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1. -  INTRODUCTION 
 

Chlorophyll pigments, the vital biomolecule for photosynthesis, are widely 
distributed on the earth from cyanobacteria to the chloroplasts of algae and plants where 
exist photosystem units. The biosynthetic machinery of plant tissues is able to 
metabolize more than 109 tons of natural chlorophylls per year (Kräutler, 2008), a figure 
to note the wide distribution of this family of green pigments and the significance of the 
intermediates and metabolites derived from that process.  

 

 
 

Scheme 1: Chlorophyll a derivative. 
 
There are many chlorophyll derivatives involved in the metabolism, storage and 

processing of plant materials. Take chlorophyll a and b commonly found in plant tissue 
for example. Native chlorophyll a and b are basically composed of porphyrin ring and 
phytol chain. One magnesium atom lies in the center of the porphyrin ring. De-
esterification of chlorophyll a and b yields chlorophyllide a and b that can be catalyzed 
by chlorophyllase (Matile et al., 1999) or by alkali hydrolysis (Humphrey, 1980); 
magnesium-dechelation yields magnesium-free compounds including pheophorbide and 
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pheophytin that are induced by metal-chelating substance during chlorophyll catabolism 
(Schelbert et al., 2009), or acid or heat during food processing (Mínguez-Mosquera and 
Garrido-Fernández, 1989; Canjura and Schwartz, 1991; Turkmen et al., 2006; Sanchez-
Vega et al., 2014); decarbomethoxylation at C-132 position yields pyro-derivatives in 
heated, canned, or storage food materials (Gallardo-Guerrero  et al., 2005; Gallardo-
Guerrero et al., 2008; Huang et al., 2008; Loh et al., 2012); finally, oxidation reactions 
promoted by a variety of oxidants produce 132-OH and 151-OH-lactone derivatives 
(Otsuki  et al., 1987; Yamauchi and Eguchi, 2002; Funamoto et al., 2003; Roca et al., 
2007; Huang et al., 2008; Kao  et al., 2011; Loh et al., 2012). While related with the 
structure elucidation, until now, it is not available for an overall analysis of these 
derivatives by high resolution and mass accuracy measurements, with only chlorophyll 
a analyzed (Wei et al., 2013), this suggests the need to carry out an overall investigation 
of structure elucidation of chlorophyll derivatives systematically, especially for 132-OH 
and 151-OH-lactone derivatives, since there is little information about their laboratory 
preparation of standard and fragmentation patterns but they are widely found in 
different tissues. 
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Scheme 2: Main chlorophyll transformations. 
 
Due to the ingestion of green vegetables, fruits and seaweeds, chlorophyll pigments 

are also involved in human diet and related food manufacturing process. It has been 
found that chlorophyll pigments have many beneficial effects for human health such as 
the antimutagenic effect (Díaz et al., 2003; Simonich et al., 2007), antigeno-toxic 
properties (Negishi et al., 1997), and potent antioxidant capacity to scavenge free 
radicals and to prevent lipid oxidation (Lanfer-Marquez et al., 2005). Despite these, 
researches related with the uptake of chlorophyll pigments by digestive system are 
scarce. After the study by Egner et al. (2000) that copper chlorin e4 and copper chlorin 
e4 ethyl ester were accumulated in the serum of individuals participants in a clinical trial 
where they were supplemented with a diet of copper chlorophyllin (mixture of modified 
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water-soluble chlorophyll derivatives), a few of researches were carried out for the in 
vitro digestion and following Caco-2 cell absorption of chlorophyll pigments from 
spinach (Ferruzzi et al., 2001), peas (Gallardo-Guerrero et al., 2008) or of pure 
chlorophyll standards (Gandul-Rojas et al., 2009). It is showed that many factors 
including chlorophyll molecule, food matrix, processing, etc are involved and it 
suggests the need to investigate for a wide range of chlorophyll derivatives from natural 
food resources. 

In this manner, edible seaweeds are considered to be ideal research materials for the 
investigation of chlorophyll bioavailability from natural food supplies. Bioavailability 
refers to the fraction of any compound ingested and made available for utilization, 
metabolism, and/or storage by the organism (Ferruzzi and Blakeslee, 2007). In this 
sense, chlorophyll pigments from edible seaweeds will be investigated from their 
presence in food resources to their accumulation in human intestinal cells. The selection 
of edible seaweeds is not only because of the increasing popularity of this seafood in 
western countries for the health benefits (Shahidi, 2009), but also and more importantly, 
due to the fact that they can provide a diverse distribution of chlorophyll derivatives 
such as c series of chlorophyll in brown algae (Fujii et al., 2012), large sum of 
dephytylated chlorophyll (Hwang et al., 2005; Ferraces-Casais et al., 2012), 
additionally to the plant materials, besides a very different food matrix. 

