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1. Introdu
tion

Multi-fun
tional data stru
tures and BSP trees.

In 
omputational geometry, eÆ
ient data stru
-

tures have been developed for a variety of ge-

ometri
 query problems: range sear
hing, point

lo
ation, nearest-neighbor sear
hing, et
. The the-

oreti
al performan
e of these stru
tures is often


lose to the theoreti
al lower bounds. In order

to a
hieve 
lose to optimal performan
e, most

stru
tures are dedi
ated to very spe
i�
 settings.

It would be preferable, however, to have a single

multi-fun
tional geometri
 data stru
ture: a data

stru
ture that 
an store di�erent types of data

and answer various types of queries. Indeed, this

is what is often done in pra
ti
e.

Another potential problem with the stru
tures

developed in 
omputational geometry is that they

are sometimes rather involved, and that it is un-


lear how large the 
onstant fa
tors in the query

time and storage 
osts are. Moreover, they may

fail to take advantage of the 
ases where the input

obje
ts and/or the query have some ni
e proper-

ties. Hen
e, the ideal would be to have a multi-

fun
tional data stru
ture that is simple and takes

advantage of any favorable properties of the input

and/or query.

A binary spa
e partition tree, or BSP tree, is a

spa
e-partitioning stru
ture where the subdivision

of the underlying spa
e is done in a hierar
hi
al

fashion using hyperplanes (that is, lines in 
ase

the spa
e is 2D, planes in 3D, et
.) The hierar
hi-


al subdivision pro
ess usually 
ontinues until ea
h


ell 
ontains at most one (or maybe a small number

of) input obje
t(s). BSP trees are used for many

purposes; among these are range sear
hing [1℄ and
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hidden surfa
e removal with the painter's algo-

rithm [11℄.

In some appli
ations|hidden-surfa
e removal is

a typi
al example|the eÆ
ien
y is determined by

the size of the BSP tree. Hen
e, several resear
hers

have proposed algorithms to 
onstru
t small BSP

trees in various di�erent settings [2,5,13,15℄. In this

paper we fo
us on the query 
omplexity of BSP

trees.

Approximate range sear
hing. Developing a

multi-fun
tional geometri
 data stru
ture|one

that 
an store any type of obje
t and 
an do range

sear
hing with any type of query range|that

provably has good performan
e seems quite hard,

if not impossible. As it turns out, however, su
h

results 
an be a
hieved if one is willing to settle

for "-approximate range sear
hing, as introdu
ed

by Arya and Mount [3℄.

Here one 
onsiders, for a parameter " > 0, the "-

extended query rangeQ

"

, whi
h is the set of points

lying at distan
e at most �·diam(Q) fromQ, where

diam(Q) is the diameter of Q. Obje
ts interse
ting

Q must be reported, while obje
ts interse
ting Q

"

(but not Q) may or may not be reported; obje
ts

outside Q

"

are not allowed to be reported. In pra
-

ti
e, one would expe
t that for small values of ",

not too many extra obje
ts are reported.

Our results. In this paper we show that it is pos-

sible to 
onstru
t BSP trees for sets of disjoint seg-

ments in the plane, and for low-density s
enes in

any dimension, whose query time for approximate

range sear
hing is as good, or almost as good, as

the best known bounds for point data [3,8,9℄. More

pre
isely, our results are as follows.

In Se
tion 3 we study BSP trees for a set S of

n disjoint line segments in the plane. We give a

general te
hnique to 
onvert a BSP tree T

p

for a set

of points to a BSP tree T

S

for S, su
h that the size

of T

S

is O(n · depth(T
p

)), and the time for range

sear
hing remains almost the same.

In Se
tion 4 we then 
onsider low-density s
enes.
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We prove that any s
ene of 
onstant density in

R
d

admits a BSP of linear size, su
h that range-

sear
hing queries with arbitrary 
onvex ranges 
an

be answered in O(log n+min

">0

{(1="d−1)+ k

"

}),
where k

"

is the number of obje
ts interse
ting Q

"

.

