Computing the Fréchet Distance

between Piecewise Smooth Curves

*

Giinter Rote
Freie Universitat Berlin, Institut fir Informatik, Takustrafle 9, 14195 Berlin, Germany, rote@inf.fu-berlin.de.

Abstract

We consider the Fréchet distance between two curves which are given as a sequence of m + n curved pieces. If these
pieces are sufficiently well-behaved, we can compute the Fréchet distance in O(mnlog(mn)) time. The decision

version of the problem can be solved in O(mn) time.

1. Introduction

The Fréchet distance is a distance measure be-
tween curves.
Definition 1 (Fréchet distance)
Let f: I =lf,r]] > R and g: J = [l;,7;] = R?
be two planar curves, and let || - || denote the Fu-
clidean norm. Then the Fréchet distance 6p(f, g)
is defined as

or(f,9) = inf  max [|f(a(t)) = g(BD)]-
a: [0,1]—1 te[0,1]
B:[0,1]—J

where a and 3 range over continuous and non-
decreasing reparameterizations with «(0) = Iy,
a(l) =rr, B(0) =1y, B(1) =1.

In contrast to other common distance measures
like the Hausdorff distance, the Fréchet distance re-
spects the one-dimensional structure of the curves
and doesn’t just treat them as a point set.

The study of the Fréchet distance from a com-
putational point of view has been initiated by Alt
and Godau [2]. The decision problem is the prob-
lem to decide, for a given e, whether the Fréchet
distance between two curves is at most ¢.

Alt and Godau [2] treated the case of two polyg-
onal curves. For two curves of m and n pieces, re-
spectively, they showed how to solve the decision
problem in O(mn) time and the optimization prob-
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lem in O(mnlog(mn)) time. Some related prob-
lems have also been considered, like minimizing
the Fréchet distance under translations [3], or a
generalized Fréchet distance between a curve and
a graph [1]. In all cases, however, the objects are
piecewise linear.

In this paper, we explore the Fréchet distance
between more general curves. We assume that each
input curve is given as a sequence of smooth curve
pieces that are“sufficiently well-behaved”, such as
circular arcs, parabolic arcs, or some class of spline
curves. Our algorithm will perform certain opera-
tions on these curves, like intersecting them with
a circle.

We will show that the combinatorial complexity,
i. e., the number of steps, for solving the decision
problem is not larger than for polygonal paths,
O(mn). The complexity of the individual opera-
tions (the algebraic complezity) depends of course
on the nature of the curves. Under the stronger as-
sumption that the curves consist of algebraic pieces
whose degree is bounded by a constant, we can
solve the optimization problem in O(mn log(mmn)),
thus matching the running time for the polygonal
case. The elementary operations, however, are al-
gebraic operations of higher degree.

We assume that each curve is given as a sequence
of pieces which are connected at their endpoints.
Every piece is a smooth curve of class C?, i. e., the
curvature is defined everywhere and varies contin-
uously within a piece. We will not make any as-
sumptions how the curves are given; it is only im-
portant that the necessary geometric operations
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can be carried out.

We need curves whose turning angle is bounded
by w. Curves of larger bounding angle must be
subdivided. For solving the decision problem with
parameter £, we subdivide the curve at all points
where the curvature is 1/e, in order to ensure that
in each piece of the curve, the curvature is either
uniformly smaller or bigger than 1/e.

We have omitted most proofs, but we state one
auxiliary lemma in order to illustrate the elemen-
tary arguments on which the results are based.
Lemma 2 Let f be a smooth curve of turning angle
at most w, and let ¢ by a circle of radius r.

(a) If the curvature of f is at most 1/r every-

where, the curve can intersect ¢ at most twice.
If it intersects ¢ twice, then its endpoints lie
outside ¢ or on the boundary, and the mid-
dle piece between the two intersections lies
inside c.

(b) If the curvature of f is at least 1/r every-

where, the curve can intersect ¢ at most twice.

The full version of this paper is available as a
technical report [5].

2. The Free Space Diagram

The main tool of the algorithm is the free space
diagram which was introduced in [2]. It is a two-
dimensional representation of all pairs of points on
the two curves, together with the identification of
those pairs which are closer than €.

