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Abstract

Let P be a simple polygon. We define a witness set W to be a set of points such that if any (prospective) guard
set G guards W, then it is guaranteed that G guards P. We show that not all polygons admit a finite witness set.
If a finite minimal witness set exists, then it cannot contain any witness in the interior of P; all witnesses must lie
on the boundary of P, and there can be at most one witness in the interior of any edge. We give an algorithm to
compute a minimal witness set for P in O(n” log n) time, if such a set exists, or to report the non-existence within
the same time bounds. We also outline an algorithm that uses a witness set for P to test whether a (prospective)

guard set sees all points in P.

1. Introduction

Approximately seven years ago, Joseph Mitchell
posed the Witness Problem to Tae-Cheon Yang
during a research visit of the latter: ”Given a poly-
gon P, does it admit a witness set, i.e., a set of
objects in P such that any (prospective) guard set
that guards the witnesses is guaranteed to guard
the whole polygon?”

In this paper we consider point witnesses that
are allowed to lie anywhere in the interior or on the
boundary of the polygon. We want to determine
for a given polygon P whether a finite witness set
exists, and if this is the case, to compute a minimal
witness set.

A preliminary full version of this paper is avail-
able as technical report [3]. Due to space limita-
tions, we omitted several lemmas of minor impor-
tance and the proofs of the remaining lemmas in
this abstract.
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2. Preliminaries

Throughout this paper, P denotes a simple poly-
gon with n vertices V(P) = {vg,v1,-..,0n-1};
we assume that the vertices are ordered in coun-
terclockwise direction. The edges of P are de-
noted with E(P) = {eg,e1,...,en—1}, with ¢; =
(Ui, Vit1 mod n)- We consider an edge ¢; to be the
closed line segment between its incident vertices,
and P to be a closed subset of E?.

A point p in P sees a point ¢ in P if the line
segment pq is contained in P. Since polygons are
closed regions, the line-of-sight pq is not blocked
by grazing contact with the boundary of P; this
definition of visibility is commonly used in the Art
Gallery literature [7].

We say that a point p in P sees past a reflex
vertex v of P if p sees v, and the edges incident to
v do not lie on different sides of the line through p
and v (i.e., one of the edges may lie on this line).

Let p be a point in P. The wvisibility polygon of
p is the set of points in P that are visible to p. We
denote the visibility polygon by VP(p). The visi-
bility kernel of a point p is the kernel of its visibility
polygon and is denoted by VK(p).
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Definition 1 A witness set for a polygon P is a
point set W in P for which the following holds: if,
for any arbitrary set of points G in P, each element
of W is visible from at least one point in G, then
every point in P is visible from at least one point

inG.

The following theorem states the necessary and
sufficient conditions on witness sets:

Theorem 2 A point set W is a witness set for a
polygon P if and only if the union of the visibility
kernels of the elements of W covers P completely.

We also apply the concept of witnesses to indi-
vidual points. For two points p and ¢ in a polygon
P, we say that pis a witness for ¢ (or alternatively,
that p witnesses ¢), if any point that sees p also sees
q. The following lemma is analogous to Theorem 2:

Lemma 3 If p and q are points in a polygon P,
then p witnesses q if and only if q lies in VK(p).

The following lemma shows that witnessing is
transitive:

Lemma 4 Let P be a polygon, and let p, q, and r
be points in P. If p witnesses q¢ and q witnesses r,
then p witnesses r.

This leads to the notion of minimal witness sets:

Definition 5 Let P be a polygon and let W be a
witness set for P. W is called ¢ minimal witness set
for P if, for anyw € W, W\ {w} is not a witness
set for P.

Lemma 6 Let P be a polygon, and let W be a wit-
ness set for P. W is a minimal witness set for P
if and only if for any w € W, w does not lie in
VK(w') for any w' € W,w' # w.

