Approximate Range Searching Using Binary Space Partitions

Mark de Berg? and Micha Streppel *!,
& Department of Computer Science, TU Eindhoven, P.O.Bozx 513, 5600 MB FEindhoven, the Netherlands.

1. Introduction

Multi-functional data structures and BSP trees.
In computational geometry, efficient data struc-
tures have been developed for a variety of ge-
ometric query problems: range searching, point
location, nearest-neighbor searching, etc. The the-
oretical performance of these structures is often
close to the theoretical lower bounds. In order
to achieve close to optimal performance, most
structures are dedicated to very specific settings.
It would be preferable, however, to have a single
multi-functional geometric data structure: a data
structure that can store different types of data
and answer various types of queries. Indeed, this
is what is often done in practice.

Another potential problem with the structures
developed in computational geometry is that they
are sometimes rather involved, and that it is un-
clear how large the constant factors in the query
time and storage costs are. Moreover, they may
fail to take advantage of the cases where the input
objects and/or the query have some nice proper-
ties. Hence, the ideal would be to have a multi-
functional data structure that is simple and takes
advantage of any favorable properties of the input
and/or query.

A binary space partition tree, or BSP tree, is a
space-partitioning structure where the subdivision
of the underlying space is done in a hierarchical
fashion using hyperplanes (that is, lines in case
the space is 2D, planes in 3D, etc.) The hierarchi-
cal subdivision process usually continues until each
cell contains at most one (or maybe a small number
of) input object(s). BSP trees are used for many
purposes; among these are range searching [1] and

Email addresses: m.t.d.berg@tue.nl (Mark de Berg),
m.w.a.streppel@tue.nl (Micha Streppel).
1 MS is supported by the Netherlands Organisation for Sci-
entific Research (N.W.O.) under project no. 612.065.203.

20th EWCG

hidden surface removal with the painter’s algo-
rithm [11].

In some applications—hidden-surface removal is
a typical example—the efficiency is determined by
the size of the BSP tree. Hence, several researchers
have proposed algorithms to construct small BSP
trees in various different settings [2,5,13,15]. In this
paper we focus on the query complexity of BSP
trees.

Approximate range searching. Developing a
multi-functional geometric data structure—one
that can store any type of object and can do range
searching with any type of query range—that
provably has good performance seems quite hard,
if not impossible. As it turns out, however, such
results can be achieved if one is willing to settle
for e-approximate range searching, as introduced
by Arya and Mount [3].

Here one considers, for a parameter € > 0, the e-
extended query range ()., which is the set of points
lying at distance at most ¢-diam(Q) from @), where
diam(Q) is the diameter of (). Objects intersecting
() must be reported, while objects intersecting Q).
(but not @) may or may not be reported; objects
outside Q). are not allowed to be reported. In prac-
tice, one would expect that for small values of g,
not too many extra objects are reported.

Our results. In this paper we show that it is pos-
sible to construct BSP trees for sets of disjoint seg-
ments in the plane, and for low-density scenes in
any dimension, whose query time for approximate
range searching is as good, or almost as good, as
the best known bounds for point data [3,8,9]. More
precisely, our results are as follows.

In Section 3 we study BSP trees for a set S of
n disjoint line segments in the plane. We give a
general technique to convert a BSP tree T, for a set
of points to a BSP tree Ts for S, such that the size
of Ts is O(n - depth(T})), and the time for range
searching remains almost the same.

In Section 4 we then consider low-density scenes.

Seville, Spain (2004)

20th European Workshop on Computational Geometry

We prove that any scene of constant density in
R? admits a BSP of linear size, such that range-
searching queries with arbitrary convex ranges can
be answered in O(logn +min.so{(1/e471) + k.}),
where k. is the number of objects intersecting Q..

2. Preliminaries

In this section we briefly introduce some termi-
nology and notation that we will use throughout
the paper.

A BSP tree for a set S of n objects in R is a
binary tree T with the following properties.