 The general mechanism of chlorophyll absorption proposed by Ferruzzi and 
Blakeslee (2007) would follow routes similar to those taken by other xenobiotic 
compounds that require consideration of (a) efficient release of the chlorophyll from the 
food matrix, (b) stability to gastric and small intestinal digestive conditions, (c) 
solubilization of lipophilic derivatives (micellarization), (d) uptake by small intestinal 
absorptive epithelial cells, and (e) secretion into circulation (basal transport). Except for 
the report of Ferruzzi et al. (2002) that studied the absorption and efflux behavior of 
chlorophyllin on polarized Caco-2 membrane, no information is available for 
transportation manner of natural chlorophyll. In addition, as some transporters involved 
in carotenoids intestinal transportation have been described including the scavenger 
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receptor class B type I (SR-BI), Niemann Pick C1 Like 1 protein (NPC1L1), cluster 
determinant 36 (CD36) and ATP-binding cassette transporter subfamily A (ABCA1) 
(During et al., 2005; Reboul et al., 2005, 2011; Moussa et al., 2008), on the contrary, 
nothing has been reported related with chlorophyll derivatives. These investigations will 
be involved in this thesis. 

This thesis begins with a detailed chapter reviewing and introducing chlorophyll 
pigments, structures, function and localization, biosynthesis and degradation, biological 
actions, methods of analysis and role as additives. Due to the gap in the knowledge, 32 
chlorophyll derivative standards were laboratory prepared and analyzed with high 
resolution time-of-flight mass spectrometry including 132-OH, 151-OH-lactone and pyro 
derivatives in dephytylated and phytylated of a and b series of chlorophyll, proposing 
new fragmentation pathways and new reaction mechanisms. Such experience allowed to 
characterize the five major edible seaweeds, as the information related with the 
chlorophyll content was almost null although highly ingested in our days. Once 
characterized the chlorophyll profile in fresh macro algae, the following step was to 
analyze the influence of different cooking methods in such phytochemicals, comparing 
the different food matrix effect. Following, digestive and absorbable properties of 
chlorophyll pigments from edible seaweeds were carried out including in vitro 
digestion, micellarization process, following cell absorption and comparison between 
fresh and cooked food materials. Finally, to be able to obtain information about the 
mechanism of chlorophyll absorption and transportation pattern it was necessary to 
formulate micelles with natural chlorophyll pigments to subject to highly polarized 
Caco-2 membrane. Finally, it was possible to propose the initial bases of the chlorophyll 
human intestinal membrane transportation. 
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2. - OBJECTIVES 
 
   Due to its essential role in the photosynthesis, chlorophylls are the most abundant 
pigments in nature. In spite of the omnipresence of chlorophylls from algae to higher 
plants, and consequently daily part of our diet, there is scarce information related with 
the bioavailability of chlorophylls (Ferruzzi et al., 2001; Ferruzzi et al., 2002; Gallardo-
Guerrero et al., 2008; Gandul-Rojas et al., 2009). On the contrary, great advances have 
been made in relation with the availability of carotenoids (Garrett et al., 1999; van het 
Hof et al., 2000; Kopsell and Kopsell, 2006; Maiani et al., 2009) even with few 
potential transporter involved (During et al., 2005; Reboul et al., 2005; Moussa et al., 
2008; Reboul et al., 2011), probably due to the higher stability of these pigments. In 
addition, important and prominent benefits to human health have been shown for dietary 
chlorophylls such as antimutagenic effect (Díaz et al., 2003, Simonich et al., 2007), 
antigenotoxic properties (Negishi et al., 1997), and potent antioxidant capacity to 
scavenge free radicals and to prevent lipid oxidation (Lanfer-Márquez et al., 2005). In 
view of the lack of knowledge, the main aim of the present thesis is to study the 
bioavailability of chlorophylls from a global point of view: including an adequate 
analysis of chlorophyll derivatives presents in foods, effect of food cooking in 
chlorophyll profile, studies of in vitro digestion and absorption, and finally first 
investigations of possible transporters. Specifically, the objectives of the research are: 
 
1- To develop a deep and detailed characterization of all the chlorophyll derivatives 
potentially present in foods. This study will allow making a proper identification of 
the chlorophyll derivatives in whatever matrix. 
2- Once edible seaweeds are selected as reference raw material for the present doctoral 
thesis, and due to the gap in the scientific bibliography, one of the objectives will be to 
identify the chlorophylls derivatives that characterize each group of edible macro 
algae. 
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3- Besides fresh fruits and vegetables, our diet is composed of processed food. There are 
studies of the influence of different processing techniques in the chlorophyll profile of 
raw food material. One of the typical characteristic of macro algae is the complexity of 
extracellular material. Consequently, it is essential to know the effect that different 
cooking methodologies can induce in the chlorophyll profile of seaweeds. 
4- Although chlorophyll derivatives are highly daily ingested, there is a strong 
ignorance about the behavior of these compounds during the in vitro digestion. 
Consequently, one of the main objectives of the present thesis is to perform a complete 
and detailed study of the in vitro digestive stability and micellarization of 
chlorophyll derivatives present in the main edible seaweeds, including the cooking 
effect. The different extracellular material of the three seaweeds will allow also 
evaluating the influence of the food matrix during the digestion. And the previous total 
characterization by HPLC-MS of the chlorophyll profile in the three seaweeds will 
probably permit to study the behavior of chlorophyll derivatives not analyzed before. 
5- If in relation with chlorophyll performance during in vitro digestion the knowledge is 
very limited, less is known about the absorption process and nothing about transporters. 
In consequence, the final objective of the present work is to gain information about 
the intestinal absorption of different chlorophyll derivatives to characterize the 
process and try to identify if any transporter could be implicated. 
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3. - ABSTRACT OF THE RESULTS 
 