Definition 3 Let f: I — R?, g: J — R? be two
curves, I, J CR. The set

Fo(f,9) ={(s,t) e Ix J:||f(s) —g(B)l| < e}
denotes the free space of f and g. the partition of
I x J into the free space and its complement is called
the free space diagram.

Points in F. are called feasible or free, and they
are usually drawn in white. The other points are
called forbidden points or obstacles, see Figure 1.
The following simple observation from [2] is crucial.
Lemmad4 Let f: I = [l;,r]] - R, g:J =
[ly,rs] = R? be two curves. Then 6p(f,g) < ¢
if and only if there exists a curve within F.(f,g)
from (I1,1y) to (r1,ry) which is monotone in both
coordinates. O

As f and g consist of several pieces, the free
space diagram decomposes naturally into a grid of
rectangular cells.
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Fig. 1. Two polygonal curves and their free space diagram.
The scale of the free space diagram is 50% reduced with
respect to the curves.

3. Critical points

We regards as critical points on the boundary of
F_ those points which are local extrema in the hor-
izontal or vertical direction. There are eight classes
of critical points, shown in Figure 2.
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Fig. 2. The eight types of critical points. N, S, E, W
refers to the direction in which the point is extreme, and
the superscript tells whether the area in this direction is
feasible (+) or forbidden (—).

In terms of the curves f and g, these points cor-
respond to situations where a circle ¢ of radius &
around a point of one curve is tangent to the other
curve. For example, a critical point of type W oc-
curs in the situation where g touches the circle ¢ of
radius € around a point z on f from inside. As z
proceeds further away from g, a portion of g begins
to stick out from c.
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4. The structure of a single cell

The free space may be arbitrarily complicated
even inside a cell. For example, if ¢ is very small,
F. will contain isolated islands of free space for all
intersections between f and g. However, we will
show that the reachable points can be computed
in a constant number of elementary geometric op-
erations.

We have subdivided the curves, and conse-
quently, the parameter intervals I and J into m
and n pieces, respectively. Correspondingly, we cut
the rectangle I x J into mn cells. On the bound-
aries of these cells, we compute all points which are
reachable from the lower left corner (I;,1;) of the
rectangle by a path in free space which is mono-
tone in both directions. We do this incrementally
from the lower left cell to the uppermost right cell.

A vertical line in the free-space diagram corre-
sponds to a fixed point f(s) on f. The points in
F. on this line correspond to the points of g which
lie inside a circle ¢ of radius € around f(s). The
boundary of F; corresponds to the intersections of
¢ with g, and hence we can apply Lemma 2.
Lemma 5 Inside a cell, a vertical or horizontal
line intersects the boundary of F. at most twice.

A wvertical tangent line trough a critical point of
type E or W or a horizontal tangent line trough
a critical point of type N or S does not cross the
boundary of F. in any other point. O
Lemma 6 A curve forming a component of the
boundary of the free space inside a cell can contain
at most four critical points. |

This lemma implies that there is a limited num-
ber of possibilities for such a boundary, the most
complicated being an “s-shaped” path between be-
tween the left edge and the right edge of the rect-
angle, containing two critical points ST and N .

5. Processing a cell

We are given the reachable points on the left and
bottom edge, and we compute the points on the
right edge and on the top edge which are reachable
from there.

On each edge of the rectangle there are at most
two intervals of free points, by Lemma 5. Inside
each interval of free points, there is only a single
interval of reachable points because from every free
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point, everything which is to the right or to the top
in the same free interval is reachable directly.

We will illustrate how to compute the leftmost
reachable point in each free interval on the top edge
from a given interval X on left edge. Other cases
are similar.

We are given the lowest reachable point B in

X. The upper end of X may be the upper left
corner of the rectangle, or it may be a forbidden
point which belongs to a component O of forbidden
points. Similarly, the left endpoint F' of Y may
be part of a component of forbidden points, which
we denote by Os. (O and Oy are not necessarily
different, see Figure 3a.)
Lemma 7 The leftmost point U in Y reachable
from X depends only on the presence and the rela-
tive locations of O and Oy and the horizontal line
through B.

PROOF. We have to show that any other “ob-
stacles” of forbidden points do not play any role in
this question. We show this by giving an algorithm
for constructing U in all cases.