Lemma 7 Let P be a polygon. If W is a witness
set for P, then (i) there exists a subset W' C W
such that W' is a minimal witness set for P, and
(i) for any superset W' DO W, W' is a witness set
for P.

Observe that not all polygons are witnessable
with a finite witness set; see Figure 1. The polygon
on the left is witnessable by three witnesses (the
black dots), but the polygon on the right needs an
infinite number of witnesses. The visibility kernels
of the witnesses indicated at four of the vertices
of the polygon do not cover the complete polygon.

-

Fig. 1. The polygon on the left is witnessable with three
witnesses, while the polygon on the right needs an infinite
number of witnesses.

(a)

Adding witnesses to the remaining vertices does
not help, as these vertices are already witnessed
and witnessing is transitive. It turns out that we
would need to cover both unwitnessed segments
on the boundary of the polygon completely with
witnesses to get an (infinite) witness set for this

polygon.

3. Visibility kernels

In this section we study several properties of vis-
ibility kernels, that are used in the next section to
establish our main results on finite witness sets.
Let P be a polygon with n vertices and edges,
as defined in Section 2. It is well-known that the
kernel of a polygon P is the intersection of the
positive halfspaces of its edges; when this kernel is
non-empty, the polygon is said to be star-shaped.
The visibility polygon VP(p) of a point p in P is
star-shaped by definition (the kernel contains at
least p). However, there is an alternative way of
describing VK (p) that turns out to be useful.
The edges of the visibility polygon VP (p) can be
classified into two groups (see Figure 2):
(i) An edge e of VP(p) coincides with the part
of an edge e’ of P that is visible from p.

(ii) Anedge e of VP(p) is induced by the directed
line ¢(p,v) through p and a reflex vertex v of
P such that p sees past v.

The visibility kernel VK(p) is the intersection of
the closure of the positive half-spaces induced by
the lines through all edges of VP(p). The reader
may wonder why we introduce this seemingly com-
plicated alternative representation of the edges of
VP(p). The reason is that for any p, there may be
many edges in group (ii), but at most two of these
contribute to VK(p). This helps us to reduce the
complexity of the data structures involved in com-
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Fig. 2. Two types of edges of VP(P).

puting the union of a set of visibility kernels; see
Section 5.

We conclude this section with a property of visi-
bility kernels that is of use in the remainder of this

paper.

Lemma 8 If a point p in a polygon P sees past a
reflex vertez v € V(P), then p lies on the boundary
of VK(p).

4. Finite witness sets

We would like to determine for a given simple
polygon P whether a finite witness set for P exists,
and if so, to compute such a set.

We have seen that a point p witnesses a point ¢
if g lies in VK(p). This means that for a witness set
W, the union (J .y VK(w) must cover the whole
polygon p.

For a polygon P and a set W of points in P,
let A(W) be the arrangement in P induced by the
supporting lines of the line segments of type (i) and
of those of type (ii) that contribute to VK(w), for
every witness w € W.

For any cell ¢ of A(W) and any point w € W, ¢
lies either completely inside or completely outside
VK (w). This means that W is a witness set for P
if and only if every cell of A(W) is contained in
VK (w) for at least one w € W.

We denote the cardinality of W by m. Because
for every w € W, there are at most two vertices
in group (ii) that contribute to VK(w), there are
in total at most n + 2m line segments that define
A(W), and therefore the complexity of A(W) is
O((n + m)?). We discuss how to test the cells of
A(W') on containment in visibility kernels in Sec-
tion 5.

Via several lemmas that are derived from Lem-
mas 4 and 8, we arrive at the following lemma:
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Fig. 3. For any n there is a polygon with n vertices that
is witnessable with no less than n — 2 witnesses. Witnesses
in the example are indicated with black dots.

Lemma 9 Let P be a simple polygon. If W is a
finite minimal witness set for P, then no element
of W lies in int(P).

Note that a convex polygon can be witnessed by
a single point in its interior. However, such a one-
element witness set is not minimal, as the empty
set is also a witness set for any convex polygon.