— Every (internal or leaf) node v corresponds to

a subset region(v) of R%, which we call the re-

gion of v. These regions are not stored with the

nodes. When v is a leaf node, we sometimes re-
fer to region(v) as a cell. The root node root(T")

corresponds to R?.

— Every internal node v stores a hyperplane
h(v). The left child of v then corresponds to
region(v) N h(v)~, where h(r)~ denotes the
half-space below h(v), and the right child corre-
sponds to region(v) N h(v)T, where h(v)T is the
half-space above h(v).

A node v stores, besides the splitting hyper-
plane h(v), alist L(v) with all objects contained
in h(v) that intersect region(v).

— Every leaf node p stores a list L(u) of all objects
in S intersecting the interior of region(u). In our
case the lists have a constant length.

The size of a BSP tree is defined as the total
number of nodes plus the total size of the lists L(v)
over all nodes v in T'. Finally, for a node v in a tree
T, we use T'(v) to denote the subtree of T rooted at
v, and we use depth(T") to denote the depth of T'.

3. BSPs for segments in the plane

Let S be a set of n disjoint line segments in the
plane. In this section we describe a general tech-
nique to construct a BSP for S, based on a BSP on
the endpoints of S. The technique uses a segment-
tree like approach similar to, but more general
than, the deterministic BSP construction of Pater-
son and Yao [13]. The range-searching structure of
Overmars et al.[12] uses similar ideas, except that
they store so-called long segments—see below—in

Figure 1. Illustration of the pruning strategy. The black
squares indicate input segments. a) There is a T-junction
on h(v): a splitting line in the subtree ends on A(v). Pruning
h(v) would partition the empty part of the region, which
might have a negative effect on the query time. b) There
is no T-junction on h(v) and h(r) can be pruned.

an associated structure, so they do not construct
a BSP for the segments. The main extra complica-
tion we face is that we must ensure that we only
work with the relevant portions of the given tree
during the recursive construction, and prune away
irrelevant portions. The pruning has to be done
carefully, however, because too much pruning can
have a negative effect on the query time. Next we
describe the construction in more detail.

Let P be the set of 2n endpoints of the segments
in S, and let Tp be a BSP tree for P. We assume
that Tp has size O(n), and that the leaves of Tp
store at most one point from P. Below we describe
the global construction of the BSP tree for S. Some
details of the construction will be omitted here.

The BSP tree Ts for S is constructed recursively
from T'p, as follows. Let v be a node in T'p. We call
a segment s € S short at v if region(v) contains
an endpoint of s. A segment s is called long at v
if (i) s intersects the interior of region(v), and (ii)
s is short at parent(v) but not at v. In a recursive
call there are two parameters: a node v € Tp and
a subset S* C S, clipped to lie within region(v).
The recursive call will construct a BSP tree Tg«
for S* based on Tp(v). Initially, v = root(Tp) and
S* = 5. The recursion stops when S* is empty, in
which case T+ is a single leaf.

Let L C S* be the set of segments from S* that
are long at v. The recursive call is handled as fol-
lows.

(i) If L is empty, we compute S

and S, = S*Nh(v)*
If both S; and S, are non-empty, we cre-
ate a root node for T's« which stores h(v) as

= S* N h(v)~

March 25-26, 2004

its splitting line. We then recurse on the left
child of v with S; and on the right child of v
with S to construct respectively the left and
the right subtree of the root.

If one of S; and S, is empty, it seems the
splitting line h(v) is useless in Ts-. We have
to be careful, however, that we do not in-
crease the query time: the removal of h(v) can
cause other splitting lines, which used to end
on h(v), to extend further. Hence, we pro-
ceed as follows. Define a T-junction, see Fig.
1, to be a vertex of the original BSP subdi-
vision induced by Tp . To decide whether or
not to use h(v), we check if h(v) N R contains
a T-junction in its interior, where R is the
region that corresponds to the root of Tg«. If
this is the case, we do not prune.

