
Obtaining combinatorial structures associated with

low-dimensional Leibniz algebras

Manuel Ceballos, Juan Núñez
University of Seville (Spain)

Ángel F. Tenorio
Pablo de Olavide University (Spain)

mceballos@us.es

Abstract

In this paper, we analyze the relation between Leibniz algebras and combinatorial struc-
tures. More concretely, we study the properties to be satisfied by (pseudo)digraphs so that
they are associated with low-dimensional Leibniz algebras. We present some results related to
this association and show an algorithmic method to obtain them, which has been implemented
with Maple.

Keywords
Pseudodigraph, Combinatorial structure, Leibniz algebra, Structure Theory, Algorithm

1 Introduction

Leibniz algebras were introduced at the beginning of the 1990s by J.-L. Loday [3]. They are
a particular case of non-associative algebras and provide a non-commutative generalization of
Lie algebras. There exists extensive research on these algebras due to their many applications in
Engineering, Physics and Applied Mathematics. However, some aspects of Leibniz algebras remain
unknown. In fact, the classification of nilpotent and solvable algebras is still an open problem.

Graph Theory is also very important and useful due to its many uses as a tool for other subjects.
Our main goal is to extend the study and analysis of the relations between Graph Theory and Lie
algebras proposed in [1, 2], but this time to the case of Leibniz algebras.

2 Preliminaries

We show some preliminary concepts on Leibniz algebras, bearing in mind that the reader can
consult [3] as an introductory paper.

Definition 1 A Leibniz algebra L over a field K is a vector space with a second inner bilinear
composition law [·, ·], which verifies the so-called Leibniz identity

[[X,Y], Z]− [[X,Z], Y]− [X, [Y, Z]] = 0, ∀X,Y, Z ∈ L

¿From now on, we will denote L(X,Y, Z) = [[X,Y], Z]− [[X,Z], Y]− [X, [Y, Z]].
If, in addition, is verified that [X,X] = 0, for all X ∈ L, the Leibniz algebra is also a Lie

algebra. In this case, it is satisfied that [X,Y] = −[Y,X] and the Leibniz identity is equivalent to
the Jacobi identity.

Definition 2 Given a basis {ei}ni=1 of an n-dimensional Leibniz algebra L, its structure constants
are defined by [ei, ej] =

∑n
h=1 c

h
i,jeh, for 1 ≤ i, j ≤ n.

Definition 3 The derived and central series of a finite-dimensional Leibniz algebra L are

L1 = L, L2 = [L,L], . . . , Lk = [Lk−1,Lk−1], . . . and L1 = L, L2 = [L,L], . . . , Lk = [Lk−1,L], . . .

So, L is called (m − 1)-step solvable (resp. nilpotent) if there exists m ∈ N such that Lm = {0}
and Lm−1 ̸= {0} (resp. Lm = {0} and Lm−1 ̸= {0}).

3 Associating combinatorial structures with Leibniz alge-
bras

Let L be a n-dimensional Leibniz algebra with basis B = {ei}ni=1. Its structure constants correspond
to [ei, ej] =

∑n
h=1 c

h
i,jeh and, hence, the pair (L,B) is associated with a combinatorial structure

by the following procedure

a) For each ei ∈ B, we draw a vertex i.

b) For every vertex i verifying [ei, ei] ̸= 0, we draw a loop such that its weight is an n-tuple
given by (c1i,i, c

2
i,i, . . . , c

n
i,i).

c) Given two vertices i, j verifying (cji,j , c
j
j,i) ̸= (0, 0), we draw a directed edge from vertex i to

j whose weight is given by the pair (cji,j , c
j
j,i).

d) Given three vertices i < j < k such that (cki,j , c
k
j,i, c

i
j,k, c

i
k,j , c

j
i,k, c

j
k,i) ̸= (0, 0, 0, 0, 0, 0), we

draw a full triangle ijk such that the edges ij, jk and ik have weights (cki,j , c
k
j,i), (c

i
j,k, c

i
k,j)

and (cji,k, c
j
k,i), respectively. Moreover,

d1) we use a discontinuous line (named ghost edge) for edges with weight (0, 0).

d2) If two triangles ijk and ijl satisfy (cki,j , c
k
j,i) = (cli,j , c

l
j,i), draw only one edge between

vertices i and j shared by both triangles.

Figure 1: Loop, directed edge, full triangle and two triangles sharing an edge.