2. Preliminaries

In this se
tion we brie
y introdu
e some termi-

nology and notation that we will use throughout

the paper.

A BSP tree for a set S of n obje
ts in R
d

is a

binary tree T with the following properties.

{ Every (internal or leaf) node � 
orresponds to

a subset region(�) of R
d

, whi
h we 
all the re-

gion of �. These regions are not stored with the

nodes. When � is a leaf node, we sometimes re-

fer to region(�) as a 
ell. The root node root(T )


orresponds to R
d

.

{ Every internal node � stores a hyperplane

h(�). The left 
hild of � then 
orresponds to

region(�) ∩ h(�)

−
, where h(�)

−
denotes the

half-spa
e below h(�), and the right 
hild 
orre-

sponds to region(�)∩ h(�)

+

, where h(�)

+

is the

half-spa
e above h(�).

A node � stores, besides the splitting hyper-

plane h(�), a list L(�) with all obje
ts 
ontained

in h(�) that interse
t region(�).

{ Every leaf node � stores a list L(�) of all obje
ts

in S interse
ting the interior of region(�). In our


ase the lists have a 
onstant length.

The size of a BSP tree is de�ned as the total

number of nodes plus the total size of the lists L(�)

over all nodes � in T . Finally, for a node � in a tree

T , we use T (�) to denote the subtree of T rooted at

�, and we use depth(T ) to denote the depth of T .

3. BSPs for segments in the plane

Let S be a set of n disjoint line segments in the

plane. In this se
tion we des
ribe a general te
h-

nique to 
onstru
t a BSP for S, based on a BSP on

the endpoints of S. The te
hnique uses a segment-

tree like approa
h similar to, but more general

than, the deterministi
 BSP 
onstru
tion of Pater-

son and Yao [13℄. The range-sear
hing stru
ture of

Overmars et al.[12℄ uses similar ideas, ex
ept that

they store so-
alled long segments|see below|in

h(ν) h(ν)

a) b)

h(µ)

Figure 1. Illustration of the pruning strategy. The bla
k

squares indi
ate input segments. a) There is a T-jun
tion

on h(�): a splitting line in the subtree ends on h(�). Pruning

h(�) would partition the empty part of the region, whi
h

might have a negative e�e
t on the query time. b) There

is no T-jun
tion on h(�) and h(�) 
an be pruned.

an asso
iated stru
ture, so they do not 
onstru
t

a BSP for the segments. The main extra 
ompli
a-

tion we fa
e is that we must ensure that we only

work with the relevant portions of the given tree

during the re
ursive 
onstru
tion, and prune away

irrelevant portions. The pruning has to be done


arefully, however, be
ause too mu
h pruning 
an

have a negative e�e
t on the query time. Next we

des
ribe the 
onstru
tion in more detail.

Let P be the set of 2n endpoints of the segments

in S, and let T

P

be a BSP tree for P . We assume

that T

P

has size O(n), and that the leaves of T

P

store at most one point from P . Below we des
ribe

the global 
onstru
tion of the BSP tree for S. Some

details of the 
onstru
tion will be omitted here.

The BSP tree T

S

for S is 
onstru
ted re
ursively

from T

P

, as follows. Let � be a node in T

P

. We 
all

a segment s ∈ S short at � if region(�) 
ontains

an endpoint of s. A segment s is 
alled long at �

if (i) s interse
ts the interior of region(�), and (ii)

s is short at parent(�) but not at �. In a re
ursive


all there are two parameters: a node � ∈ T

P

and

a subset S

∗ ⊂ S, 
lipped to lie within region(�).

The re
ursive 
all will 
onstru
t a BSP tree T

S

∗

for S

∗
based on T

P

(�). Initially, � = root(T

P

) and

S

∗
= S. The re
ursion stops when S

∗
is empty, in

whi
h 
ase T

S

∗
is a single leaf.

