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1. Introdu
tion

Skeletons have long been re
ognized as an im-

portant tool in 
omputer graphi
s, 
omputer vision

and medi
al imaging. The most known and widely

used skeleton is the medial axis [1℄. However, the

presen
e of paraboli
 ar
s may be a disadvantage

for the medial axis. The straight line skeleton [2℄,

on the other hand, is 
omposed only of line seg-

ments. In [3℄ a polygon de
omposition based on

the straight line skeleton was presented. The re-

sults obtained from the implementation indi
ated

that this te
hnique provides plausible de
omposi-

tions for a variety of shapes. However, sharp re
ex

angles have a big impa
t on the form of the straight

line skeleton, whi
h in turn has a large e�e
t on

the de
omposition (see �gure 1).

This paper presents the linear axis, a new skele-

ton for polygons. It is related to the medial axis

and the straight line skeleton, being the result of

a wavefront propagation pro
ess. The wavefront is

linear and propagates by translating edges at 
on-

stant speed. The initial wavefront is an altered ver-

sion of the original polygon: zero-length edges are

added at re
ex verti
es. The linear axis is a sub-

set of the straight line skeleton of the altered poly-

gon. In this way, the 
ounter-intuitive e�e
ts in the

straight line skeleton 
aused by sharp re
ex ver-

ti
es are alleviated. We introdu
e the notion of "-

equivalen
e between two skeletons, and give an al-

gorithm that 
omputes the number of hidden edges

for ea
h re
ex vertex whi
h yield a linear axis "-

equivalent to the medial axis. This linear axis and

thus the straight line skeleton 
an then be 
om-

puted from the medial axis in linear time for non-

degenerate polygons, i.e. polygons with a 
onstant

number of \nearly 
o-
ir
ular" sites.

Fig. 1. A de
omposition [3℄ based on split events of the

straight line skeleton gives 
ounter-intuitive results if the

polygon 
ontains sharp re
ex verti
es.

2. Linear axis

Let P be a simple, 
losed polygon. The set of sites

de�ning the Voronoi diagram V D(P ) of P is the

set of line segments and re
ex verti
es of P . The set

of points U(d) inside P , having some �xed distan
e

d to the polygon is 
alled a uniform wavefront. As

the distan
e d in
reases, the wavefront points move

at equal, 
onstant velo
ity along the normal dire
-

tion. This pro
ess is 
alled uniform wavefront prop-

agation. During the propagation, the breakpoints

between the line segments and 
ir
ular ar
s in U(d)

tra
e theVoronoi diagramV D(P ). Themedial axis

M(P ) is a subset of V D(P ); the Voronoi edges in-


ident to the re
ex verti
es are not part of the me-

dial axis (see �gure 2(a)).

The straight line skeleton is also de�ned as the

tra
e of adja
ent 
omponents of a propagating

wavefront. The wavefront is linear and is obtained

by translating the edges of the polygon in a self-

parallel manner, keeping sharp 
orners at re
ex

verti
es (edges in
ident to a re
ex vertex will grow

in length, see �gure 2(b)). This also means that

points in the wavefront move at di�erent speeds:

wavefront points originating from re
ex verti
es

move faster than points originating from the edges

in
ident to those verti
es. In fa
t, the speed of the

wavefront points originating from a re
ex vertex

gets arbitrary large when the internal angle of the
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(a) (b)

Fig. 2. Medial Axis (a) vs. Straight Line Skeleton (b). In-

stan
es of the propagating wavefront generating the skele-

tons are drawn with dotted line style in both 
ases. In (a)

the Voronoi edges that are not part of the medial axis are

drawn with dashed line style.

vertex gets arbitrary 
lose to 2�. And that is why

sharp re
ex verti
es have su
h a big impa
t on

the form of the straight line skeleton. The straight

line skeleton SLS(P ) of P is the tra
e in the

propagation of the verti
es of the wavefront.

Let fv

1

; v

2

; : : : ; v

n

g denote the verti
es of a sim-

ple polygon P and let � = (k

1

; k

2

; : : : ; k

n

) be a se-

quen
e of natural numbers. If v

i

is a 
onvex vertex

of P , k

i

= 0, and if it is re
ex vertex, k

i

� 0. Let

P

�

(0) be the polygon obtained fromP by repla
ing

ea
h re
ex vertex v

i

with k

i

+1 identi
al verti
es.