(ii) The second case is when L is not empty. Now
the long segments partition region(v) into
m := |L| + 1 regions, Ry, ..., R,. We take
the following steps.

(i) We split S* \ L into m subsets
Sy, ..., Sy, where S contains the seg-
ments from S* lying inside R;.

(ii) We construct a binary tree T' with m—1
internal nodes whose splitting lines are
the lines containing the long segments.
The leaves of T correspond to the re-
gions R;, and will become the roots of
the subtrees to be created for the sets
S} . T is balanced by the sizes of the sets
S}, as in the trapezoid method for point
location [14].

The tree T's- then consists of the tree
T, with, for every 1 < ¢ < m, the leaf
of T' corresponding to R; replaced by a
subtree for S. More precisely, each sub-
tree T; is constructed using a recursive
call with node v and S} as parameters.

The following theorem states the performance
of the BSP. Its proof is omitted in this extended
abstract.

Theorem 1 Let R be a family of constant-
complexity query ranges in R?. Suppose that for
any set P of n points in R?, there is a BSP tree
Tp of linear size, where each leaf stores at most
one point from P, with the following property:
any query with a range from R intersects at most
v(n, k) cells in the BSP subdivision, where k is the
number of points in the query range. Then for any

Seville (Spain)

set S of n disjoint segments in R?, there is a BSP

tree Ts such that

(i) the depth of Ts is O(depth(Tp))

(ii) the size of Ts is O(n - depth(Tp))

(ii5) any query with a range from R visits at most
O((v(n, k) + k) - depth(Tp)) nodes from T,
where k is the number of segments intersect-
ing the range.

The BSP tree Ts can be constructed in O(n -

(depth(Tp))?) time.

Several of the known data structures for range
searching in point sets are actually BSP trees. Ex-
amples are ham-sandwich trees [10], kd-trees [7],
and BAR-trees [8,9]. Here we focus on the applica-
tion using BAR-trees, as it gives good bounds for
approximate range searching for line segments in
the plane.

One can construct BAR-trees with logarithmic
depth, such that the number of leaves visited by
a query with a convex query range () is bounded
by O((1/€e) + k.), where k. is the number of points
inside the extended query range Q..

Combining this with theorem 1 (and a special-

ized construction algorithm that speeds up the con-
struction time by a logarithmic factor) we get the
following results.
Corollary 2 Let S be a set of n disjoint seg-
ments in R?. In O(nlogn) time one can construct
a BSP tree for S of size O(nlogn) and depth
O(logn) such that a range query with a constant-
complezity convex range can be answered in time
O(min.so{(1/€)logn + k. logn}), where k. is the
number of segments intersecting Q..

4. BSPs for low-density scenes

Let S be a set of n objects R%. For an object
o0, we use p(0) to denote the radius of the smallest
enclosing ball of o. The density of a set S is the
smallest number A such that the following holds:
any ball B is intersected by at most A objects o €
S with p(o) = p(B) [6]. If S has density A, we call
S a A-low-density scene. In this section we show
how to construct a BSP tree for S that has linear
size and very good performance for approximate
range searching if the density of S is constant. Our
method combines ideas from de Berg [5] with the
BAR-tree of Duncan et al.[9] Our overall strategy,
also used by de Berg [5], is to compute a suitable

20th European Workshop on Computational Geometry

set of points that will guide the construction of the
BSP tree. Unlike in [5], however, we cannot use the
bounding-box vertices of the objects in .S for this,
because that does not work in combination with a
BAR-tree. What we need is a set G of points with
the following property: any cell in a BAR-tree that
does not contain a point from G in its interior is
intersected by at most k objects from S, for some
constant k. We call such a set G a k-guarding set [4]
against BAR-tree cells, and we call the points in G
guards.

The algorithm is as follows.