4 Leibniz algebras and (pseudo)digraphs

In this section, we study the structure of digraphs associated with low-dimensional Leibniz algebras.
For each case, we will study the type of Leibniz algebra according to the solvability of this algebra.
To be associated with a (pseudo)digraph G, a given Leibniz algebra L with basis B = {ei}ni=1 has
the following law

[ei, ej] = cii,jei + cji,jej , 1 ≤ i ̸= j ≤ n; [ek, ek] =
n∑

h=1

chk,keh (1)

since these brackets avoid the appearance of full triangles in G.

Proposition 1 Every digraph admitting some configuration of [1, Fig. 9] as a subdigraph is not
associated with any Leibniz algebra.

Proposition 2 The abelian Leibinz algebra is the only one of dimension 1, associated with a
digraph.

Proposition 3 Let L be a 2-dimensional Leibniz algebra associated with a connected pseudodigraph
G. Then, the configuration d) shown in Figure 2 is forbidden in G. In fact, G must present one
of the remaining configurations in that figure. Moreover, it is verified that

• Configurations a) and c) are associated with 2-step solvable non-nilpotent Leibniz algebras.

Figure 2: Pseudodigraphs with two vertices and associated with Leibniz algebras.

• Configuration b) is always associated with 2-step solvable non-nilpotent Lie algebras (i.e. only
commutative Leibniz algebras).

• Configurations e) and f) are associated with a 2-step nilpotent Leibniz algebras.

Example 1 Let L be the Leibniz algebra with brackets [e2, e1] = e2 associated with Configuration
a). In this case, L2 = L2 = ⟨e2⟩, whereas Li = L2 and Li = 0 , for all i ≥ 3. Therefore, L is
2-step solvable, non-nilpotent.

Example 2 We consider the Leibniz algebra L with law [e1, e1] = −e1 − e2, [e1, e2] = e1 + e2
associated with Configuration e). In this case, L2 = L2 = ⟨e1 + e2⟩ and L3 = L3 = 0. Hence, L is
2-step nilpotent.

Example 3 Let L be the Leibniz algebra with brackets [e1, e1] = [e2, e2] = −e1 − e2, [e1, e2] =
[e2, e1] = e1+e2, associated with Configuration f). For this algebra, L2 = ⟨e1+e2⟩, L3 = L3 = {0}.
So, L is 2-step nilpotent.

Proposition 4 Let L be a 3-dimensional Leibniz algebra associated with a connected pseudograph
G including some loop. Then, G must present one of the configurations in Figure 3 up to permu-
tation of labels. Any other pseudodigraph is forbidden in G.

Figure 3: Pseudodigraphs with three vertices, associated with Leibniz algebras, not being Lie
algebras.

Proposition 5 Let G be a pseudodigraph formed by the first configuration of [1, Fig. 15] with
loops. Then G is associated with a solvable non-nilpotent Leibniz algebra.

Proposition 6 Let G be a pseudodigraph formed by the second configuration of [1, Fig. 15] with
loops. Then, G is associated with a Leibniz algebra if and only if G has a loop on each vertex
incident with a double edge.

5 Implementation and complexityfor the Leibniz identity

Now, we show the algorithmic method that we have used in the previous section to evaluate the
Leibniz identity in order to find out the allowed and forbidden configurations and the restrictions
over the weights of the edges. Regarding this, we have implemented our algorithm using the
symbolic computation package MAPLE, working the implementation in version 12 or higher. To
do this, we will use the libraries linalg, combinat, GraphTheory and Maplets[Elements] to
activate commands related to Linear and Combinatorial Algebra, Graph Theory and the last one
to display a message so that the user introduces the required input in the first subprocedure. So,
we start considering a vector space L with basis B and the type of brackets expressed in (1) and
give the following steps:

1. Computing the bracket product between two arbitrary basis vectors in B.
This first subprocedure is called law and computes the bracket between two arbitrary basis
vectors in B. It receives the subindexes of two basis vectors in B. A conditional sentence is
introduced to determine each non-zero bracket. The user has to complete the implementation
depending on the law of L, so we have added a sentence at the beginning of the implementa-
tion, reminding of this fact. Before running any other sentence, we restart all the variables
by using the command restart. Moreover, we save the value of variable dim (the dimension)
with the command assign.

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets and the dimension in

subprocedure law",’onapprove’=Shutdown("Continue"),’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law:=proc(i,j)

> if (i,j)=... then ...;

> elif

> else 0; end if;

> end proc;

2. Evaluating the bracket between two vectors expressed as a linear combination of vectors from
basis B.
We implement the subprocedure called bracket to compute the product between two ar-
bitrary vectors of L, which are expressed as linear combinations of the vectors in B. The
subprocedure law is called in the implementation.