Let L ⊂ S

∗
be the set of segments from S

∗
that

are long at �. The re
ursive 
all is handled as fol-

lows.

(i) If L is empty, we 
ompute S

l

= S

∗ ∩ h(�)

−

and S

r

= S

∗ ∩ h(�)

+

.

If both S

l

and S

r

are non-empty, we 
re-

ate a root node for T

S

∗
whi
h stores h(�) as
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its splitting line. We then re
urse on the left


hild of � with S

l

and on the right 
hild of �

with S

r

to 
onstru
t respe
tively the left and

the right subtree of the root.

If one of S

l

and S

r

is empty, it seems the

splitting line h(�) is useless in T

S

∗
. We have

to be 
areful, however, that we do not in-


rease the query time: the removal of h(�) 
an


ause other splitting lines, whi
h used to end

on h(�), to extend further. Hen
e, we pro-


eed as follows. De�ne a T-jun
tion, see Fig.

1, to be a vertex of the original BSP subdi-

vision indu
ed by T

P

. To de
ide whether or

not to use h(�), we 
he
k if h(�)∩R 
ontains

a T-jun
tion in its interior, where R is the

region that 
orresponds to the root of T

S

∗
. If

this is the 
ase, we do not prune.

(ii) The se
ond 
ase is when L is not empty. Now

the long segments partition region(�) into

m := |L| + 1 regions, R

1

; : : : ; R

m

. We take

the following steps.

(i) We split S

∗ \ L into m subsets

S

∗

1

; : : : ; S

∗

m

, where S

∗

i


ontains the seg-

ments from S

∗
lying inside R

i

.

(ii) We 
onstru
t a binary tree T withm−1

internal nodes whose splitting lines are

the lines 
ontaining the long segments.

The leaves of T 
orrespond to the re-

gions R

i

, and will be
ome the roots of

the subtrees to be 
reated for the sets

S

∗

i

. T is balan
ed by the sizes of the sets

S

∗

i

, as in the trapezoid method for point

lo
ation [14℄.

The tree T

S

∗
then 
onsists of the tree

T , with, for every 1 6 i 6 m, the leaf

of T 
orresponding to R

i

repla
ed by a

subtree for S

∗

i

. More pre
isely, ea
h sub-

tree T

i

is 
onstru
ted using a re
ursive


all with node � and S

∗

i

as parameters.

The following theorem states the performan
e

of the BSP. Its proof is omitted in this extended

abstra
t.

Theorem 1 Let R be a family of 
onstant-


omplexity query ranges in R
2

. Suppose that for

any set P of n points in R
2

, there is a BSP tree

T

P

of linear size, where ea
h leaf stores at most

one point from P , with the following property:

any query with a range from R interse
ts at most

v(n; k) 
ells in the BSP subdivision, where k is the

number of points in the query range. Then for any

set S of n disjoint segments in R
2

, there is a BSP

tree T

S

su
h that

(i) the depth of T

S

is O(depth(T

P

))

(ii) the size of T

S

is O(n · depth(T
P

))

(iii) any query with a range from R visits at most

O((v(n; k) + k) · depth(T
P

)) nodes from T

S

,

where k is the number of segments interse
t-

ing the range.

The BSP tree T

S


an be 
onstru
ted in O(n ·
(depth(T

P

))

2

) time.

Several of the known data stru
tures for range

sear
hing in point sets are a
tually BSP trees. Ex-

amples are ham-sandwi
h trees [10℄, kd-trees [7℄,

and BAR-trees [8,9℄. Here we fo
us on the appli
a-

tion using BAR-trees, as it gives good bounds for

approximate range sear
hing for line segments in

the plane.

One 
an 
onstru
t BAR-trees with logarithmi


depth, su
h that the number of leaves visited by

a query with a 
onvex query range Q is bounded

by O((1=")+k

"

), where k

"

is the number of points

inside the extended query range Q

"

.