We assume that these verti
es are the endpoints of

k

i

zero-length edges, whi
h will be referred to as

the hidden edges asso
iated with v

i

. The dire
tions

of the hidden edges are 
hosen su
h that the re
ex

vertex v

i

of P is repla
ed in P

�

(0) by k

i

+ 1 \re-


ex verti
es" of equal internal angle. The polygon

P

�

(t) represents the linear wavefront, 
orrespond-

ing to a sequen
e � of hidden edges, at moment

t. The propagation 
onsists of translating edges at


onstant unit speed, in a self-parallel manner.

De�nition 1 The linear axis L

�

(P ) of P , 
or-

responding to a sequen
e � of hidden edges, is the

tra
e of the 
onvex verti
es of the linear wavefront

P

�

in the above propagation pro
ess.

Obviously, L

�

(P ) is a subset of SLS(P

�

(0)); we

only have to remove the bise
tors tra
ed by the

re
ex verti
es of the wavefront (see �gure 2 (a)).

Lemma 1 If any re
ex vertex v

j

of internal angle

�

j

� 3�=2 has at least one asso
iated hidden edge,

then no new re
ex verti
es are introdu
ed to the

wavefront during the propagation of P

�

.

For the rest of this paper, we will assume that

ea
h sele
tion � of hidden edges that is 
onsidered,

satis�es the 
ondition in lemma 1. This ensures

that L

�

(P ) is a 
onne
ted graph.

A site of P is a line segment or a re
ex vertex. If

S is an arbitrary site of P , we denote by P

�

S

(t) the

points in P

�

(t) originating from S. We 
all P

�

S

(t)

v

j

w

h

�

j

(a) (b)

Fig. 3. (a) The linear axis in the 
ase when one hidden

edge is inserted at ea
h re
ex vertex. A linear wavefront is

drawn in dotted line style; the dashed lines are the bise
tors

that are not part of the linear axis. (b) The linear o�set

(solid line) of a re
ex vertex with 3 asso
iated edges.

the (linear) o�set of S at moment t.

Individual points in P

�

move at di�erent speeds.

The fastest moving points in P

�

are its re
ex ver-

ti
es. The slowest moving points have unit speed.

Let v

j

be a re
ex vertex of P , of internal angle �

j

,

and with k

j

asso
iated hidden edges. Let P

�

v

j

(t) be

the o�set of v

j

at some moment t.

Lemma 2 Points in P

�

v

j

(t) move at speed at most

s

j

= 1= 
os ((�

j

� �)=(2 � (k

j

+ 1))) :

Ea
h 
onvex vertex of P

�

(t) is a breakpoint be-

tween two linear o�sets. Lemmas 3 and 4 des
ribe

the tra
e of the interse
tion of two adja
ent o�sets

in the linear wavefront propagation. If v is a ver-

tex and e is an edge non-in
ident with v, we denote

by P (v; e) the parabola with fo
us v and dire
trix

the line supporting e. For any real value r > 1, we

denote by H

r

(v; e) the lo
us of points whose dis-

tan
es to v and the line supporting e are in 
on-

stant ratio r. This lo
us is a hyperbola bran
h. If u

and v are re
ex verti
es, we denote by C

r

(u; v) the

Apollonius 
ir
le asso
iated with u, v and ratio r 6=

1. C

r

(u; v) is the lo
us of points whose distan
es

to u and v, respe
tively, are in 
onstant ratio r.

Let e be an edge and v

j

a re
ex vertex of P .

The points in the o�set P

�

e

move at unit speed, the

points in the o�set P

�

v

j

move at speeds varying in

the interval [1; s

j

℄, where s

j

is given by lemma 2.

Lemma 3 If the linear o�sets of v

j

and e be
ome

adja
ent, the tra
e of their interse
tion is a polyg-

onal 
hain that satis�es:

1) it lies in the region between P (v

j

; e) and

H

s

j

(v

j

; e);

2) the lines supporting its segments are tangent to

P (v

j

; e); the tangent points lie on the tra
es of the

unit speed points in P

�

v

j

;

3) H

s

j

(v

j

; e) passes through those verti
es whi
h

lie on the tra
e of a re
ex vertex of P

�

v

j

.

Let v

i

and v

j

be re
ex verti
es of P . The points
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in the o�set P

�

v

i

move at speeds varying in the

interval [1; s

i

℄ while the points in the o�set P

�

v

j

move at speeds varying in the interval [1; s

j

℄.

