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Abstra
t

A polyhedral terrain is the image of a pie
ewise linear 
ontinuous fun
tion de�ned over the triangles of a triangula-

tion in the xy- plane. Given a terrain with n verti
es, two simply-
onne
ted regions (subsets of the triangles), and

any 
onstant � > 0, we 
an determine in O(n

2+�

) time and storage whether or not the two regions are 
ompletely

inter-visible, whi
h improves the O(n

3

) time 
omplexity of a brute-for
e algorithm.
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1. Introdu
tion

A terrain T is a triangulated polyhedral surfa
e

with n verti
es V (T ) = fv

1

; v

2

; :::; v

n

g. Ea
h ver-

tex v

i

is spe
i�ed by three real numbers (x

i

; y

i

; z

i

),

whi
h are its 
artesian 
oordinates. Every verti-


al line interse
ts the terrain at most on
e, whi
h

means it 
an also be viewed as a pie
ewise linear

fun
tion on R

2

.

Every triangle t on a terrain T has a normal

ve
tor asso
iated with it. The terrain divides spa
e

into two parts; the outward normal on a triangle


orresponds to the part above T , above(T ) and

the inward normal to the part below T , below (T ).

Be
ause of the natural meaning, visibility between

two points only makes sense if both points are on

or above the terrain.

Given a terrain T in 3D and two points p and

q on T , we say that p sees q if the line segment

pq does not interse
t below (T ), that is, visibility is

not blo
ked by grazing 
onta
t with the terrain. A

triangle t in T is weakly visible from a point p 2 R

3

if there exists at least one point on t that is visible

from p. A triangle t is strongly visible from p if every

point on t is visible from p.

A region is a 
onne
ted subset of triangles in

T . We develop an algorithm to de
ide whether

two given regions R

1

and R

2

are 
ompletely inter-

visible, whi
h is equivalent to region R

1

being

strongly visible from every point in region R

2

(if

so, it automati
ally holds the other way around).

2. Related Work

Visibility 
omputations in terrains have their

main appli
ation in geographi
 information sys-

tems (GIS), for example 
omputations regarding

horizon pollution and signal transmission (e.g. mo-

bile phone networks). Most of the early resear
h


onsidering visibility in terrains dealt with grid-

basedDigital Elevation Models (DEM), as opposed

to Triangular Irregular Networks (TIN) whi
h are


ommon in re
ent GIS resear
h. In algorithms re-

sear
h, TINs are 
alled (polyhedral) terrains.

Algorithmi
 explorations of visibility in terrains

were des
ribed in [4℄ and [10{12℄, for example the

shortest wat
htower problem. Later, more 
omplex

visibility problems were dis
ussed: visibility 
om-

putations from a moving point of view are dis-


ussed in [2℄, and an eÆ
ient and dynami
 algo-

rithm to maintain a visibility map for a 
ertain

viewpoint is introdu
ed in [8℄.
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Agarwal and Sharir [1℄ obtained tight bounds on

the maximum number of 
ombinatorially di�erent

views of a terrain. Finally, [6℄ is a re
ent overview of

various problems 
on
erning visbility in terrains.

3. Strong region inter-visibility

First, we look at the orientations of R

1

and R

2

in spa
e. For the time being, we suppose no other

part of T 
an blo
k visibility between R

1

and R

2

than the regions themselves.

We denote the plane in 3D that 
ontains a given

triangle t as P(t). The half-spa
e indu
ed by P(t)

that 
orresponds to the spa
e aboveP(t) is denoted

by HS(t). Visibility is only de�ned above the ter-

rain, so if a triangle t sees a point p, then p lies in

HS(t). If two 
onne
ted sets of triangles in 3D, R

1

and R

2

, 
an see ea
h other, it implies that all ver-

ti
es of R

1

lie in the interse
tion of the half-spa
es

indu
ed by the triangles of R

2

, and vi
e versa:

8v

1

2 R

1

: v

1

2

\

t

2

2R

2

HS (t

2

) ^

8v

2

2 R

2

: v

2

2

\

t

1

2R

1

HS(t

1

) (1)

If a vertex from one region does not lie in the

half-spa
e interse
tion of the other region, it is not

seen by at least one of the triangles in that region.

Thus, 
ondition (1) is ne
essary (but not suÆ
ient)

for strong visibility between two regions in a ter-

rain. We say regions R

1

and R

2

are fa
ing ea
h

other if 
ondition (1) is satis�ed.

When two regions R

1

and R

2

on a terrain T are

fa
ing ea
h other, we 
an start to take the rest of

the terrain into a

ount. Visibility between points

from di�erent regions now depends on the terrain

not blo
king the view.

We limit the number of points from R

1

and R

2

we have to 
he
k for inter-visibility.

Lemma 1 Two 
onne
ted sets of triangles on a

terrain R

1

and R

2

are strongly inter-visibile, if and

only if

(i) R

1

and R

2

are fa
ing ea
h other, and

(ii) �R

1

and �R

2

are strongly inter-visible

PROOF. The ne
essity of the �rst 
ondition fol-

lows from the dis
ussion above.

