|Vi| + 6r + 4.
Similarly, to obtain THIN n-ogonswe must mini-

mize the number of internal vertices of the arrange-
ment. For all n, there are grid n-ogons such that
|Vi| = 0. Thus, for THIN n-ogons |V | = 4r + 4.

Finally, to conclude the proof, we have to de-
duce the expression of the upper and lower bound
of the number of faces of Π(P ), that is of |Π(P )|.
Using Euler’s formula |F | = 1+ |E| − |V |, and the
expressions deduced above, we have maxP |F | =
1 + 2(maxP |Vi|) + 6r + 4 − maxP |V |. That is,
maxP |F | = maxP |Vi| + 6r + 5, so that

max
P

|F | =











3r2 + 6r + 4

4
, for r even

3(r + 1)2

4
, for r odd

and
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min
P

|F | = 1 + 2(min
P

|Vi|) + 6r + 4 − min
P

|V |

= 1 + 6r + 4 − 4r − 4 = 2r + 1

The existence of FAT grid n-ogons and THIN
grid n-ogons for all n (such that n is even and
n ≥ 4) follows from Lemma 8 and the construction
indicated in Fig. 5, respectively. ✷

Figs. 4 and 5 show some THIN n-ogons.

Fig. 4. Some grid n-gons with |Vi| = 0.

Fig. 5. Constructing the grid ogons of the smallest area,
for r = 0, 1, 2, 3, 4,. . . . The area is 2r + 1.

Based on the proof of Proposition 9, we may
prove the uniqueness of FATs and fully characte-
rize them.
Proposition 12 There is a single FAT n-ogon
(except for symmetries of the grid) and its form is
illustrated in Fig. 3.

PROOF. We saw that FAT n-ogons must have
a single reflex vertex in each vertical grid-line, for
x > 1 and x < n

2 . Also, the horizontal chords with
origins at the reflex vertices that have x = 2 and
x = n

2−1 = r+1, determine 2(r−1) internal points
(by intersections with vertical chords). To achieve
this value, they must be positioned as illustrated
below on the left.

 1

 2

r+1

r+2

 1

 2

r+1

r+2r

3

Moreover, the reflex vertices on the vertical grid-
lines x = 3 and x = r add 2(r− 2) internal points.
To achieve that, we may conclude by some simple
case reasoning, that vL2

must be below vL1
and vR2

must be above vR1
, as shown above on the right.

And, so forth. . . ✷

The area A(P ) of a grid n-ogon P is the number
of grid cells in its interior. FATs are not the grid
n-ogons that have the largest area, except for small
values of n, as we may see in Fig 6.

Fig. 6. On the left we see the FAT grid 14-ogon. It has
area 27, whereas the grid 14-ogon on the right has area 28,
which is the maximum.

Proposition 13 Let P be any grid n-ogon with
n ≥ 8 and r reflex vertices (r = n−4

2 , for all P ).
Then

2r + 1 ≤ A(P ) ≤ r2 + 3

and there exist grid n-ogons having area 2r+1 (in-
deed, a single one except for symmetries) and grid
n-ogons having area r2 + 3.

PROOF. Our proof is strongly based on the
Inflate-Paste method for generating grid ogons,
that will be presented also at this workshop [3]. ✷
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