If the horizontal line through B intersects O or
O3, it is clear that one cannot reach Y, see for ex-
ample the interval X; in Figure 3a or the inter-
val X in connection with Y3 in Figure 3b. Other-
wise, we claim that the desired point U lies directly
above the rightmost point of O or of O3, whichever
is further to the right.

The monotone path from X to Y has to pass
to the right of O and O3. Thus, no point in Y
left of U is reachable from X. To see that U is
reachable, consider first the case that O exists, see
the example of the interval X; in Figure 3b. Let A
be the rightmost point of O. A can lie on the upper
edge, or it can be a critical point of type ET.

Assume first that A is a critical point of type
E™. The vertical line a through A lies completely
in the free space, by Lemma 5, and O is the only
obstacle left of a. By assumption, the horizontal
line b from the lowest reachable point B in X does
not intersect O before reaching a, and there are no
other obstacles in this range. Thus, A4 is reachable
from B, and the upper end A’ of a is the leftmost
reachable point on the top edge. If it lies in Y, we
can take it as our point U, and we are done. (This is
the case for the intervals X; and Y] in Figure 3b.)
If Y lies left of a, we are done as well, as no points
in Y are reachable from X. So let us deal with the



20th European Workshop on Computational Geometry

Fig. 3. Determining the reachable points on the top edge

only remaining case that Y lies to the right of a,
and a is separated from Y by the obstacle Os.

The lowest point D of Oz must lie above O, and
the horizontal line through D intersects a, which
is reachable. Therefore D is reachable. From D we
can reach the rightmost point C of Os, which is
either a critical point of type ET or the point F.
In either case, we can indeed reach the point C’
vertically above C' as the leftmost point U.

The cases when O does not exist, or when the
rightmost point A of O lies on the upper edge, can
be treated similarly. O

Will have described our procedure in terms of
geometric operations in the free space diagram,
like finding the right-most point in a component of
forbidden points. By working out what these op-
erations mean in terms of the curves f and g, we
obtain the following theorems.

Theorem 8 Given the reachable points on the bot-
tom edge and the left edge of a cell, the reachable
points on the top edge and the right edge of the cell
can be computed in a constant number of the fol-
lowing operations:
— Intersecting a circle of radius € with one of the
curves
— Finding the first intersection of one curve with
an offset curve of the other curve at distance €.
In both cases, we must be able to find the parameter
values on the respective curves, corresponding to
the points that we have computed. O
Theorem 9 Given two curves consisting of m and
n pieces, respectively, where each piece has a turn-
ing angle at most m and has curvature > ¢ or < ¢
throughout, we can decide O(m + n) space and in
O(mn) primitive operations of the type described

in Theorem 8 whether their Fréchet distance is at
most €, for a given parameter ¢. O

6. The Minimization Problem

The minimization problem of computing the
Fréchet distance can be solved by Megiddo’s para-
metric search technique [4], closely following the
approach of [2] for polygonal curves. The technical
details are more involved, and we have to make
some stronger assumptions on the curves.
Theorem 10 Given two curves consisting of m
and n pieces, respectively, of smooth algebraic
curves of fired mazimum degree we can compute
their Fréchet distance in O(nm) space and in
O(mnlog(mn)) algebraic operations, i.e., degree
comparison between two real solutions of algebraic
equations of bounded degree. O

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk, Matching
planar maps, Journal of Algorithms 49 (2003), 262—-283.

[2] H. Alt and M. Godau, Computing the Fréchet distance
between two polygonal curves, Internat. J. Comput.
Geom. Appl. 5 (1995), 75-91.

[3] H. Alt, C. Knauer, and C. Wenk, Matching polygonal
curves with respect to the Fréchet distance, STACS 2001
(A. Ferreira and H. Reichel, eds.), Lect. Notes Comp.
Sci., vol. 2010, Springer-Verlag, 2001, pp. 63-74.

[4] N. Megiddo, Applying parallel computation algorithms
in the design of serial algorithms, J. Assoc. Comput.
Mach. 30 (1983), 852-865.

[5] Ginter Rote, Computing the fréchet distance between
piecewise smooth curves, Tech. Report ECG-TR-
241108-01, 2003.