The present doctoral thesis focuses on the main group of natural pigments, the 
chlorophylls. Although years of investigation has provided a vast information about the 
chemistry and biochemistry of chlorophylls, the new trends in food science give 
directions to human health and nutritional properties of the different phytochemicals 
present in our daily diet. For chlorophylls pigments such area of investigation is 
relatively new and consequently the reason of the present research.  

The first result of the thesis is a complete review of the main characteristics of the 
chlorophylls pigments. This chapter includes aspects as structures, function and 
localization, biosynthesis and degradation, biological actions, methods of analysis and 
roles as food additives. 

To develop the thesis it was necessary first to develop specific methods to obtain the 
complete set of chlorophyll standards that can be present in processed, storage or 
ripened foods. The 32 chlorophyll derivatives were analyzed in depth by high resolution 
time-of-flight mass spectrometry and studied their behavior during the MS2 
fragmentation with powerful post-processing software. It is found that, while MS2-
based reactions of phytylated chlorophyll derivatives point to fragmentations at the 
phytyl and propionic chains, dephytylated chlorophyll derivatives behave different as 
the absence of phytyl makes β-keto ester group and E ring more prone to fragmentation. 
The introduction of an oxygenated function at E ring enhances the progress of 
fragmentation reactions through the β-keto ester group, developing also exclusive 
product ions for 132-hydroxy derivatives and for 151-hydroxy-lactone ones. Native 
chlorophyllides and pheophorbides mainly exhibit product ions that involve the 
fragmentation of D ring, as well as additional exclusive product ions. It is noteworthy 
that all b derivatives, except 151-hydroxy-lactone compounds, undergo specific CO 
losses. It has been proposed a new reaction mechanism based on the structural 
configuration of a and b chlorophyll derivatives that explains the exclusive CO 
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fragmentation. Proposals of the key reaction mechanisms underlying the origin of new 
product ions have been made.  

 The same methodological approach has been applied for the determination of 
chlorophyll profile in the five major edible seaweeds. Seven new chlorophyll epimers at 
C132 position including chlorophyll c1’, 132-OH pheophorbide a’, pheophorbide a’, 132-
OH chlorophyll b’, 132-OH pheophytin a’, pheophytin a’, and 151-OH-lactone 
pheophorbide a’ were identified for the first time in edible seaweeds and they show the 
same fragmentation pattern as their parent chlorophyll. In addition, eight new 
chlorophyll derivatives including 132-OH chlorophyllide c2, chlorophyll c2, chlorophyll 
c1, chlorophyll c1´, pheophorbide d, purpurin-18 a, pheophytin d and phytyl-purpurin-18 
a were identified for the first time in edible macro algae and it is found that additional 
unsaturated position at C171-C172 impedes α-cleavage reaction in MS2 analysis of 
chlorophyll c and the double keto rearrangement at the E ring in phytol purpurin-18 a 
and purpurin-18 a easily displaces the ion charge from remote positions and allows the 
fragmentation of the keto-lactone group. Highly surprising was the discovery of 
chlorophyll d derivatives in macro seaweeds. Chlorophyll d have been scarcely 
characterized (only in specific cyanobacteria), and pheophorbide d has never been 
reported previously. Such findings allowed by first time the complete MS2 
characterization of d derivatives. Chlorophyll profile in edible seaweeds differs with 
species. Red algae (Nori) contain mainly a series of chlorophyll, mainly pheophorbides 
and pheophytins; green algae (Sea Lettuce and Aonori), a and b series, mainly 
chlorophyll a and b; brown algae (Kombu and Wakame), principally a and c series, 
mainly pheophytins. 

The study of the cooking effects on the chlorophyll profile in edible seaweeds 
revealed that they are associated with the processing parameters, the structure of edible 
seaweeds and their respective chlorophyll molecules. Pheophytinization and 
decarboxymethylation at C132 are favored in cooking process. Pheophytinization degree 
is higher for a series than b series. Oxidation reactions occur mainly for chlorophyll a 
and b, not for pheophytins. Due to seaweed differences in extracellular composition and 
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different thermal sensitivity of chlorophyll structures, generally, cooking has no effect 
on Nori seaweeds, and induces similar chlorophyll losses during boiling or 
microwaving for Kombu seaweeds. On the contrary, for green seaweeds microwaving 
methods is softer than boiling. 

