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Abstrat

We onsider the Fr�ehet distane between two urves whih are given as a sequene of m+n urved piees. If these

piees are suÆiently well-behaved, we an ompute the Fr�ehet distane in O(mn log(mn)) time. The deision

version of the problem an be solved in O(mn) time.

1. Introdution

The Fr�ehet distane is a distane measure be-

tween urves.

De�nition 1 (Fr�ehet distane)

Let f : I = [l

I

; r

I

℄ ! R

2

and g : J = [l

J

; r

J

℄ ! R

2

be two planar urves, and let k � k denote the Eu-

lidean norm. Then the Fr�ehet distane Æ

F

(f; g)

is de�ned as

Æ

F

(f; g) := inf

� : [0;1℄!I

� : [0;1℄!J

max

t2[0;1℄

kf(�(t))� g(�(t))k:

where � and � range over ontinuous and non-

dereasing reparameterizations with �(0) = l

I

,

�(1) = r

I

, �(0) = l

J

, �(1) = r

J

.

In ontrast to other ommon distane measures

like the Hausdor� distane, the Fr�ehet distane re-

spets the one-dimensional struture of the urves

and doesn't just treat them as a point set.

The study of the Fr�ehet distane from a om-

putational point of view has been initiated by Alt

and Godau [2℄. The deision problem is the prob-

lem to deide, for a given ", whether the Fr�ehet

distane between two urves is at most ".

Alt and Godau [2℄ treated the ase of two polyg-

onal urves. For two urves of m and n piees, re-

spetively, they showed how to solve the deision

problem inO(mn) time and the optimization prob-
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lem in O(mn log(mn)) time. Some related prob-

lems have also been onsidered, like minimizing

the Fr�ehet distane under translations [3℄, or a

generalized Fr�ehet distane between a urve and

a graph [1℄. In all ases, however, the objets are

pieewise linear.

In this paper, we explore the Fr�ehet distane

between more general urves.We assume that eah

input urve is given as a sequene of smooth urve

piees that are\suÆiently well-behaved", suh as

irular ars, paraboli ars, or some lass of spline

urves. Our algorithm will perform ertain opera-

tions on these urves, like interseting them with

a irle.

We will show that the ombinatorial omplexity,

i. e., the number of steps, for solving the deision

problem is not larger than for polygonal paths,

O(mn). The omplexity of the individual opera-

tions (the algebrai omplexity) depends of ourse

on the nature of the urves. Under the stronger as-

sumption that the urves onsist of algebrai piees

whose degree is bounded by a onstant, we an

solve the optimization problem in O(mn log(mn)),

thus mathing the running time for the polygonal

ase. The elementary operations, however, are al-

gebrai operations of higher degree.

We assume that eah urve is given as a sequene

of piees whih are onneted at their endpoints.

Every piee is a smooth urve of lass C

2

, i. e., the

urvature is de�ned everywhere and varies ontin-

uously within a piee. We will not make any as-

sumptions how the urves are given; it is only im-

portant that the neessary geometri operations
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an be arried out.

We need urves whose turning angle is bounded

by �. Curves of larger bounding angle must be

subdivided. For solving the deision problem with

parameter ", we subdivide the urve at all points

where the urvature is 1=", in order to ensure that

in eah piee of the urve, the urvature is either

uniformly smaller or bigger than 1=".

We have omitted most proofs, but we state one

auxiliary lemma in order to illustrate the elemen-

tary arguments on whih the results are based.

Lemma 2 Let f be a smooth urve of turning angle

at most �, and let  by a irle of radius r.

(a) If the urvature of f is at most 1=r every-

where, the urve an interset  at most twie.

If it intersets  twie, then its endpoints lie

outside  or on the boundary, and the mid-

dle piee between the two intersetions lies

inside .

(b) If the urvature of f is at least 1=r every-

where, the urve an interset  at most twie.

The full version of this paper is available as a

tehnial report [5℄.

2. The Free Spae Diagram

The main tool of the algorithm is the free spae

diagram whih was introdued in [2℄. It is a two-

dimensional representation of all pairs of points on

the two urves, together with the identi�ation of

those pairs whih are loser than ".