Given the above lemma, we only need to con-
centrate on witnesses that lie on the boundary of
P. Analyzing the possible configurations of witness
sets, we arrive at the following theorem:

Theorem 10 Let P be a simple polygon with n
edges. If a finite minimal witness set W for P exists,
then all witnesses w € W lie on the boundary of P.
FEach edge has at most one witness w € W in its
interior. If an edge has one or two witnesses on its
incident vertices, then there cannot be any witness
in the interior of the edge. Finally, for each n >
4 there is a polygon that needs no less than n — 2
witnesses to be witnessed.

The lowerbound construction is given in Fig-
ure 3.

5. Algorithms

In this section we outline an algorithm that com-
putes a minimal finite witness set W for a simple
polygon P, if such a set exists, or reports the non-
existence of such a set otherwise. We also outline
an algorithm that uses a witness set W for P to test
whether a set of points GG in P guards the whole
polygon.

The algorithm to compute a minimal witness set
W for a given simple polygon P with n vertices
works as follows:
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— First, we place witnesses at candidate positions.
We place a witness at every vertex of P, and one
halfway each edge of P. This step runs in O(n)
time.

— Next, using A(W), we test whether W' is a wit-
ness set for P with a sweepline approach. If it
is, we extract a minimal witness set W from W'
in the next step; otherwise, we report that no
finite witness set for P exists. This step takes
O(n?logn) time.

— We extract a minimal witness set W by repeat-
edly removing an unnecessary witness, i.e. wit-
nesses that are witnessed by another witness in
W', This step takes O(n?logn) time.

This leads to the following theorem:

Theorem 11 Let P be a simple polygon with n
vertices. If a finite witness set for P exists, a finite
minimal such set W can be computed in O(n? logn)
time. Otherwise, if no finite witness set for P exists,
than this can be reported in the same running time.

Next, we need an algorithm for testing whether
a set G of g guards in a polygon P together see
the whole polygon. A straightforward check, with-
out using witnesses, can be performed in O((g* +
gnlog g)log(g + n)) time [2,4].

Can we do better if a witness set W of size m
for P is given? We test for each witness whether it
can be seen by a guard by performing (at most) g
ray shooting queries, or O(gm) queries in total. P
can be preprocessed for ray shooting in O(n), after
which a query takes O(logn) time [5]. So the total
preprocessing time, including the computation of
W, becomes O(n? logn) time, and the query time
is O(gmlogn). Note that in the worst case m =
f(n). This query time is faster then the straight-
forward approach described above, but not neces-
sarily very much (how much precisely depends on
the parameters g and m). If m (the number of wit-
nesses) is small and g (the number of guards) is
large, then the gain is big.

6. Concluding remarks

We showed that if a polygon P admits a finite
witness set, then any minimal witness set W for
P has no witnesses in the interior of P, there is
at most one witness in the interior of each edge of

P. If an edge has one or two witnesses on its inci-
dent vertices, then there cannot be a witness in the
interior of this edge. It follows that any minimal
witness set for P has at most n elements. Further-
more, for any n > 4, there is a polygon for which
the minimum size witness set has n — 2 witnesses.
A minimal finite witness set for P can be computed
in O(n?logn) time, if it exists.

It remains open whether the problem of find-
ing a minimum size witness set for a given poly-
gon is computable. It is well-known that the prob-
lem of finding a minimum size guard set is NP-
complete [1,6]. We conjecture, however, that find-
ing a minimum size witness set is computable in
polynomial time, and we are currently working to-
wards turning our conjecture into a theorem.

Another interesting direction for further re-
search is to consider other types of witnesses, such
as (a subset of) the edges of the polygon. We
believe that we can extend our current lemmas,
theorems, and algorithms to test whether a poly-
gon is witnessable by an minimal infinite witness
set, where all the witnesses lie on the boundary of
the polygon.
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