After the characterization of the chlorophyll profile of seaweeds, fresh dried and 
cooked, the three main macro algae were submitted to an in vitro digestion process, 
including the oral, gastric and intestinal phases to evaluate the stability of chlorophylls. 
In summary, three principal types of reactions were prompted: (1) oxidation reactions to 
produce 132-OH and 151-OH-lactone derivatives; (2) pheophytinization reaction that 
favors a series than b and c series; (3) pheophorbidation reaction that occurs obviously 
only when the initial chlorophyll profile for digestion is mainly composed of 
pheophytins. Cooking does not introduce significant modifications of chlorophyll 
profiles during in vitro digestion.  

Due to their polarity, chlorophyll compounds (as many other phytochemicals) 
requires the incorporation in micelles previous to the absorption by the intestinal cells. 
Consequently, the micellarization process is an estimation of which proportion of a 
compound after the digestion is theoretically ready for the enterocyte in the form of 
micelles. The efficiency of the compound transferred from the digesta to aqueous 
micellar fraction (AMF) is defined as the percentage of micellarization. The research 
concluded that dephytylated chlorophylls are easier micellarizated than phytylated ones. 
The analysis of seaweeds material allowed by first time comparing three series of 
chlorophylls, resulting that a and c series are favored than b series. Finally, the detailed 
analysis of chlorophyll derivatives determined that oxidized chlorophyll derivatives are 
favored than parent chlorophylls, especially for phytylated ones.  The analysis of the 
cooking effects on digestive and micellarization properties of chlorophyll pigments 
from edible seaweeds, established that cooking improves the recovery of chlorophyll 
pigments in edible seaweeds, especially for Sea Lettuce and Kombu, but decreases the 
micellarization rate of chlorophyll pigments in Nori and Kombu with that of Sea 
Lettuce unchanged. To obtain a general view of a combination of all the process 
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analyzed in the thesis (cooking, in vitro digestion and micellarization) on the 
chlorophyll profile of seaweeds, an index of processing bioaccessibility has been 
proposed. It showed that in the respect of chlorophyll pigments, Nori is recommended 
to be consumed fresh dried; while Sea Lettuce and Kombu seaweeds are better to ingest  
microwaved. 

Followed with the physiological process, aqueous micellar fractions of chlorophyll 
pigments from fresh dried and cooked seaweeds were combined with DMEM and 
subjected to Caco-2 cell absorption. After the incubation and consequent analysis, it 
was observed that dephytylated chlorophylls are better absorbed than phytylated 
chlorophylls and that oxidation reactions are promoted during the absorption process. 
Generally, cooking does not affect the cell absorption of chlorophyll derivatives.  

Once demonstrated that chlorophylls are absorbed by human intestinal cells, it was 
necessary to investigate the absorption process. It was mandatory to set up the protocol 
to incorporate the required concentrations of chlorophyll derivatives into the micelles. 
Applying the methodology, pheophorbide and pheophytin a-rich micelles were 
formulated in an absorption assay with highly polarized Caco-2 membrane cells 
growing on transwell plates that can present physiological intestinal environment for 
nutrient absorption. Pheophorbide a has a higher ability of incorporation into mixed 
micelles and higher absorption rate compared with pheophytin a. At 37 oC, absorption 
rate of pheophorbide a increases with increasing concentration in the mixed micelles 
and saturated at higher concentrations implying a facilitated transportation involved. 
Meanwhile the absorption rate of pheophytin a seems to be linearly increasing with 
higher concentration. At 4oC, absorption rate of pheophorbide a and pheophytin a 
increases totally linearly, although absorption rate of both pheophorbide a and 
pheophytin a is obviously higher at 37oC than at 4oC. In conclusion, it was shown that 
pheophorbide a is actively transported into the intestinal cell while for pheophytin a, the 
most likely mechanism implied in its cell absorption process should be a passive 
transport. 
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Finally, to characterize the complete chlorophyll intestinal absorption process, other 
delivery protocols were investigated. These experiments permit the evaluation of 
transportation characteristics related with apical and basolateral surface, directionality 
or even efllux. Results showed that pheophorbide a molecule can be transported across 
the Caco-2 cell membrane from the basolateral side to apical side but not for the 
opposite direction. At difference, pheophytin a cannot cross the cell membrane 
regardless of transport direction. Hence, absorption rate of pheophytin a was 
significantly lowered by reversing the transport direction, but for pheophorbide a, not so 
significantly. In low concentrations, absorption rate of pheophorbide a is even faster 
from basolateral to apical than from apical to basolateral. Efflux experiment revealed 
that the majority of absorbed pheophorbide a and pheophytin a are delivered back to 
apical side, and others are still in the cell monolayer. Nearly none were found in 
basolateral side.  