Lemma 4 If the linear o�sets of v

i

and v

j

be
ome

adja
ent, the tra
e of their interse
tion is a polyg-

onal 
hain that lies outside the Apollonius 
ir
les

C

s

i

(v

i

; v

j

) and C

s

j

(v

j

; v

i

).

3. Linear Axis vs. Medial Axis

Obviously, the larger the number of hidden edges

asso
iated with the re
ex verti
es, the 
loser the


orresponding linear axis approximates the medial

axis. For many appli
ations of the medial axis, an

approximation that preserves the main visual 
ues

of the shape, though non-isomorphi
 with the me-

dial axis, is perfe
tly adequate. The way we now

de�ne the "-equivalen
e between the medial axis

and the linear axis, will allow us to 
ompute a lin-

ear axis that 
losely approximates the medial axis

using only a small number of hidden edges.

Let " � 0; an "-edge is a Voronoi edge gener-

ated by four almost 
o-
ir
ular sites. Let b

i

b

j

be a

Voronoi edge, with b

i

equally distan
ed to sites S

k

,

S

i

, S

l

, and b

j

equally distan
ed to S

k

, S

j

, S

l

.

De�nition 2 The edge b

i

b

j

is an "-edge if

d(b

i

; S

j

) < (1 + ")d(b

i

; S

i

) or d(b

j

; S

i

) <

(1 + ")d(b

j

; S

j

).

A path between two nodes ofM(P ) is an "-path

if it is made only of "-edges. For any node b of M ,

a node b

0

su
h that the path between b and b

0

is an

"-path, is 
alled an "-neighbour of b. Let N

"

(b) be

the set of "-neighbours of b. The set fbg [N

"

(b) is


alled an "-
luster.

Let (V

M

; E

M

) be the graph indu
ed by M(P )

on the set of verti
es V

M


omposed of the 
onvex

verti
es ofP and the nodes of degree 3 ofM(P ). Let

(V

L

�

; E

L

�

) be the graph indu
ed by L

�

(P ) on the

set of verti
es V

L

�


omposed of the 
onvex verti
es

of P and the nodes of degree 3 of L

�

(P ).

De�nition 3 M(P ) and L

�

(P ) are "-equivalent

if there exists a surje
tion f : V

M

! V

L

�

so that:

i) f (p) = p, for all 
onvex p of P ;

ii) 8 b

i

; b

j

2 V

M

with b

j

=2 N

"

(b

i

), 9 an ar
 in E

M


onne
ting b

i

and b

j

, 9 an ar
 in E

L

�


onne
ting

f(b

0

i

) and f(b

0

j

) where b

0

i

2 fb

i

g [N

"

(b

i

) and b

0

j

2

fb

j

g [N

"

(b

j

).

The following lemma gives a suÆ
ient 
ondi-

tion for the "-equivalen
e of the two skeletons. The

path between two disjoint Voronoi 
ells V C(S

i

)

and V C(S

j

) is the shortest path inM(P ) between

a point of V C(S

i

)\M(P ) and a point of V C(S

j

)\

M(P ).

Lemma 5 If the only sites whose linear o�sets be-


ome adja
ent in the propagation, are sites with

adja
ent Voronoi 
ells or sites whose path between

their Voronoi 
ells is an "-path, then the linear axis

and the medial axis are "-equivalent.

We now present an algorithm for 
omputing a

sequen
e � of hidden edges su
h that the resulting

linear axis is "-equivalent to the medial axis. The

algorithm handles pairs of sites whose linear o�sets

must be at any moment disjoint in order to ensure

the "-equivalen
e of the two skeletons. These are

sites with disjoint Voronoi 
ells and whose path

between these Voronoi 
ells is not an "-path (see

lemma 5). However, we do not have to 
onsider

ea
h su
h pair. The algorithm a
tually handles the

pairs of 
on
i
ting sites, where two sites S

i

and S

j

(at least one being a re
ex vertex) are said to be


on
i
ting if the path between their Voronoi 
ells


ontains exa
tly one non-" edge. When handling

the pair S

i

, S

j

we 
he
k and, if ne
essary, adjust

the maximal speeds s

i

and s

j

of the o�sets of S

i

and S

j

, respe
tively, so that these o�sets remain

disjoint in the propagation. This is done in the sub-

routine HandleCon
i
tingPair by looking lo
ally

at the 
on�guration of the uniform wavefront and

using the lo
alization 
onstraints for the edges of

the linear axis given by lemmas 3 and 4.

