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Abstra
t

We 
onsider the Fr�e
het distan
e between two 
urves whi
h are given as a sequen
e of m+n 
urved pie
es. If these

pie
es are suÆ
iently well-behaved, we 
an 
ompute the Fr�e
het distan
e in O(mn log(mn)) time. The de
ision

version of the problem 
an be solved in O(mn) time.

1. Introdu
tion

The Fr�e
het distan
e is a distan
e measure be-

tween 
urves.

De�nition 1 (Fr�e
het distan
e)

Let f : I = [l

I

; r

I

℄ ! R

2

and g : J = [l

J

; r

J

℄ ! R

2

be two planar 
urves, and let k � k denote the Eu-


lidean norm. Then the Fr�e
het distan
e Æ

F

(f; g)

is de�ned as

Æ

F

(f; g) := inf

� : [0;1℄!I

� : [0;1℄!J

max

t2[0;1℄

kf(�(t))� g(�(t))k:

where � and � range over 
ontinuous and non-

de
reasing reparameterizations with �(0) = l

I

,

�(1) = r

I

, �(0) = l

J

, �(1) = r

J

.

In 
ontrast to other 
ommon distan
e measures

like the Hausdor� distan
e, the Fr�e
het distan
e re-

spe
ts the one-dimensional stru
ture of the 
urves

and doesn't just treat them as a point set.

The study of the Fr�e
het distan
e from a 
om-

putational point of view has been initiated by Alt

and Godau [2℄. The de
ision problem is the prob-

lem to de
ide, for a given ", whether the Fr�e
het

distan
e between two 
urves is at most ".

Alt and Godau [2℄ treated the 
ase of two polyg-

onal 
urves. For two 
urves of m and n pie
es, re-

spe
tively, they showed how to solve the de
ision

problem inO(mn) time and the optimization prob-
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lem in O(mn log(mn)) time. Some related prob-

lems have also been 
onsidered, like minimizing

the Fr�e
het distan
e under translations [3℄, or a

generalized Fr�e
het distan
e between a 
urve and

a graph [1℄. In all 
ases, however, the obje
ts are

pie
ewise linear.

In this paper, we explore the Fr�e
het distan
e

between more general 
urves.We assume that ea
h

input 
urve is given as a sequen
e of smooth 
urve

pie
es that are\suÆ
iently well-behaved", su
h as


ir
ular ar
s, paraboli
 ar
s, or some 
lass of spline


urves. Our algorithm will perform 
ertain opera-

tions on these 
urves, like interse
ting them with

a 
ir
le.

We will show that the 
ombinatorial 
omplexity,

i. e., the number of steps, for solving the de
ision

problem is not larger than for polygonal paths,

O(mn). The 
omplexity of the individual opera-

tions (the algebrai
 
omplexity) depends of 
ourse

on the nature of the 
urves. Under the stronger as-

sumption that the 
urves 
onsist of algebrai
 pie
es

whose degree is bounded by a 
onstant, we 
an

solve the optimization problem in O(mn log(mn)),

thus mat
hing the running time for the polygonal


ase. The elementary operations, however, are al-

gebrai
 operations of higher degree.

We assume that ea
h 
urve is given as a sequen
e

of pie
es whi
h are 
onne
ted at their endpoints.

Every pie
e is a smooth 
urve of 
lass C

2

, i. e., the


urvature is de�ned everywhere and varies 
ontin-

uously within a pie
e. We will not make any as-

sumptions how the 
urves are given; it is only im-

portant that the ne
essary geometri
 operations
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an be 
arried out.

We need 
urves whose turning angle is bounded

by �. Curves of larger bounding angle must be

subdivided. For solving the de
ision problem with

parameter ", we subdivide the 
urve at all points

where the 
urvature is 1=", in order to ensure that

in ea
h pie
e of the 
urve, the 
urvature is either

uniformly smaller or bigger than 1=".

We have omitted most proofs, but we state one

auxiliary lemma in order to illustrate the elemen-

tary arguments on whi
h the results are based.

Lemma 2 Let f be a smooth 
urve of turning angle

at most �, and let 
 by a 
ir
le of radius r.

(a) If the 
urvature of f is at most 1=r every-

where, the 
urve 
an interse
t 
 at most twi
e.

If it interse
ts 
 twi
e, then its endpoints lie

outside 
 or on the boundary, and the mid-

dle pie
e between the two interse
tions lies

inside 
.

(b) If the 
urvature of f is at least 1=r every-

where, the 
urve 
an interse
t 
 at most twi
e.

The full version of this paper is available as a

te
hni
al report [5℄.

2. The Free Spa
e Diagram

The main tool of the algorithm is the free spa
e

diagram whi
h was introdu
ed in [2℄. It is a two-

dimensional representation of all pairs of points on

the two 
urves, together with the identi�
ation of

those pairs whi
h are 
loser than ".