To conclude the thesis, taking into account the absorption process of pheophorbide a 
is mediated by a carrier, attempts to identify such transporters were made. SR-BI and 
NPC1L1 transporters are two of the best characterized carriers implied in the carotenoid 
absorption process. Subsequently, experiments of antibodies and specific inhibitor 
treatment against SR-BI and NPC1L1 transporters found that SR-BI, but not NPC1L1 
seems to be partially involved in the intestinal absorption of pheophorbide a by Caco-2 
cells. It is the first time that a transporter of chlorophyll derivative is identified. 
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7 SPECTROSCOPIC STUDIES OF CHLOROPHYLL 
DERIVATIVES IN EDIBLE SEAWEEDS 
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10.- DISCUSSION 
 
   Chlorophyll pigments are the most widely distributed natural pigment in the world, 
present in different kingdoms from protists to vegetal. In fact, our daily ingest of 
chlorophylls is higher than carotenoids, a class of pigments from which a lot of 
investigations have been done. Apart from other beneficial properties related with 
human health, information about their bioavailability or bioaccessibility and following 
transportation is limited. In this thesis, investigations were carried out associated with 
the structure elucidation of chlorophyll and their derivatives, characterization of the 
chlorophyll profile of the main edible macroalgae, bioaccessibility of chlorophyll 
pigments from food origin (seaweeds), cell absorption and transportation 
characterization of chlorophyll derivatives. In this sense, a clear picture of chlorophyll 
derivatives from natural occurrence to absorption and transportation by human cell 
membrane is obtained.     
   As an introductory section, a detailed chapter of chlorophyll pigments is accomplished 
to give information about their structures and presence in the food resources, 
transformations during biosynthetic and catabolic process and food processing, analysis 
methodology including extraction and multiple identification (UV-visible, fluorescence, 
mass and nuclear magnetic resonance) and their role as food coloring additives.  
   The lack of a complete structure elucidation of chlorophyll derivatives including 132-
OH, 151-OH-lactone and pyro chlorophyll derivatives in both phytylated and 
dephytylated version made necessary to carry out the research of MSn analysis of 
chlorophyll derivatives. Actually, in early 1990s, Schwartz research group (van 
Breemen et al., 1991) had analyzed the main fragments ions after MS2 analysis of the 
most common natural chlorophyll derivatives including chlorophyll a (b), pheophytin a 
(b), chlorophyllide a (b), pheophorbide a (b) and pyropheophytin a (b) with FAB mass 
spectrometry. While for the other 22 chlorophyll derivatives, including 132-OH and 151-
OH-lactone derivatives have been frequently reported recently in natural food resources 
(Otsuki et al., 1987; Yamauchi et al., 2002; Funamoto et al., 2003; Roca et al., 2007; 
Huang et al., 2008; Kao et al., 2011; Loh et al., 2012; ) and pyro derivatives (mainly 
pyropheophorbide a) have been intensively studied in the development of 
photodynamic therapy (Stamati et al., 2010; Zhou et al., 2012), although without a 
proper characterization. On the contrary, there is no standard method for the laboratory 
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preparation of these new derivatives. In the other hand, mass techniques progress 
positively that allow high resolution and mass measurements available that can help to 
identify fragmentation ions more accurately and the powerful post-processing software 
allows to predict structural arrangement of new product ions not described previously. 
In this section, an overall method was provided for the laboratory preparations of 
chlorophyll standards including phytylated and dephytylated, a and b series, 132-OH, 
151-OH-lactone and pyro chlorophyll derivatives. In total, 32 chlorophyll derivatives 
were prepared in laboratory condition. Among them, methods for 132-OH, 151-OH-
lactone and pyro derivatives are newly set with different parameters (temperature, time, 
etc). It was found that the presence of magnesium in the central position of the cyclic 
tetrapyrrol structure influenced the preparation procedures of chlorophyll derivatives. 
Related MSn analysis of chlorophyll derivatives, some fragmentation patterns are 
consistent with previous studies. As well, new fragmentation ions and patterns are found 
especially when additional group of 132-OH and 151-OH-lactone are introduced to the 
tetrapyrrol structure. By comparing fragmentation pattern of a and b series and their 
derivatives systematically, it was shown that in contrary to what is supposed up to now, 
the exclusive CO fragmentation for b series have the cleavage site at C131. While 
phytylated chlorophyll derivatives yield product ions from phytyl and propionic chains 
fragmentation, dephytylated chlorophyll derivatives show different reaction sites for 
MS2-based reactions, as the absence of phytol makes β-keto ester group and E ring more 
prone to fragmentation. The introduction of functional groups at the isocyclic ring (132-
OH, 151-OH-lactone and pyro rearrangement) of the chlorophyll molecule implies 
exclusive product ions, enhancing the progress of fragmentation reactions through the 
β-keto ester group. In addition, proposals of the key reaction mechanisms underlying 
the origin of new product ions have been made. All of these results suggest it is essential 
to make this thoughtful analysis of all the chlorophyll derivatives. 
   It is surprising that only a few of publications dealt with the bioavailability of 
chlorophyll compound, although they have been considered with plenty of healthy 
benefits and commonly taken by human beings along with green fruits and vegetables. 
Especially for natural chlorophyll pigments, only two reports have been found so far 
(Ferruzzi et al., 2001; Gallardo-Guerrero et al., 2008). In this manner, a comprehensive 