(i) Construct a k-guarding set G for S, as
explained below. The construction of the
guarding set is done by generating O(1)
guards for each object o € S, so that the
guards created for any subset of the objects
will form a x-guarding set for that subset.
Using the results of [4] it can be shown that
there exists a guarding set for A-low-density
scenes against BAR-tree cells. Using special
properties of (corner-cut) BAR-tree cells a
guarding set of size 12n can be given for the
planar case. We will use object(g) to denote
the object for which a guard ¢ € G was
created.

(ii) Create a BAR-tree T on the set G using the
algorithm of Duncan et al.[9], with the follow-
ing adaptation: whenever a recursively call
is made with a subset G* C G in a region
R, we delete all guards g from G* for which
object(g) does not intersect R. This pruning
step, which was not needed in [5], is essen-
tial to guarantee a bound on the query time.
This leads to a BSP tree whose cells can only
contain guards whose corresponding objects
do not intersect the cell.

(iii) Search with each object 0o € S in T to de-
termine which leaf cells are intersected by o.
Store with each leaf the set of all intersected
objects. Let T's be the resulting BSP tree.

The following theorem states the performance
of the BSP. Its proof is omitted in this extended
abstract.

Theorem 3 Let S be a A-low-density scene con-
sisting of n objects in R?. There exists a BSP tree
Ts for S such that

(i) the depth of Ts is O(logn)

(ii) the size is O(An)

(ii3) @ query range with a convex range @) visits

takes O(logn+ A-ming~o{(1/¢) + k.}) time,
where k. is the number of objects intersecting
the extended query range Q..
The BSP tree can be constructed in O(Anlogn)
time.

References

[1] P.K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In: B. Chazelle, J.
Goodman, and R. Pollack (Eds.), Advances in
Discrete and Computational Geometry, Vol. 223 of
Contemporary Mathematics, pages 1-56, American
Mathematical Society, 1998.

[2] P.K. Agarwal, E. Grove, T.M. Murali and J.S. Vitter.
Binary space partitions for fat rectangles. SIAM J.
Comput. 29:1422-1448, 2000.

[3] A. Arya, D. Mount, Approximate range searching,
Comput. Geom. Theory Appl. 17 (2000) 135-152.

[4] M. de Berg, H. David, M. J. Katz, M. Overmars, A. F.
van der Stappen, and J. Vleugels. Guarding scenes
against invasive hypercubes. Comput. Geom., 26:99—
117, 2003.

[5] M. de Berg. Linear size binary space partitions for
uncluttered scenes. Algorithmica 28:353-366, 2000.

[6] M. de Berg, M.J. Katz, A. F. van der Stappen, and
J. Vleugels. Realistic input models for geometric
algorithms. In Proc. 13th Annu. ACM Sympos.
Comput. Geom., pages 294-303, 1997.

[7] M. de Berg, M. van Kreveld, M. Overmars, and
O. Cheong. Computational Geometry: Algorithms and
Applications. Springer-Verlag, 1997.

[8] C.A. Duncan, Balanced Aspect Ratio Trees, Ph.D.
Thesis, John Hopkins University, 1999.

[9] C.A. Duncan, M.T. Goodrich, S.G. Kobourov,
Balanced aspect ratio trees: Combining the advantages
of k-d trees and octrees, In Proc. 10th Ann. ACM-
SIAM Sympos. Discrete Algorithms, pages 300-309,
1999.

[10] H. Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag, 1987.

[11] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible
surface generation by a priori tree structures. Comput.
Graph., 14(3):124-133, 1980. Proc. SIGGRAPH ’80.

[12] M.H. Overmars, H. Schipper, and M. Sharir. Storing
line segments in partition trees. BIT, 30:385-403, 1990

[13] M. S. Paterson and F. F. Yao. Efficient binary
space partitions for hidden-surface removal and solid
modeling. Discrete Comput. Geom., 5:485-503, 1990.

[14] F.P. Preparata and M.I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, 1985.

[15] C.D. Téth. Binary Space Partitions for Line Segments
with a Limited Number of Directions. SIAM J.
Comput. 32:307-325, 2003.