The ne
essity of the se
ond 
ondition follows eas-

ily. Be
ause a region R = int(R)[ �R, the bound-

aries of two regions must see ea
h other if the entire

regions see ea
h other.

For the suÆ
ien
y of the two 
onditions, assume

that p 2 int(R

1

) and q 2 int(R

2

) do not see ea
h

other. We assume that R

1

and R

2

are fa
ing ea
h

other, and prove that there exist two points on �R

1

and �R

2

that 
annot see ea
h other.

Consider the verti
al plane � 
ontaining p and q.

Let T

�

= �\ T be the 
ross-se
tion of the terrain,

whi
h is a lower-dimensional terrain itself. The set

� \ R

1


onsists of one or more 
onne
ted 
ompo-

nents, and p lies in the interior of one of them. The

same statement holds for R

2

and q. We only have

to 
onsider visibility of p and q in �. Be
ause p and

q are fa
ing ea
h other, the line segment pq does

not interse
t below (T

�

) in a neighborhood of p, nor

in a neighborhood of q. Let r be the point on T

�


losest to p that is in the 
losure of pq\ below (T

�

).

If p and r are in the same 
omponent of � \ R

1

,

then the triangle 
ontaining r is not fa
ing the tri-

angle 
ontaining q. If p and r are not in the same


omponent, then between p and r in T

�

there is a

point p

0

2 �R

1

than 
annot see q either. We re-

peat the argument with q and p

0

to �nd a point

q

0

2 �R

2

that 
annot see p

0

. Hen
e, if two points

interior to R

1

and R

2


annot see ea
h other, then

there exist two boundary points of R

1

and R

2

that


annot see ea
h other. 2

Che
king only strong inter-visibility of the ver-

ti
es on the boundary of the two regions is not

suÆ
ient, be
ause a small peak of the terrain 
an

blo
k two boundary edges from being strongly

inter-visible, while their endpoints 
an indeed see

ea
h other.

We de�ne S to be the set 
ontaining all triangles

that are de�ned by either a vertex of �R

1

and an

edge of �R

2

, or by an edge of �R

1

and a vertex of

�R

2

. Be
ause grazing 
onta
t with the terrain is

permitted, inter-visibility is blo
ked if and only if

there is a triangle t 2 S for whi
h t\below(T ) 6= ;.

The proof of the following lemma is straightfor-

ward and is therefore omitted.

Lemma 2 Given a terrain T and an arbitrary tri-

angle t with verti
es in V (T ). The interse
tion t \

below(T ) is non-empty if and only if one of the fol-

lowing two situations o

urs:

(i) a vertex of T lies stri
tly above t, or

(ii) an edge of T lies stri
tly above an edge of t.
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4. Algorithm and data stru
tures

Now that we know what to 
ompute, how


an we 
ompute it eÆ
iently? The terrain has

O(n) verti
es and triangles. The regions R

1

and

R

2

are generally smaller, so we say they have

O(m) 
omplexity. In the remainder of this paper

we use O

�

(f(n;m)) as a shorthand for a bound

O(f(n;m) �n

�

), where � > 0 is an arbitrarily small


onstant. The O

�

(::)-notation supresses polyloga-

rithmi
 fa
tors of n, and fa
tors n

�

.

4.1. Fa
ing the 
orre
t way

For ea
h region R

i

, i = 1; 2, we 
ompute

T

t2R

i

HS (t), whi
h is the interse
tion of O(m)

half-spa
es. Be
ause half-spa
es are 
onvex, this

interse
tion 
an be 
omputed in O(m log m) time

[5℄. Next, we 
he
k for all O(m) verti
es of the

other region whether they are 
ontained in this

interse
tion. We prepro
ess the 
onvex volume for

point lo
ation in O(m log m) time and then query

with O(m) points in O(log m) time per query.

Con
luding, we 
an 
he
k if two O(m) regions on

the terrain are fa
ing ea
h other in O(m log m)

time using O(m) storage.

4.2. Visibility blo
ked by the terrain

We have to 
he
k for interse
tions between a set

of O(n) terrain triangles, and the elements of S,

a set of O(m

2

) triangles between the edges and

verti
es of �R

1

and �R

2

. We 
he
k all triangles in

S for interse
tion with the terrain. In a brute-for
e

algorithm, this leads to O(nm

2

) time. But 
an we

do better?

By Lemma 2, we have to 
he
k two things to

de
ide whether a triangle t from S interse
ts T :

either a vertex of T lies above t, or an edge of T lies

above an edge of t. We dis
uss these two situations

next.

4.2.1. Terrain verti
es

To redu
e the time 
omplexity, it is ne
essary to

take a di�erent look at the geometry. For a given

vertex v of the terrain, we want to 
he
k whether

there is any triangle in S that lies stri
tly below v.