Combining this with theorem 1 (and a spe
ial-

ized 
onstru
tion algorithm that speeds up the 
on-

stru
tion time by a logarithmi
 fa
tor) we get the

following results.

Corollary 2 Let S be a set of n disjoint seg-

ments in R
2

. In O(n logn) time one 
an 
onstru
t

a BSP tree for S of size O(n logn) and depth

O(logn) su
h that a range query with a 
onstant-


omplexity 
onvex range 
an be answered in time

O(min

">0

{(1=") logn+ k

"

logn}), where k
"

is the

number of segments interse
ting Q

"

.

4. BSPs for low-density s
enes

Let S be a set of n obje
ts R
d

. For an obje
t

o, we use �(o) to denote the radius of the smallest

en
losing ball of o. The density of a set S is the

smallest number � su
h that the following holds:

any ball B is interse
ted by at most � obje
ts o ∈
S with �(o) > �(B) [6℄. If S has density �, we 
all

S a �-low-density s
ene. In this se
tion we show

how to 
onstru
t a BSP tree for S that has linear

size and very good performan
e for approximate

range sear
hing if the density of S is 
onstant. Our

method 
ombines ideas from de Berg [5℄ with the

BAR-tree of Dun
an et al.[9℄ Our overall strategy,

also used by de Berg [5℄, is to 
ompute a suitable
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set of points that will guide the 
onstru
tion of the

BSP tree. Unlike in [5℄, however, we 
annot use the

bounding-box verti
es of the obje
ts in S for this,

be
ause that does not work in 
ombination with a

BAR-tree. What we need is a set G of points with

the following property: any 
ell in a BAR-tree that

does not 
ontain a point from G in its interior is

interse
ted by at most � obje
ts from S, for some


onstant �. We 
all su
h a setG a �-guarding set [4℄

against BAR-tree 
ells, and we 
all the points in G

guards.

The algorithm is as follows.

(i) Constru
t a �-guarding set G for S, as

explained below. The 
onstru
tion of the

guarding set is done by generating O(1)

guards for ea
h obje
t o ∈ S, so that the

guards 
reated for any subset of the obje
ts

will form a �-guarding set for that subset.

Using the results of [4℄ it 
an be shown that

there exists a guarding set for �-low-density

s
enes against BAR-tree 
ells. Using spe
ial

properties of (
orner-
ut) BAR-tree 
ells a

guarding set of size 12n 
an be given for the

planar 
ase. We will use obje
t(g) to denote

the obje
t for whi
h a guard g ∈ G was


reated.

(ii) Create a BAR-tree T on the set G using the

algorithmof Dun
an et al.[9℄, with the follow-

ing adaptation: whenever a re
ursively 
all

is made with a subset G

∗ ⊂ G in a region

R, we delete all guards g from G

∗
for whi
h

obje
t(g) does not interse
t R. This pruning

step, whi
h was not needed in [5℄, is essen-

tial to guarantee a bound on the query time.

This leads to a BSP tree whose 
ells 
an only


ontain guards whose 
orresponding obje
ts

do not interse
t the 
ell.

(iii) Sear
h with ea
h obje
t o ∈ S in T to de-

termine whi
h leaf 
ells are interse
ted by o.

Store with ea
h leaf the set of all interse
ted

obje
ts. Let T

S

be the resulting BSP tree.

The following theorem states the performan
e

of the BSP. Its proof is omitted in this extended

abstra
t.

Theorem 3 Let S be a �-low-density s
ene 
on-

sisting of n obje
ts in R
d

. There exists a BSP tree

T

S

for S su
h that

(i) the depth of T

S

is O(log n)

(ii) the size is O(�n)

(iii) a query range with a 
onvex range Q visits

takes O(logn+� ·min

">0

{(1=")+k

"

}) time,

where k

"

is the number of obje
ts interse
ting

the extended query range Q

"

.

The BSP tree 
an be 
onstru
ted in O(�n logn)

time.
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