> bracket:=proc(u,v,n)

> local exp; exp:=0;

> for i from 1 to n do

> for j from 1 to n do

> exp:=exp + coeff(u,e[i])*coeff(v,e[j])*law(i,j);

> end do;

> end do;

> exp;

> end proc:

3. Imposing the Leibniz identity and solving the corresponding system of equations.

Next, we show the implementation of the main procedure called Leibniz, which checks if the
vector space L is or not a Leibniz algebra. This procedure receives as input the dimension
n of the vector space L and returns the solution of a system of equations obtained from
imposing the Leibniz identity in L. If the system has no solution, then we can conclude that
the vector space L is not a Leibniz algebra. Otherwise, we will obtain the conditions over
the structure constants cki,j so that L is a Leibniz algebra.

> Leibniz:=proc(n)

> local L,M,N,P;

> L:=[];M:=[];N:=[];P:=[];

> for i from 1 to n do

> L:=[op(L),i,i,i];

> end do;

> M:=permute(L,3);

> for j from 1 to nops(M) do

> eq[j]:=bracket(bracket(e[M[j][1]],e[M[j][2]],n),e[M[j][3]],n)-

> bracket(bracket(e[M[j][1]],e[M[j][3]],n),e[M[j][2]],n)-

> bracket(e[M[j][1]],bracket(e[M[j][2]],e[M[j][3]],n),n);

> end do;

> N:=[seq(eq[k], k=1..nops(M))];

> for k from 1 to nops(N) do

> for h from 1 to n do

> P:=[op(P),coeff(N[k],e[h])=0];

> end do;

> end do;

> solve(P);

> end proc:

Example 4 Now, we show an example with the configuration i) from Figure 3. We consider the
3-dimensional vector space L with brackets

[e1, e1] =
3∑

i=1

ci1,1ei; [ej , e2] = cjj,2ej , [e2, ej] = cj2,jej , for j = 1, 3

First, we have to complete the implementation of the subprocedure law as follows

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets and the dimension in

subprocedure law",’onapprove’=Shutdown("Continue"),’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,3):

> law:=proc(i,j)

> if (i,j)=(1,1) then c111*e[1]+c112*e[2]+c113*e[3];

> elif (i,j)=(1,2) then c121*e[1];

> elif (i,j)=(2,1) then c211*e[1];

> elif (i,j)=(2,3) then c233*e[3];

> elif (i,j)=(3,2) then c323*e[3];

> else 0;

> end if;

> end proc:

After that, we must run the subprocedure bracket and the procedure Leibniz. Now, we evaluate
this main procedure over the variable dim

> Leibniz(dim);

> {c111=0,c112=0,c113=c113,c121=-c211,c211=c211,c233=0,c323=-2*c211}

So, we obtain those restrictions for the weights of the edges in configuration i) from Figure 3.

Next, we compute the complexity of the algorithm. To do so, we consider the number of
operations carried out in the worst case. We use the big O notation to express the complexity. To
recall the big O notation, the reader can consult [4]: given two functions f, g : R → R, we could say
that f(x) = O(g(x)) if and only if there exist M ∈ R+ and x0 ∈ R such that |f(x)| < M · |g(x)|,
for all x > x0.

We denote by Ni(n) the number of operations when considering the step i. This function
depends on the dimension n of the Lie algebra. Table 1 shows the number of computations and
the complexity of each step, as well as indicating the name of the procedure corresponding to each
step.

Table 1: Complexity and number of operations.

Step Procedure Complexity Operations

1 law O(n2) N1(n) = O
(

n(n−1)
2

)
2 bracket O(n4) N2(n) =

n∑
i=1

n∑
j=1

N1(n)

3 Leibniz O(n7) N3(n) = O(n) +O(n3) +
n3∑
i=1

N2(n) +
n3∑
j=1

n∑
k=1

1

References

[1] A. Carriazo, L.M. Fernández, J. Núñez, Combinatorial structures associated with Lie algebras
of finite dimension, Linear Algebra Appl. 389 (2004), 43–61.

[2] J. Cáceres, M. Ceballos, J. Núñez, M.L. Puertas, A.F. Tenorio, Combinatorial structures of
three vertices and Lie algebras, Int. J. Computer Math. 89:13–14 (2012), 1879–1900.

[3] J.L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign.
Math. (2), 39 (1993), pp. 269–293.

[4] H.S. Wilf, Algorithms and Complexity, Prentice Hall, Englewood Cliffs, 1986.