De�nition 3 Let f : I ! R

2

, g : J ! R

2

be two

urves, I; J � R. The set

F

"

(f; g) := f (s; t) 2 I � J : kf(s)� g(t)k � " g

denotes the free spae of f and g. the partition of

I�J into the free spae and its omplement is alled

the free spae diagram.

Points in F

"

are alled feasible or free, and they

are usually drawn in white. The other points are

alled forbidden points or obstales, see Figure 1.

The following simple observation from [2℄ is ruial.

Lemma 4 Let f : I = [l

I

; r

I

℄ ! R

2

, g : J =

[l

J

; r

J

℄ ! R

2

be two urves. Then Æ

F

(f; g) � "

if and only if there exists a urve within F

"

(f; g)

from (l

I

; l

J

) to (r

I

; r

J

) whih is monotone in both

oordinates. 2

As f and g onsist of several piees, the free

spae diagram deomposes naturally into a grid of

retangular ells.

ε

f

g

Fig. 1. Two polygonal urves and their free spae diagram.

The sale of the free spae diagram is 50% redued with

respet to the urves.

3. Critial points

We regards as ritial points on the boundary of

F

"

those points whih are loal extrema in the hor-

izontal or vertial diretion. There are eight lasses

of ritial points, shown in Figure 2.

W+

N+

S+

E+

N−

E−

S−

W−

Fig. 2. The eight types of ritial points. N , S, E, W

refers to the diretion in whih the point is extreme, and

the supersript tells whether the area in this diretion is

feasible (+) or forbidden (�).

In terms of the urves f and g, these points or-

respond to situations where a irle  of radius "

around a point of one urve is tangent to the other

urve. For example, a ritial point of typeW

+

o-

urs in the situation where g touhes the irle  of

radius " around a point x on f from inside. As x

proeeds further away from g, a portion of g begins

to stik out from .
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4. The struture of a single ell

The free spae may be arbitrarily ompliated

even inside a ell. For example, if " is very small,

F

"

will ontain isolated islands of free spae for all

intersetions between f and g. However, we will

show that the reahable points an be omputed

in a onstant number of elementary geometri op-

erations.

We have subdivided the urves, and onse-

quently, the parameter intervals I and J into m

and n piees, respetively. Correspondingly, we ut

the retangle I � J into mn ells. On the bound-

aries of these ells, we ompute all points whih are

reahable from the lower left orner (l

I

; l

J

) of the

retangle by a path in free spae whih is mono-

tone in both diretions. We do this inrementally

from the lower left ell to the uppermost right ell.

A vertial line in the free-spae diagram orre-

sponds to a �xed point f(s) on f . The points in

F

"

on this line orrespond to the points of g whih

lie inside a irle  of radius " around f(s). The

boundary of F

"

orresponds to the intersetions of

 with g, and hene we an apply Lemma 2.

Lemma 5 Inside a ell, a vertial or horizontal

line intersets the boundary of F

"

at most twie.

A vertial tangent line trough a ritial point of

type E or W or a horizontal tangent line trough

a ritial point of type N or S does not ross the

boundary of F

"

in any other point. 2

Lemma 6 A urve forming a omponent of the

boundary of the free spae inside a ell an ontain

at most four ritial points. 2

This lemma implies that there is a limited num-

ber of possibilities for suh a boundary, the most

ompliated being an \s-shaped" path between be-

tween the left edge and the right edge of the ret-

angle, ontaining two ritial points S

+

and N

�

.

5. Proessing a ell

We are given the reahable points on the left and

bottom edge, and we ompute the points on the

right edge and on the top edge whih are reahable

from there.

On eah edge of the retangle there are at most

two intervals of free points, by Lemma 5. Inside

eah interval of free points, there is only a single

interval of reahable points beause from every free

point, everything whih is to the right or to the top

in the same free interval is reahable diretly.

We will illustrate how to ompute the leftmost

reahable point in eah free interval on the top edge

from a given interval X on left edge. Other ases

are similar.

