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1. Introduction

Skeletons have long been recognized as an im-
portant tool in computer graphics, computer vision
and medical imaging. The most known and widely
used skeleton is the medial azis [1]. However, the
presence of parabolic arcs may be a disadvantage
for the medial axis. The straight line skeleton [2],
on the other hand, is composed only of line seg-
ments. In [3] a polygon decomposition based on
the straight line skeleton was presented. The re-
sults obtained from the implementation indicated
that this technique provides plausible decomposi-
tions for a variety of shapes. However, sharp reflex
angles have a big impact on the form of the straight
line skeleton, which in turn has a large effect on
the decomposition (see figure 1).

This paper presents the linear axis, a new skele-
ton for polygons. It is related to the medial axis
and the straight line skeleton, being the result of
a wavefront propagation process. The wavefront is
linear and propagates by translating edges at con-
stant speed. The initial wavefront is an altered ver-
sion of the original polygon: zero-length edges are
added at reflex vertices. The linear axis is a sub-
set, of the straight line skeleton of the altered poly-
gon. In this way, the counter-intuitive effects in the
straight line skeleton caused by sharp reflex ver-
tices are alleviated. We introduce the notion of e-
equivalence between two skeletons, and give an al-
gorithm that computes the number of hidden edges
for each reflex vertex which yield a linear axis e-
equivalent to the medial axis. This linear axis and
thus the straight line skeleton can then be com-
puted from the medial axis in linear time for non-
degenerate polygons, i.e. polygons with a constant
number of “nearly co-circular” sites.
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Fig. 1. A decomposition [3] based on split events of the
straight line skeleton gives counter-intuitive results if the
polygon contains sharp reflex vertices.

2. Linear axis

Let P be a simple, closed polygon. The set of sites
defining the Voronoi diagram VD(P) of P is the
set, of line segments and reflex vertices of P. The set
of points U (d) inside P, having some fixed distance
d to the polygon is called a uniform wavefront. As
the distance d increases, the wavefront points move
at equal, constant velocity along the normal direc-
tion. This process is called uniform wavefront prop-
agation. During the propagation, the breakpoints
between the line segments and circular arcs in U(d)
trace the Voronoi diagram V D (P). The medial axis
M (P) is a subset of V.D(P); the Voronoi edges in-
cident to the reflex vertices are not part of the me-
dial axis (see figure 2(a)).

The straight line skeleton is also defined as the
trace of adjacent components of a propagating
wavefront. The wavefront is linear and is obtained
by translating the edges of the polygon in a self-
parallel manner, keeping sharp corners at reflex
vertices (edges incident to a reflex vertex will grow
in length, see figure 2(b)). This also means that
points in the wavefront move at different speeds:
wavefront points originating from reflex vertices
move faster than points originating from the edges
incident to those vertices. In fact, the speed of the
wavefront points originating from a reflex vertex
gets arbitrary large when the internal angle of the
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(a) (b)

Fig. 2. Medial Axis (a) vs. Straight Line Skeleton (b). In-
stances of the propagating wavefront generating the skele-
tons are drawn with dotted line style in both cases. In (a)
the Voronoi edges that are not part of the medial axis are
drawn with dashed line style.

vertex gets arbitrary close to 27. And that is why
sharp reflex vertices have such a big impact on
the form of the straight line skeleton. The straight
line skeleton SLS(P) of P is the trace in the
propagation of the vertices of the wavefront.

Let {v1, v, ... ,v,} denote the vertices of a sim-
ple polygon P and let k = (k1, ko, ..., k,) be a se-
quence of natural numbers. If v; is a convex vertex
of P, k; = 0, and if it is reflex vertex, k; > 0. Let
P*%(0) be the polygon obtained from P by replacing
each reflex vertex v; with k; + 1 identical vertices.
We assume that these vertices are the endpoints of
k; zero-length edges, which will be referred to as
the hidden edges associated with v;. The directions
of the hidden edges are chosen such that the reflex
vertex v; of P is replaced in P*(0) by k; + 1 “re-
flex vertices” of equal internal angle. The polygon
Pr(t) represents the linear wavefront, correspond-
ing to a sequence k of hidden edges, at moment
t. The propagation consists of translating edges at
constant unit speed, in a self-parallel manner.
Definition 1 The linear axis L*(P) of P, cor-
responding to a sequence K of hidden edges, is the
trace of the convex vertices of the linear wavefront
P* in the above propagation process.

Obviously, L*(P) is a subset of SLS(P*(0)); we
only have to remove the bisectors traced by the
reflex vertices of the wavefront (see figure 2 (a)).
Lemma 1 If any reflex vertex v; of internal angle
a; > 3m/2 has at least one associated hidden edge,
then no new reflex vertices are introduced to the
wavefront during the propagation of P*.