De�nition 3 Let f : I ! R

2

, g : J ! R

2

be two


urves, I; J � R. The set

F

"

(f; g) := f (s; t) 2 I � J : kf(s)� g(t)k � " g

denotes the free spa
e of f and g. the partition of

I�J into the free spa
e and its 
omplement is 
alled

the free spa
e diagram.

Points in F

"

are 
alled feasible or free, and they

are usually drawn in white. The other points are


alled forbidden points or obsta
les, see Figure 1.

The following simple observation from [2℄ is 
ru
ial.

Lemma 4 Let f : I = [l

I

; r

I

℄ ! R

2

, g : J =

[l

J

; r

J

℄ ! R

2

be two 
urves. Then Æ

F

(f; g) � "

if and only if there exists a 
urve within F

"

(f; g)

from (l

I

; l

J

) to (r

I

; r

J

) whi
h is monotone in both


oordinates. 2

As f and g 
onsist of several pie
es, the free

spa
e diagram de
omposes naturally into a grid of

re
tangular 
ells.

ε

f

g

Fig. 1. Two polygonal 
urves and their free spa
e diagram.

The s
ale of the free spa
e diagram is 50% redu
ed with

respe
t to the 
urves.

3. Criti
al points

We regards as 
riti
al points on the boundary of

F

"

those points whi
h are lo
al extrema in the hor-

izontal or verti
al dire
tion. There are eight 
lasses

of 
riti
al points, shown in Figure 2.

W+

N+

S+

E+

N−

E−

S−

W−

Fig. 2. The eight types of 
riti
al points. N , S, E, W

refers to the dire
tion in whi
h the point is extreme, and

the supers
ript tells whether the area in this dire
tion is

feasible (+) or forbidden (�).

In terms of the 
urves f and g, these points 
or-

respond to situations where a 
ir
le 
 of radius "

around a point of one 
urve is tangent to the other


urve. For example, a 
riti
al point of typeW

+

o
-


urs in the situation where g tou
hes the 
ir
le 
 of

radius " around a point x on f from inside. As x

pro
eeds further away from g, a portion of g begins

to sti
k out from 
.
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4. The stru
ture of a single 
ell

The free spa
e may be arbitrarily 
ompli
ated

even inside a 
ell. For example, if " is very small,

F

"

will 
ontain isolated islands of free spa
e for all

interse
tions between f and g. However, we will

show that the rea
hable points 
an be 
omputed

in a 
onstant number of elementary geometri
 op-

erations.

We have subdivided the 
urves, and 
onse-

quently, the parameter intervals I and J into m

and n pie
es, respe
tively. Correspondingly, we 
ut

the re
tangle I � J into mn 
ells. On the bound-

aries of these 
ells, we 
ompute all points whi
h are

rea
hable from the lower left 
orner (l

I

; l

J

) of the

re
tangle by a path in free spa
e whi
h is mono-

tone in both dire
tions. We do this in
rementally

from the lower left 
ell to the uppermost right 
ell.

A verti
al line in the free-spa
e diagram 
orre-

sponds to a �xed point f(s) on f . The points in

F

"

on this line 
orrespond to the points of g whi
h

lie inside a 
ir
le 
 of radius " around f(s). The

boundary of F

"


orresponds to the interse
tions of


 with g, and hen
e we 
an apply Lemma 2.

Lemma 5 Inside a 
ell, a verti
al or horizontal

line interse
ts the boundary of F

"

at most twi
e.

A verti
al tangent line trough a 
riti
al point of

type E or W or a horizontal tangent line trough

a 
riti
al point of type N or S does not 
ross the

boundary of F

"

in any other point. 2

Lemma 6 A 
urve forming a 
omponent of the

boundary of the free spa
e inside a 
ell 
an 
ontain

at most four 
riti
al points. 2

This lemma implies that there is a limited num-

ber of possibilities for su
h a boundary, the most


ompli
ated being an \s-shaped" path between be-

tween the left edge and the right edge of the re
t-

angle, 
ontaining two 
riti
al points S

+

and N

�

.

5. Pro
essing a 
ell

We are given the rea
hable points on the left and

bottom edge, and we 
ompute the points on the

right edge and on the top edge whi
h are rea
hable

from there.

On ea
h edge of the re
tangle there are at most

two intervals of free points, by Lemma 5. Inside

ea
h interval of free points, there is only a single

interval of rea
hable points be
ause from every free

point, everything whi
h is to the right or to the top

in the same free interval is rea
hable dire
tly.

We will illustrate how to 
ompute the leftmost

rea
hable point in ea
h free interval on the top edge

from a given interval X on left edge. Other 
ases

are similar.