We are given the lowest reahable point B in

X . The upper end of X may be the upper left

orner of the retangle, or it may be a forbidden

point whih belongs to a omponentO of forbidden

points. Similarly, the left endpoint F of Y may

be part of a omponent of forbidden points, whih

we denote by O

2

. (O and O

2

are not neessarily

di�erent, see Figure 3a.)

Lemma 7 The leftmost point U in Y reahable

from X depends only on the presene and the rela-

tive loations of O and O

2

and the horizontal line

through B.

PROOF. We have to show that any other \ob-

stales" of forbidden points do not play any role in

this question. We show this by giving an algorithm

for onstruting U in all ases.

If the horizontal line through B intersets O or

O

2

, it is lear that one annot reah Y , see for ex-

ample the interval X

1

in Figure 3a or the inter-

val X

2

in onnetion with Y

2

in Figure 3b. Other-

wise, we laim that the desired point U lies diretly

above the rightmost point of O or of O

2

, whihever

is further to the right.

The monotone path from X to Y has to pass

to the right of O and O

2

. Thus, no point in Y

left of U is reahable from X . To see that U is

reahable, onsider �rst the ase that O exists, see

the example of the interval X

1

in Figure 3b. Let A

be the rightmost point of O. A an lie on the upper

edge, or it an be a ritial point of type E

+

.

Assume �rst that A is a ritial point of type

E

+

. The vertial line a through A lies ompletely

in the free spae, by Lemma 5, and O is the only

obstale left of a. By assumption, the horizontal

line b from the lowest reahable point B in X does

not interset O before reahing a, and there are no

other obstales in this range. Thus, A is reahable

from B, and the upper end A

0

of a is the leftmost

reahable point on the top edge. If it lies in Y , we

an take it as our pointU , and we are done. (This is

the ase for the intervals X

1

and Y

1

in Figure 3b.)

If Y lies left of a, we are done as well, as no points

in Y are reahable from X . So let us deal with the
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b

O2

F C ′

C

(a) (b)

D

Y1 Y2 Y1 Y2

X2

X1

X2

X1

Fig. 3. Determining the reahable points on the top edge

only remaining ase that Y lies to the right of a,

and a is separated from Y by the obstale O

2

.

The lowest point D of O

2

must lie above O, and

the horizontal line through D intersets a, whih

is reahable. Therefore D is reahable. From D we

an reah the rightmost point C of O

2

, whih is

either a ritial point of type E

+

or the point F .

In either ase, we an indeed reah the point C

0

vertially above C as the leftmost point U .

The ases when O does not exist, or when the

rightmost point A of O lies on the upper edge, an

be treated similarly. 2

Will have desribed our proedure in terms of

geometri operations in the free spae diagram,

like �nding the right-most point in a omponent of

forbidden points. By working out what these op-

erations mean in terms of the urves f and g, we

obtain the following theorems.

Theorem 8 Given the reahable points on the bot-

tom edge and the left edge of a ell, the reahable

points on the top edge and the right edge of the ell

an be omputed in a onstant number of the fol-

lowing operations:

{ Interseting a irle of radius " with one of the

urves

{ Finding the �rst intersetion of one urve with

an o�set urve of the other urve at distane ".

In both ases, we must be able to �nd the parameter

values on the respetive urves, orresponding to

the points that we have omputed. 2

Theorem 9 Given two urves onsisting ofm and

n piees, respetively, where eah piee has a turn-

ing angle at most � and has urvature � " or � "

throughout, we an deide O(m + n) spae and in

O(mn) primitive operations of the type desribed

in Theorem 8 whether their Fr�ehet distane is at

most ", for a given parameter ". 2

6. The Minimization Problem

The minimization problem of omputing the

Fr�ehet distane an be solved by Megiddo's para-

metri searh tehnique [4℄, losely following the

approah of [2℄ for polygonal urves. The tehnial

details are more involved, and we have to make

some stronger assumptions on the urves.

Theorem 10 Given two urves onsisting of m

and n piees, respetively, of smooth algebrai

urves of �xed maximum degree we an ompute

their Fr�ehet distane in O(nm) spae and in

O(mn log(mn)) algebrai operations, i.e., degree

omparison between two real solutions of algebrai

equations of bounded degree. 2
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