For the rest of this paper, we will assume that
each selection « of hidden edges that is considered,
satisfies the condition in lemma 1. This ensures
that L"(P) is a connected graph.

A site of P is a line segment or a reflex vertex. If
S is an arbitrary site of P, we denote by P§(t) the
points in P*(t) originating from S. We call P§(t)

(a) (b)

Fig. 3. (a) The linear axis in the case when one hidden
edge is inserted at each reflex vertex. A linear wavefront is
drawn in dotted line style; the dashed lines are the bisectors
that are not part of the linear axis. (b) The linear offset
(solid line) of a reflex vertex with 3 associated edges.

the (linear) offset of S at moment t.

Individual points in P* move at different speeds.
The fastest moving points in P* are its reflex ver-
tices. The slowest moving points have unit speed.
Let v; be a reflex vertex of P, of internal angle «;,
and with k; associated hidden edges. Let Py (¢) be
the offset of v; at some moment ¢.

Lemma 2 Points in Py (t) move at speed at most

sj =1/ cos((a; =m)/(2* (kj +1))).

Each convex vertex of P*(t) is a breakpoint be-
tween two linear offsets. Lemmas 3 and 4 describe
the trace of the intersection of two adjacent offsets
in the linear wavefront propagation. If v is a ver-
tex and e is an edge non-incident with v, we denote
by P(v,e) the parabola with focus v and directrix
the line supporting e. For any real value r > 1, we
denote by H" (v, e) the locus of points whose dis-
tances to v and the line supporting e are in con-
stant ratio r. This locus is a hyperbola branch. If u
and v are reflex vertices, we denote by C" (u, v) the
Apollonius circle associated with u, v and ratio r #
1. C"(u,v) is the locus of points whose distances
to u and v, respectively, are in constant ratio r.

Let e be an edge and v; a reflex vertex of P.
The points in the offset PS move at unit speed, the
points in the offset Py, move at speeds varying in
the interval [1, s;], where s; is given by lemma 2.
Lemma 3 If the linear offsets of v; and e become
adjacent, the trace of their intersection is a polyg-
onal chain that satisfies:

1) it lies in the region between P(v;,e) and
H* (vj7 €);

2) the lines supporting its segments are tangent to
P(vj,e); the tangent points lie on the traces of the
unit speed points in Py

3) H% (vj,e) passes through those vertices which
lie on the trace of a reflex vertex of Py

Let v; and v; be reflex vertices of P. The points
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in the offset PJ. move at speeds varying in the
interval [1,s;] while the points in the offset Py,
move at speeds varying in the interval [1, s;].
Lemma 4 If the linear offsets of v; and v; become
adjacent, the trace of their intersection is a polyg-
onal chain that lies outside the Apollonius circles
C% (vi,v5) and C% (vj,v;).

3. Linear Axis vs. Medial Axis

Obviously, the larger the number of hidden edges
associated with the reflex vertices, the closer the
corresponding linear axis approximates the medial
axis. For many applications of the medial axis, an
approximation that preserves the main visual cues
of the shape, though non-isomorphic with the me-
dial axis, is perfectly adequate. The way we now
define the e-equivalence between the medial axis
and the linear axis, will allow us to compute a lin-
ear axis that closely approximates the medial axis
using only a small number of hidden edges.

Let € > 0; an e-edge is a Voronoi edge gener-
ated by four almost co-circular sites. Let b;b; be a
Voronoi edge, with b; equally distanced to sites Sk,
Si, 51, and b; equally distanced to Si, S;, S;.
Definition 2 The edge b;b; is an e-edge if
d(bl, S]) < (1 + 6)d(bl, Sl) or d(b]’, Sl) <
(L+e)d(bj, Sj)-

A path between two nodes of M (P) is an e-path
if it is made only of e-edges. For any node b of M,
anode b’ such that the path between b and b’ is an
e-path, is called an e-neighbour of b. Let N (b) be
the set of e-neighbours of b. The set {b} U N (D) is
called an e-cluster.

Let (Var, Epr) be the graph induced by M (P)

on the set of vertices V3; composed of the convex
vertices of P and the nodes of degree 3 of M (P). Let
(Vi~, Ep~) be the graph induced by L"(P) on the
set of vertices Vi~ composed of the convex vertices
of P and the nodes of degree 3 of L"*(P).
Definition 3 M (P) and L*(P) are e-equivalent
if there exists a surjection f : Var — Vi~ so that:
i) f(p) = p, for all convex p of P;
)V bi,b; € Viy withb; ¢ N.(b;), 3 an arc in Ey
connecting b; and b; < 3 an arc in Ep~ connecting
f(;) and f(b}) where b; € {b;} U N:(b;) and b €
{b;} UN:(b))-

The following lemma gives a sufficient condi-
tion for the e-equivalence of the two skeletons. The
path between two disjoint Voronoi cells VC(S;)
and VC(Sj) is the shortest path in M (P) between
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a point of VC(S;) N M (P) and a point of VC(S5;)N
M(P).

