Region inter-visibility in terrains

Marc van Kreveld

Esther Moet

René van Oostrum

Institute for Information € Computing Sciences
Utrecht University
P.O. Bozx 80.089
3508 T'B Utrecht
The Netherlands
{marc,esther,rene} Qcs.uu.nl

Abstract

A polyhedral terrain is the image of a piecewise linear continuous function defined over the triangles of a triangula-
tion in the zy- plane. Given a terrain with n vertices, two simply-connected regions (subsets of the triangles), and
any constant € > 0, we can determine in O(n®T*) time and storage whether or not the two regions are completely
inter-visible, which improves the O(n®) time complexity of a brute-force algorithm.

Key words: Terrains, visibility, GIS, data structures

1. Introduction

A terrain 7' is a triangulated polyhedral surface
with n vertices V(T') = {v1, v, ..., vp }. Each ver-
tex v; is specified by three real numbers (x;,y;, 2;),
which are its cartesian coordinates. Every verti-
cal line intersects the terrain at most once, which
means it can also be viewed as a piecewise linear
function on R2.

Every triangle ¢ on a terrain 7' has a normal
vector associated with it. The terrain divides space
into two parts; the outward normal on a triangle
corresponds to the part above T, above(T') and
the inward normal to the part below T', below (T').
Because of the natural meaning, visibility between
two points only makes sense if both points are on
or above the terrain.

Given a terrain 7" in 3D and two points p and
q on T, we say that p sees ¢ if the line segment
pq does not intersect below (T'), that is, visibility is
not blocked by grazing contact with the terrain. A
triangle ¢ in T is weakly visible from a point p € R3
if there exists at least one point on ¢ that is visible
from p. A triangle t is strongly visible from pif every
point on ¢ is visible from p.

A region is a connected subset of triangles in
T. We develop an algorithm to decide whether

20th EWCG

two given regions Ry and R» are completely inter-
wisible, which is equivalent to region R; being
strongly visible from every point in region Ry (if
S0, it automatically holds the other way around).

2. Related Work

Visibility computations in terrains have their
main application in geographic information sys-
tems (GIS), for example computations regarding
horizon pollution and signal transmission (e.g. mo-
bile phone networks). Most of the early research
considering visibility in terrains dealt with grid-
based Digital Elevation Models (DEM), as opposed
to Triangular Irreqular Networks (TIN) which are
common in recent, GIS research. In algorithms re-
search, TINs are called (polyhedral) terrains.

Algorithmic explorations of visibility in terrains
were described in [4] and [10-12], for example the
shortest watchtower problem. Later, more complex
visibility problems were discussed: visibility com-
putations from a moving point of view are dis-
cussed in [2], and an efficient and dynamic algo-
rithm to maintain a visibility map for a certain
viewpoint is introduced in [8].

Seville, Spain (2004)

20th European Workshop on Computational Geometry

Agarwal and Sharir [1] obtained tight bounds on
the maximum number of combinatorially different
views of a terrain. Finally, [6] is a recent overview of
various problems concerning visbility in terrains.

3. Strong region inter-visibility

First, we look at the orientations of R; and Rs
in space. For the time being, we suppose no other
part of T can block visibility between R; and Rs
than the regions themselves.

We denote the plane in 3D that contains a given
triangle ¢ as P(t). The half-space induced by P(t)
that corresponds to the space above P(t) is denoted
by HS(t). Visibility is only defined above the ter-
rain, so if a triangle ¢ sees a point p, then p lies in
HS(t). If two connected sets of triangles in 3D, R;
and R, can see each other, it implies that all ver-
tices of Ry lie in the intersection of the half-spaces
induced by the triangles of R», and vice versa:

Vv, € Ry :v1 € ﬂ HS(tz) N
t2ER>

Vos € Ryivp € () HS(th) (1)

tieRy

If a vertex from one region does not lie in the
half-space intersection of the other region, it is not
seen by at least one of the triangles in that region.
Thus, condition (1) is necessary (but not sufficient)
for strong visibility between two regions in a ter-
rain. We say regions R; and Rs are facing each
other if condition (1) is satisfied.

When two regions R; and R, on a terrain 1" are
facing each other, we can start to take the rest of
the terrain into account. Visibility between points
from different regions now depends on the terrain
not blocking the view.

We limit the number of points from R; and Rs
we have to check for inter-visibility.

Lemma 1 Two connected sets of triangles on a
terrain Ry and Ro are strongly inter-visibile, if and
only if

(i) Ry and Rs are facing each other, and

(ii) ORy and ORs are strongly inter-visible

PROOF. The necessity of the first condition fol-
lows from the discussion above.

The necessity of the second condition follows eas-
ily. Because a region R = int(R) UOR, the bound-

aries of two regions must see each other if the entire
regions see each other.