The algorithm for 
omputing a sequen
e � of

hidden edges 
an be summarized as follows.

Algorithm ComputeHiddenEdges

Input A simple polygon P and its medial axis.

Output A number of hidden edges for ea
h re
ex

vertex.

1. For ea
h re
ex vertex S

j

of P

if �

j

� 3�=2 then s

j

 1= 
os((�

j

� �)=4)

else s

j

 1= 
os((�

j

� �)=2)

2. Compute all pairs of 
on
i
ting sites

3. For ea
h pair of 
on
i
ting sites S

i

, S

j

HandleCon
i
tingPair(S

i

,S

j

)

4. For ea
h re
ex vertex S

j

of P

k

j

 

�

(�

j

� �)=(2 
os

�1

(1=s

j

))

�

.

Theorem 6 Algorithm ComputeHiddenEdges


omputes a sequen
e of hidden edges that leads to

a linear axis "-equivalent to the medial axis.

The performan
e of this algorithm depends on

the number of 
on
i
ting pairs. This in turn de-

pends on the number of nodes in the "-
lusters of

M(P ). If any "-
luster of M has a 
onstant num-

ber of nodes, there are only a linear number of 
on-
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Fig. 4. A 
omparison of the linear axis (right) with the

medial axis (middle) and the straight line skeleton (left).

The skeletons are drawn in solid line style.


i
ting pairs. Ea
h 
on
i
ting pair is handled in


onstant time [4℄, thus in this 
ase, ComputeHid-

denEdges 
omputes the sequen
e � in linear time.

There is only a limited 
lass of shapes with a 
on-

stant number of 
lusters, su
h that ea
h has a lin-

ear number of nodes.

On
e we have a sequen
e � that ensures the "-

equivalen
e between the 
orresponding linear axis

and the medial axis, we 
an 
onstru
t this linear

axis. The medial axis 
an be 
omputed in linear

time [5℄. Despite its similarity to the medial axis,

the fastest known algorithms [6℄ [7℄ for the straight

line skeleton are slower. Any of these algorithms


an be used to 
ompute the straight line skeleton

of P

�

(0). The linear axis L

�

(P ) 
orresponding to

the sequen
e � is then obtained from SLS(P

�

(0))

by removing the bise
tors in
ident to the re
ex

verti
es of P .

However, if M has only "-
lusters of 
onstant

size, L

�

(P ) 
an be 
omputed from the medial axis

in linear time by adjusting the medial axis. In 
om-

puting the linear axis, we adjust ea
h non-"-edge

of the medial axis to its 
ounterpart in the linear

axis. When adjusting an edge b

i

b

j

we �rst adjust

the lo
ation of its endpoints to the lo
ation of the

endpoints of its 
ounterpart. If node b

i

is part of

an "-
luster, we 
ompute �rst the 
ounterparts of

the nodes in this 
luster based on a lo
al re
on-

stru
tion of the linear wavefront. The adjustment

of a node's lo
ation is done in 
onstant time, if its

"-
luster has 
onstant size, i.e. when the polygon

is non-degenerate. Finally, we use lemmas 3-4 to

repla
e the paraboli
 ar
 or the perpendi
ular bi-

Fig. 5. A de
omposition based on split events of the linear

axis gives natural results even if the polygon 
ontains sharp

re
ex verti
es.

se
tor with the 
orresponding 
hain of segments.

Theorem 7 For a non-degenerate polygon P , the

straight line skeleton of P

�

(0) 
an be 
omputed in

linear time.

We have implemented the algorithm Compute-

HiddenEdges and the algorithm that 
onstru
ts

the linear axis from the medial axis. Figure 4 illus-

trates the straight line skeleton (left 
olumn), me-

dial axis (middle 
olumn) and the linear axis (right


olumn) of three 
ontours. We also used the linear

axis instead of the straight line skeleton to de
om-

pose the 
ontours in �gure 1 based on wavefront

split events [3℄. The results are presented in �gure

5; we see that the unwanted e�e
ts of the sharp re-


ex verti
es are eliminated and the results of this

�rst step in the de
omposition look more natural.
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