Lemma 5 If the only sites whose linear offsets be-
come adjacent in the propagation, are sites with
adjacent Voronoi cells or sites whose path between
their Voronoi cells is an e-path, then the linear azxis
and the medial azis are c-equivalent.

We now present an algorithm for computing a
sequence & of hidden edges such that the resulting
linear axis is e-equivalent to the medial axis. The
algorithm handles pairs of sites whose linear offsets
must be at any moment disjoint in order to ensure
the g-equivalence of the two skeletons. These are
sites with disjoint Voronoi cells and whose path
between these Voronoi cells is not an e-path (see
lemma 5). However, we do not have to consider
each such pair. The algorithm actually handles the
pairs of conflicting sites, where two sites S; and S
(at least one being a reflex vertex) are said to be
conflicting if the path between their Voronoi cells
contains exactly one non-¢ edge. When handling
the pair S;, S; we check and, if necessary, adjust
the maximal speeds s; and s; of the offsets of S;
and Sj, respectively, so that these offsets remain
disjoint in the propagation. This is done in the sub-
routine HandleConflictingPair by looking locally
at the configuration of the uniform wavefront and
using the localization constraints for the edges of
the linear axis given by lemmas 3 and 4.

The algorithm for computing a sequence & of
hidden edges can be summarized as follows.

Algorithm ComputeHiddenEdges
Input A simple polygon P and its medial axis.
Output A number of hidden edges for each reflex
vertex.

1. For each reflex vertex S; of P
if o; > 37/2 then s; + 1/ cos((a; — m)/4)
else s; < 1/ cos((oj — ) /2)
2. Compute all pairs of conflicting sites
3. For each pair of conflicting sites S;, S;
HandleConflictingPair(.S;,5;)
4. For each reflex vertex S; of P
K [(ay — m)/(2cos~1(1/s))].
Theorem 6 Algorithm ComputeHiddenFEdges
computes a sequence of hidden edges that leads to
a linear azis €-equivalent to the medial azis.

The performance of this algorithm depends on
the number of conflicting pairs. This in turn de-
pends on the number of nodes in the e-clusters of
M (P). If any e-cluster of M has a constant num-
ber of nodes, there are only a linear number of con-
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Fig. 4. A comparison of the linear axis (right) with the
medial axis (middle) and the straight line skeleton (left).
The skeletons are drawn in solid line style.

flicting pairs. Each conflicting pair is handled in
constant time [4], thus in this case, ComputeHid-
denEdges computes the sequence k in linear time.
There is only a limited class of shapes with a con-
stant number of clusters, such that each has a lin-
ear number of nodes.

Once we have a sequence k that ensures the e-
equivalence between the corresponding linear axis
and the medial axis, we can construct this linear
axis. The medial axis can be computed in linear
time [5]. Despite its similarity to the medial axis,
the fastest known algorithms [6] [7] for the straight
line skeleton are slower. Any of these algorithms
can be used to compute the straight line skeleton
of P#(0). The linear axis L"(P) corresponding to
the sequence k is then obtained from SLS(P*(0))
by removing the bisectors incident to the reflex
vertices of P.

However, if M has only e-clusters of constant
size, L"(P) can be computed from the medial axis
in linear time by adjusting the medial axis. In com-
puting the linear axis, we adjust each non-e-edge
of the medial axis to its counterpart in the linear
axis. When adjusting an edge b;b; we first adjust
the location of its endpoints to the location of the
endpoints of its counterpart. If node b; is part of
an e-cluster, we compute first the counterparts of
the nodes in this cluster based on a local recon-
struction of the linear wavefront. The adjustment
of a node’s location is done in constant time, if its
e-cluster has constant size, i.e. when the polygon
is non-degenerate. Finally, we use lemmas 3-4 to
replace the parabolic arc or the perpendicular bi-

Fig. 5. A decomposition based on split events of the linear
axis gives natural results even if the polygon contains sharp
reflex vertices.

sector with the corresponding chain of segments.
Theorem 7 For a non-degenerate polygon P, the
straight line skeleton of P*(0) can be computed in
linear time.

We have implemented the algorithm Compute-
HiddenEdges and the algorithm that constructs
the linear axis from the medial axis. Figure 4 illus-
trates the straight line skeleton (left column), me-
dial axis (middle column) and the linear axis (right
column) of three contours. We also used the linear
axis instead of the straight line skeleton to decom-
pose the contours in figure 1 based on wavefront
split events [3]. The results are presented in figure
5; we see that the unwanted effects of the sharp re-
flex vertices are eliminated and the results of this
first step in the decomposition look more natural.
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