For the sufficiency of the two conditions, assume
that p € int(Ry) and g € int(R2) do not see each
other. We assume that R; and R» are facing each
other, and prove that there exist two points on 0 Ry
and OR» that cannot see each other.

Consider the vertical plane p containing p and q.
Let T}, = pNT be the cross-section of the terrain,
which is a lower-dimensional terrain itself. The set
1 N Ry consists of one or more connected compo-
nents, and p lies in the interior of one of them. The
same statement holds for Ry and q. We only have
to consider visibility of p and ¢ in . Because p and
q are facing each other, the line segment pg does
not intersect below(T),) in a neighborhood of p, nor
in a neighborhood of ¢. Let r be the point on T},
closest to p that is in the closure of pgN below (T),).
If p and r are in the same component of u N Ry,
then the triangle containing r is not facing the tri-
angle containing ¢. If p and r are not in the same
component, then between p and r in T}, there is a
point p' € OR; than cannot see ¢ either. We re-
peat the argument with ¢ and p’ to find a point
q' € OR> that cannot see p'. Hence, if two points
interior to R; and Ry cannot see each other, then
there exist two boundary points of R; and R» that
cannot see each other. 0O

Checking only strong inter-visibility of the ver-
tices on the boundary of the two regions is not
sufficient, because a small peak of the terrain can
block two boundary edges from being strongly
inter-visible, while their endpoints can indeed see
each other.

We define S to be the set containing all triangles
that are defined by either a vertex of OR; and an
edge of ORs, or by an edge of R; and a vertex of
OR>. Because grazing contact with the terrain is
permitted, inter-visibility is blocked if and only if
there is a triangle ¢ € S for which tNbelow(T") # 0.
The proof of the following lemma is straightfor-
ward and is therefore omitted.

Lemma 2 Given a terrain T and an arbitrary tri-
angle t with vertices in V (T'). The intersection t N
below(T') is non-empty if and only if one of the fol-
lowing two situations occurs:

(i) a vertex of T lies strictly above t, or

(ii) an edge of T lies strictly above an edge of t.

March 25-26, 2004

4. Algorithm and data structures

Now that we know what to compute, how
can we compute it efficiently? The terrain has
O(n) vertices and triangles. The regions R; and
R, are generally smaller, so we say they have
O(m) complexity. In the remainder of this paper
we use O*(f(n,m)) as a shorthand for a bound
O(f(n,m)-n%), where e > 0 is an arbitrarily small
constant. The O*(..)-notation supresses polyloga-
rithmic factors of n, and factors ne.

4.1. Facing the correct way

For each region R;, + = 1,2, we compute
Nier, HS(t), which is the intersection of O(m)
half-spaces. Because half-spaces are convex, this
intersection can be computed in O(m log m) time
[5]. Next, we check for all O(m) vertices of the
other region whether they are contained in this
intersection. We preprocess the convex volume for
point location in O(m log m) time and then query
with O(m) points in O(log m) time per query.
Concluding, we can check if two O(m) regions on
the terrain are facing each other in O(m log m)
time using O(m) storage.

4.2. Visibility blocked by the terrain

We have to check for intersections between a set
of O(n) terrain triangles, and the elements of S,
a set of O(m?) triangles between the edges and
vertices of OR; and OR». We check all triangles in
S for intersection with the terrain. In a brute-force
algorithm, this leads to O(nm?) time. But can we
do better?

By Lemma 2, we have to check two things to
decide whether a triangle ¢ from S intersects 7
either a vertex of T lies above t, or an edge of T lies
above an edge of t. We discuss these two situations
next.

4.2.1. Terrain vertices

To reduce the time complexity, it is necessary to
take a different look at the geometry. For a given
vertex v of the terrain, we want to check whether
there is any triangle in S that lies strictly below v.
Obviously, we want to limit the number of triangles
to check in height against v.

Seville (Spain)

If v lies above a triangle ¢ in S, then the projec-
tion of v on the xy-plane lies in the projection of t.
S contains O(m?) triangles that possibly overlap
each other; we want to retrieve exactly those tri-
angles S(v) C S that contain the projection of v
in their projections. Then the remaining question
is: does v lie on or below all triangles of S(v)?

This question can also be simplified by look-
ing at the geometry. If a point p in 3D lies above
a set of triangles S(v), it lies in the polyhedron
Utes(v) HS(t)- These geometric observations lead
us to the data structure described next.

To find the triangles from S that contain a given
point in their projections on the xy-plane, we con-
struct a partition tree of O(m?) size [5]. Given a
query point p, it returns O*(m) canonical subsets
of triangles from S that contain p in their projec-
tion. We give every node p in the partition tree an
associated data structure of linear complexity in
the cardinality of the canonical subset ¢(u). This
structure is used to determine whether the query
point lies in the intersection of the half-spaces in-
duced by all triangles in ¢(u). This query can be
answered in O(log m) time after O(m log m) pre-
processing time and with linear storage, by using
the Dobkin-Kirkpatrick hierarchy [7,9].