We are given the lowest rea
hable point B in

X . The upper end of X may be the upper left


orner of the re
tangle, or it may be a forbidden

point whi
h belongs to a 
omponentO of forbidden

points. Similarly, the left endpoint F of Y may

be part of a 
omponent of forbidden points, whi
h

we denote by O

2

. (O and O

2

are not ne
essarily

di�erent, see Figure 3a.)

Lemma 7 The leftmost point U in Y rea
hable

from X depends only on the presen
e and the rela-

tive lo
ations of O and O

2

and the horizontal line

through B.

PROOF. We have to show that any other \ob-

sta
les" of forbidden points do not play any role in

this question. We show this by giving an algorithm

for 
onstru
ting U in all 
ases.

If the horizontal line through B interse
ts O or

O

2

, it is 
lear that one 
annot rea
h Y , see for ex-

ample the interval X

1

in Figure 3a or the inter-

val X

2

in 
onne
tion with Y

2

in Figure 3b. Other-

wise, we 
laim that the desired point U lies dire
tly

above the rightmost point of O or of O

2

, whi
hever

is further to the right.

The monotone path from X to Y has to pass

to the right of O and O

2

. Thus, no point in Y

left of U is rea
hable from X . To see that U is

rea
hable, 
onsider �rst the 
ase that O exists, see

the example of the interval X

1

in Figure 3b. Let A

be the rightmost point of O. A 
an lie on the upper

edge, or it 
an be a 
riti
al point of type E

+

.

Assume �rst that A is a 
riti
al point of type

E

+

. The verti
al line a through A lies 
ompletely

in the free spa
e, by Lemma 5, and O is the only

obsta
le left of a. By assumption, the horizontal

line b from the lowest rea
hable point B in X does

not interse
t O before rea
hing a, and there are no

other obsta
les in this range. Thus, A is rea
hable

from B, and the upper end A

0

of a is the leftmost

rea
hable point on the top edge. If it lies in Y , we


an take it as our pointU , and we are done. (This is

the 
ase for the intervals X

1

and Y

1

in Figure 3b.)

If Y lies left of a, we are done as well, as no points

in Y are rea
hable from X . So let us deal with the
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B

O

F

A
B

B2

a

A′

AO

b

O2

F C ′

C

(a) (b)

D

Y1 Y2 Y1 Y2

X2

X1

X2

X1

Fig. 3. Determining the rea
hable points on the top edge

only remaining 
ase that Y lies to the right of a,

and a is separated from Y by the obsta
le O

2

.

The lowest point D of O

2

must lie above O, and

the horizontal line through D interse
ts a, whi
h

is rea
hable. Therefore D is rea
hable. From D we


an rea
h the rightmost point C of O

2

, whi
h is

either a 
riti
al point of type E

+

or the point F .

In either 
ase, we 
an indeed rea
h the point C

0

verti
ally above C as the leftmost point U .

The 
ases when O does not exist, or when the

rightmost point A of O lies on the upper edge, 
an

be treated similarly. 2

Will have des
ribed our pro
edure in terms of

geometri
 operations in the free spa
e diagram,

like �nding the right-most point in a 
omponent of

forbidden points. By working out what these op-

erations mean in terms of the 
urves f and g, we

obtain the following theorems.

Theorem 8 Given the rea
hable points on the bot-

tom edge and the left edge of a 
ell, the rea
hable

points on the top edge and the right edge of the 
ell


an be 
omputed in a 
onstant number of the fol-

lowing operations:

{ Interse
ting a 
ir
le of radius " with one of the


urves

{ Finding the �rst interse
tion of one 
urve with

an o�set 
urve of the other 
urve at distan
e ".

In both 
ases, we must be able to �nd the parameter

values on the respe
tive 
urves, 
orresponding to

the points that we have 
omputed. 2

Theorem 9 Given two 
urves 
onsisting ofm and

n pie
es, respe
tively, where ea
h pie
e has a turn-

ing angle at most � and has 
urvature � " or � "

throughout, we 
an de
ide O(m + n) spa
e and in

O(mn) primitive operations of the type des
ribed

in Theorem 8 whether their Fr�e
het distan
e is at

most ", for a given parameter ". 2

6. The Minimization Problem

The minimization problem of 
omputing the

Fr�e
het distan
e 
an be solved by Megiddo's para-

metri
 sear
h te
hnique [4℄, 
losely following the

approa
h of [2℄ for polygonal 
urves. The te
hni
al

details are more involved, and we have to make

some stronger assumptions on the 
urves.

Theorem 10 Given two 
urves 
onsisting of m

and n pie
es, respe
tively, of smooth algebrai



urves of �xed maximum degree we 
an 
ompute

their Fr�e
het distan
e in O(nm) spa
e and in

O(mn log(mn)) algebrai
 operations, i.e., degree


omparison between two real solutions of algebrai


equations of bounded degree. 2
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