research of digestive property and following cell absorption of natural chlorophyll 
pigments from edible seaweeds were carried out. The reason why seaweeds were 
selected is due to its high content and fertile profile of chlorophyll derivatives and also 
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due to the emerging popularity in daily consumption for other nutrient advantages. For 
the enzymatic and chemical sensibility of chlorophyll compounds, effects of cooking 
(boiling and microwaving) were also evaluated for the bioaccessibility and cell 
absorption process. 
   Firstly, chlorophyll profiles of five edible seaweeds (Nori, Sea Lettuce, Aonori, 
Wakame and Kombu) with higher consumption were characterized by MS2. A difference 
with microalgae, whose detailed composition is known (Garrido and Zapata, 1993; 
Garrido et al., 2000; Zapata et al., 2004), the “recalcitrant” extracellular material of 
macroalgae has made difficult its complete characterization, and chlorophyll 
composition is not an exception. Consequently, in section 7, a suitable extraction 
method was developed for an efficient and fast extraction of chlorophyll pigments from 
macro algae and notably, 8 new chlorophyll derivatives were identified from five edible 
seaweeds along with their MS2 fragmentation patterns. Generally, related with 
chlorophyll profile, Nori, the red algae, presents around 40% of pheophorbide type and 
60% of pheophytin type; Sea Lettuce and Aonori belonging to green algae, are very 
similar with the majority of the chlorophyll pigments being chlorophyll a and b; both 
Wakame and Kombu belonging to brown algae have a and c series of chlorophyll 
pigments. Noteworthy is the discovery by first time in brown and red seaweeds 
pheophorbide d. For a proper identification, the cyanobacteria Acariochloris marina 
was grown, as the only living organism with more than 90% of the chlorophyll profile 
being chlorophyll d. Extracted chlorophyll d was transformed in pheophorbide and 
pheophytin d, and used as standard to confirm the presence of such derivatives in brown 
and red algae. It is important to highlight that it is first time that pheophorbide d is 
described in a living organism and the complete characterization is made.  
   When chlorophyll pigments from edible seaweeds experience the cooking, in vitro 
digestion and sub sequential cell absorption, the chlorophyll profile is greatly modified 
depending on different seaweeds. Meanwhile, each step means different reactions co-
concurred. Cooking implies magnesium-dechelation of chlorophyll, the yield of pyro 
chlorophyll derivatives, oxidation of chlorophyll a and b and total degradation of 
chlorophyll pigments. But depending on the different extracellular structure and the 
chlorophyll profile, the impact of the reactions is different. While for Nori seaweeds the 
cooking had no effect, for Sea Lettuce boiling and microwaving implied degradation of 
chlorophylls compounds at different level. At difference, Kombu cooked seaweeds also 
suffer net degradation of chlorophylls but at the same level for boiling and 
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microwaving. 
   The in vitro digestion implies magnesium-dechelation of chlorophylls, de-
esterification of pheophytins, oxidation and total degradation of pigments. And finally, 
when the acquired AMF is subjected to cell absorption, chlorophyll pigments also 
experience an extra oxidation process. It can be seen that oxidation reactions occur in 
every step so that in the final chlorophyll profile found in Caco-2 cells, almost more 
than a half of chlorophyll pigments are oxidized (table 11), although this is also partly 
due to the oxidized pigment is better micellarizated than the parent pigment.  
   Edible seaweeds are good resource for the cell uptake research of chlorophyll 
derivatives for the reason that they not only provide different series of chlorophyll but 
also show a wide range of derivative distribution, from hydrophilic dephytylated 
derivatives (pheophorbide a, c series) to hydrophobic phytylated one (pheophytin and 
chlorophyll). It is the first time to study c series in the in vitro digestion and cell 
absorption and they are accumulated in Caco-2 cells. Comparison of different series of 
chlorophyll reveals that a and c series still stand out as the more bioavailable than b 
series as the ratio between a and b series is enhanced from 2.97 (table 5) in fresh Sea 
Lettuce to 7.07 (table 11) in Caco-2 cells and that for a and c series remains similar. 
This is related with the molecular structure in each series. Chlorophyll derivatives found 
for each series in current work are, pheophorbide a type, chlorophyll a type and 
pheophytin a type for a series; chlorophyll b type and pheophytin b type for b series; 
chlorophyll c and pheophorbide c type for c series. Both a and c series contain 
dephytylated chlorophyll, but do not b series. It has been also proved by others that 
dephytylated chlorophyll is easier micellarizated and absorbed than phytylated 
chlorophyll (Gallardo-Guerrero et al., 2008; Gandul-Rojas et al., 2009). This pattern is 
well reflected by ratio changes of dephytylated and phytylated chlorophyll from fresh 
dried materials to the final cell accumulation. Table 15 is a summary calculation of the 
ratio of dephytylated and phytylated chlorophyll in each step related with chlorophyll 
digestion and uptake from edible seaweeds. From this table, it can be clearly observed 
that dephytylated chlorophyll is much more favored than phytylated chlorophyll. The 
ratio enhancement of Nori and Kombu from fresh dried material to digesta is due to the 
de-esterification of pheophytin a during digestion process, while not for Sea Lettuce. 
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Table 15: Ratio changes of dephytylated and phytylated chlorophyll derivatives in the 
in vitro digestion and cell absorption process of fresh dried seaweeds. 
  Ratios of dephytylated and phytylated chlorophyll derivatives 
Seaweeds 