The construction time for a partition tree of size
O(m?) is O(m**¢) for any constant e > 0 [5].
Fortunately, the space required for the partition
tree’s associated structure does not increase the
total storage space much, in particular, nothing at
all in O*(..)-notation. The total data structure re-
quires O(m? log m) space. The construction time is
O*(m?) and the total query time is n times O* (m),
which is O*(mn) [5].

4.2.2. Terrain edges

The second situation that must be tested to dis-
cover whether the terrain blocks visibility is if a
terrain edge lies above an edge of a triangle from S.
We project the terrain edges onto the zy-plane and
for every edge from S, we want to find the terrain
edges whose projections intersect the projection of
the query edge. We can treat these terrain edges as
full lines in 3D, and the same is true for the query
edge. The objective is to find out whether the line
supporting the query edge lies above all lines sup-
porting the selected terrain edges.

The data structure we use stores the projections
of the terrain edges in a cutting tree of size O(n?)

20th European Workshop on Computational Geometry

[5]. We perform m? queries on this tree with edges
from S, each taking O(log n) query time. The query
returns all intersecting terrain edges in O(logn)
canonical subsets. We give each node p in the cut-
ting tree an associated structure of size O(n?t¢)
for the canonical subset c¢(u) of edges as the sup-
porting lines in space [3]. Consequently, we can de-
cide whether a query line lies above all lines in the
canonical subset in O(logn) query time.

Because the storage required for the cutting tree
dominates the storage of the associated structure,
the total data structure requires O(n?"¢) storage
and can be constructed in O*(n?) time. The total
query time is O(m? logn), or O*(m?), and thus the
total time complexity to determine if any terrain
edge is above any edge of S is O*(n? + m?).

4.3. Total time and space complezity

In the previous section, we investigated the run-
ning times and storage space needed to determine
whether two regions in a terrain completely see
each other. We now summarize the time and stor-
age complexities for the partition tree with its as-
sociated structures (PT) and the cutting tree with
its associated structures (CT).

Preprocessing | Total queries | Storage
O(m?)
O*(n?)

PT | O*(m?)
CT | O*(n?)

O*(mn)
O*(m?)

Because m is in the worst case O(n), we have a total
time complexity of O*(n?) which is a considerable
improvement over the O(n®) time of a brute-force
algorithm.

5. Concluding remarks

We developed an algorithm to determine in
O*(n?) time whether two regions in a terrain are
strongly inter-visible. The algorithm uses as data
structures a partition tree and a cutting tree, both
with associated structures, leading to a total of
O*(n?) storage.

Another natural problem would be determining
weak inter-visibility between two regions, which
means that every point in one region sees at least
one point in the other region. Because weak vis-

ibility has less constraints than strong visibility,
it is more difficult to compute. We are currently
working on algorithms and data structures for this
problem.

References

[1] P. K. Agarwal and M. Sharir. On the number of views
of polyhedral terrains. In Proc. 5th Canad. Conf.
Comput. Geom., pages 55-60, 1993.

[2] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman.
Visibility with a moving point of view. Algorithmica,
11:360-378, 1994.

[3] B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir,
and J. Stolfi. Lines in space: Combinatorics and
algorithms. Algorithmica, 15:428-447, 1996.

[4] R. Cole and M. Sharir. Visibility problems for
polyhedral terrains. J. Symbolic Comput., 7:11-30,
1989.

[5] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, Germany,
2nd edition, 2000.

[6] L. De Floriani and P. Magillo. Intervisibility
on terrains. In P.A.Longley, M.F.Goodchild,
D.J.Maguire, and D.W.Rhind, editors, Geographic
Information Systems: Principles, Techniques,
Managament and Applications, chapter 38, pages 543—
556. John Wiley & Sons, 1999.

[7] D. P. Dobkin and D. G. Kirkpatrick. Determining
the separation of preprocessed polyhedra — a unified
approach. In Proc. 17th Internat. Collog. Automata
Lang. Program., volume 443 of Lecture Notes Comput.
Sct., pages 400-413. Springer-Verlag, 1990.

[8] P. Magillo and L. De Floriani. Computing visibility
maps on hierarchical terrain models. In Proc. 2nd
ACM Workshop on Advances in GIS, 1994.

[9] D. Mount. Geometric intersection. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 33, pages 615-632.
CRC Press LLC, Boca Raton, FL, 1997.

[10] G. Nagy. Terrain visibility. Technical Report,
Rensselaer Polytech. Inst., Troy, NY, 1982.

[11] M. Sharir. The shortest watchtower and related
problems for polyhedral terrains. Inform. Process.
Lett., 29(5):265-270, 1988.

[12] B. Zhu. Improved algorithms for computing the
shortest watchtower of polyhedral terrains. In Proc.
4th Canad. Conf. Comput. Geom., pages 286-291,
1992.