Obviously, we want to limit the number of triangles

to 
he
k in height against v.

If v lies above a triangle t in S, then the proje
-

tion of v on the xy-plane lies in the proje
tion of t.

S 
ontains O(m

2

) triangles that possibly overlap

ea
h other; we want to retrieve exa
tly those tri-

angles S(v) � S that 
ontain the proje
tion of v

in their proje
tions. Then the remaining question

is: does v lie on or below all triangles of S(v)?

This question 
an also be simpli�ed by look-

ing at the geometry. If a point p in 3D lies above

a set of triangles S(v), it lies in the polyhedron

S

t2S(v)

HS(t). These geometri
 observations lead

us to the data stru
ture des
ribed next.

To �nd the triangles from S that 
ontain a given

point in their proje
tions on the xy-plane, we 
on-

stru
t a partition tree of O(m

2

) size [5℄. Given a

query point p, it returns O

�

(m) 
anoni
al subsets

of triangles from S that 
ontain p in their proje
-

tion. We give every node � in the partition tree an

asso
iated data stru
ture of linear 
omplexity in

the 
ardinality of the 
anoni
al subset 
(�). This

stru
ture is used to determine whether the query

point lies in the interse
tion of the half-spa
es in-

du
ed by all triangles in 
(�). This query 
an be

answered in O(log m) time after O(m log m) pre-

pro
essing time and with linear storage, by using

the Dobkin-Kirkpatri
k hierar
hy [7,9℄.

The 
onstru
tion time for a partition tree of size

O(m

2

) is O(m

2+�

) for any 
onstant � > 0 [5℄.

Fortunately, the spa
e required for the partition

tree's asso
iated stru
ture does not in
rease the

total storage spa
e mu
h, in parti
ular, nothing at

all in O

�

(::)-notation. The total data stru
ture re-

quiresO(m

2

logm) spa
e. The 
onstru
tion time is

O

�

(m

2

) and the total query time is n timesO

�

(m),

whi
h is O

�

(mn) [5℄.

4.2.2. Terrain edges

The se
ond situation that must be tested to dis-


over whether the terrain blo
ks visibility is if a

terrain edge lies above an edge of a triangle from S.

We proje
t the terrain edges onto the xy-plane and

for every edge from S, we want to �nd the terrain

edges whose proje
tions interse
t the proje
tion of

the query edge. We 
an treat these terrain edges as

full lines in 3D, and the same is true for the query

edge. The obje
tive is to �nd out whether the line

supporting the query edge lies above all lines sup-

porting the sele
ted terrain edges.

The data stru
ture we use stores the proje
tions

of the terrain edges in a 
utting tree of size O(n

2

)
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[5℄. We perform m

2

queries on this tree with edges

fromS, ea
h takingO(log n) query time. The query

returns all interse
ting terrain edges in O(logn)


anoni
al subsets. We give ea
h node � in the 
ut-

ting tree an asso
iated stru
ture of size O(n

2+�

)

for the 
anoni
al subset 
(�) of edges as the sup-

porting lines in spa
e [3℄. Consequently, we 
an de-


ide whether a query line lies above all lines in the


anoni
al subset in O(log n) query time.

Be
ause the storage required for the 
utting tree

dominates the storage of the asso
iated stru
ture,

the total data stru
ture requires O(n

2+�

) storage

and 
an be 
onstru
ted in O

�

(n

2

) time. The total

query time isO(m

2

logn), orO

�

(m

2

), and thus the

total time 
omplexity to determine if any terrain

edge is above any edge of S is O

�

(n

2

+m

2

).

4.3. Total time and spa
e 
omplexity

In the previous se
tion, we investigated the run-

ning times and storage spa
e needed to determine

whether two regions in a terrain 
ompletely see

ea
h other. We now summarize the time and stor-

age 
omplexities for the partition tree with its as-

so
iated stru
tures (PT) and the 
utting tree with

its asso
iated stru
tures (CT).

Prepro
essing Total queries Storage

PT O

�

(m

2

) O

�

(mn) O(m

2

)

CT O

�

(n

2

) O

�

(m

2

) O

�

(n

2

)

Be
ausem is in the worst 
aseO(n), we have a total

time 
omplexity of O

�

(n

2

) whi
h is a 
onsiderable

improvement over the O(n

3

) time of a brute-for
e

algorithm.

5. Con
luding remarks

We developed an algorithm to determine in

O

�

(n

2

) time whether two regions in a terrain are

strongly inter-visible. The algorithm uses as data

stru
tures a partition tree and a 
utting tree, both

with asso
iated stru
tures, leading to a total of

O

�

(n

2

) storage.

Another natural problem would be determining

weak inter-visibility between two regions, whi
h

means that every point in one region sees at least

one point in the other region. Be
ause weak vis-

ibility has less 
onstraints than strong visibility,

it is more diÆ
ult to 
ompute. We are 
urrently

working on algorithms and data stru
tures for this

problem.
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