Fresh dried 
material Digesta 

Aquatic micellar 
fractions 

Accumulated in 
cells 

Nori 0,63±0,11 1,11±0,10 3,15±0,41 10,06±1,71 
Sea Lettuce 0,08±0,00 0,07±0,01 0,39±0,04 0,99±0,28 
Kombu 0,28±0,00 0,66±0,23 1,17±0,09 1,62±0,13 

The fresh dried material (Nori, Sea Lettuce and Kombu) were subjected to an in vitro 
digestion to form digesta, then aquatic micellar fraction was obtained by ultracentrifuge, 
diluted, and mixed with DMEM for the cell absorption. Finally, chlorophyll pigments 
were found to be accumulated in cells. 
 
   Cooking effect is evaluated for determine whether it improves the bioaccessibility and 
cell uptake of chlorophyll pigments and it has been found no influence when the 
micellar chlorophyll pigments are supplied to cell absorption. But it does affect the in 
vitro digestion and following micellar fractions. Generally, cooking can enhance the 
recovery rate of chlorophyll derivatives indicating more pigments were ready for the 
micellarization process. Nevertheless, cooking decreases the micellarization rate for 
Nori and Kombu, not for Sea Lettuce. Consistently, micellarization process of 
hydrophilic pheophorbide is depressed by cooking. In this sense, the processing 
bioaccessibility which combines cooking effects on the digestive materials, recovery 
rate and micellarization process together gives specific information about the amounts 
of chlorophyll that are ready for the enterocytes absorption, and results show the effect 
of cooking needs to be treated differently with different seaweeds. 
   According to the present investigations and previous study, it has been known that 
chlorophyll pigments can be absorbed by human cell lines (Ferruzzi et al., 2001; 
Gallardo-Guerrero et al., 2008; Gandul-Rojas et al., 2009), while none was known 
related their absorption process, circulation and potential involved transporter, etc. Due 
to this, Caco-2 cells were grown on transwell plates to differentiate into polarized 
absorptive cell monolayers for the membrane transportation study of chlorophyll 
pigments. When Caco-2 membrane were subjected with mixed micelles of 
pheophorbide a or pheophytin a, it is showed that pheophorbide a involves a facilitated 
absorption in the tested ranges while for pheophytin a, totally passive absorption. The 
additional phytol chain affects molecular properties such as polarity, molecular size and 
solubility in micelles, thus resulted in different behavior of pheophorbide a and 
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pheophytin a not only in the micellarization process but also cell absorption. Their 
differences are also reflected in the directionality experiment. It is surprisingly found 
that pheophorbide a is effectively transported from basolateral side to the apical side 
compared with the opposite, especially in lower concentrations. For pheophytin a, the 
absorption rate from basolateral side to apical is much lower than that from apical side 
to basolateral. The efflux experiments showed that after 24 h, over a half of the 
absorbed pheophorbide a and pheophytin a are secreted to the apical side with only a 
very small amount of pheophorbide a found in the basolateral side, and more will be 
effluxed to apical with incubation time prolonged. With the available data and 
references, it is very difficult to speculate the potential transportation mechanisms for 
pheophorbide a and pheophytin a. Only references from related phytochemicals such as 
carotenoids and lipid vitamins give information about transporter involved (Reboul and 
Borel, 2011). Thus antibody of SR-BI and its inhibitor plus antibody of NPC1L1were 
tested with the absorption experiment of pheophorbide a due to the facilitated 
transportation found in the present work. Finally, it seems SR-BI is involved in the 
apical uptake of pheophorbide a absorption by Caco-2 membrane.   
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11. - CONCLUSSIONS 
 
1. The central coordination of the macrocycle with magnesium (chlorophylls) or with 

hydrogen atoms (pheophytins) affects the preparation of 132-OH, 151-OH-lactone 
and pyro chlorophyll derivatives 

2. In phytylated chlorophylls, the fragmentations mainly correspond to the phytyl 
chain and progressive breakdowns from the propionic chain at C17 (excluding the 
pyro-derivatives).While for dephytylated chlorophylls, the absence of phytol makes 
β-ketoester group and E ring more prone to fragmentation.  

3. The introduction of functional groups at the isocyclic ring (132-OH, 151-OH-lactone 
and pyro rearrangement) of the chlorophyll molecule enhances the progress of 
fragmentation reactions through the β-keto ester group, developing exclusive 
product ions.. 

4. Contrary to the present thoughts, the cleavage site for the exclusive CO 
fragmentation in b series is at C131.  

5. Chlorophyll epimers at C132 position show the same fragmentation pattern as their 
parent chlorophyll. 

6. Eight new chlorophyll derivatives have been identified by first time in the five 
major seaweeds, and a new chlorophyll pigment, pheophorbide d, have been 
elucidated structurally and identified in living organisms. 

7. The analysis of the fragments ions after MS2 analysis by first time of chlorophyll c 
derivatives has demonstrated that unsaturations in the propionic unit at C17 reduce 
the McLafferty rearrangements and in consequence impedes the fragmentation at 
this position.   

8. The analysis by first time of the fragmentation products of different purpurin-18 a 
derivatives has shown that the existence of alternative reactions affecting the V ring 
indicates that the double keto rearrangement at the E ring easily displaces the ion 
charge from remote positions and allows the fragmentation of the keto-lactone 
group. 

9. The main parameter that determines the cooking effects on the chlorophyll profile in 
edible seaweeds is associated with the structure of edible seaweeds. Generally, 
cooking has no effect on Nori seaweeds, induces similar chlorophyll losses during 
boiling or microwaving for Kombu seaweeds and on the contrary, for green 
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seaweeds microwaving methods is softer than boiling. 
10. The main reactions that cooking induces in the chlorophyll profile of seaweeds are: 

pheophytinization (higher for a series than b series), decarboxymethylation at C132 
and oxidation reactions (mainly for chlorophyll a and b, but not for pheophytins).  

11. During in vitro digestion, three types of reactions were prompted: (1) oxidation 
reactions to produce 132-OH and 151-OH-lactone derivatives; (2) pheophytinization 
reaction that favors a series than b and c series; (3) pheophorbidation reaction that 
occurs obviously only when the initial chlorophyll profile for digestion is mainly 
composed of pheophytins. Cooking does not introduce significant modifications into 
in vitro digestion. 

12. The recovery during in vitro digestion and the micellarization of the chlorophyll 
pigments are directly affected by the extracellular matrix of the different seaweeds. 

13. During micellarization process, dephytylated chlorophylls are easier micellarizated 
than phytylated ones; a and c series are favored than b series and oxidized 
chlorophyll derivatives are highly favored than parent chlorophyll, probably by their 
higher polarity. 

14. Cooking improves the recovery of chlorophyll pigments in edible seaweeds, 
especially for Sea Lettuce and Kombu, but decreases the micellarization rate of 
chlorophyll pigments in Nori and Kombu with that of Sea Lettuce unchanged. 
Taking into account all the process studied, which is represented by the  processing 
bioaccessibility index, in the respect of chlorophyll pigments, Nori is recommended 
to be consumed fresh dried; while both Sea Lettuce and Kombu, microwaved. 

15. The absorption process supposes that pheophorbides are better transported than 
pheophytins, due to its high polarity, and an increase in the oxidation reactions 
occurs for chlorophyll derivatives. Generally, cooking does not affect the cell 
absorption of chlorophyll derivatives from edible seaweeds.  

16. Pheophorbide a is absorbed in Caco-2 cells by a facilitated transportation, while 
pheophytin a is transported by a passive diffusion. 

17. In the assay of transportation directionality, pheophytin a is inefficiently absorbed 
from basolateral side to apical side compared with from apical side to basolateral 
side. While for pheophorbide a, it can be delivered efficiently from basolateral side 
to apical side especially in low concentrations. Meanwhile, pheophorbide a can be 
transported across the membrane efficiently only from basolateral side to apical 
side. 
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18. In the efflux experiment, pheophorbide a and pheophytin a show similar pattern that 
the majority are effluxed to apical side with traces of pheophorbide a and none of 
pheophytin a found in the basolateral side. 

19. It seems SR-BI is involved in the apical absorption of pheophorbide a. 
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12. - ANNEXES 
Annex 1. - Retention time, elemental composition and exact mass of all 
the chlorophyll derivatives analyzed in the thesis. 
Annex 2. - Chlorophyll structures of all derivatives analyzed in the 
thesis 
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Annex 1. - Retention time, elemental composition and exact mass of all 
the chlorophyll derivatives analyzed in the thesis. 
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Annex 2. - Chlorophyll structures of all derivatives analyzed in the 
thesis 
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