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Abstract

We consider the problem of finding a door in a wall with a blind robot, that does not know the distance to the

door or whether the door is located left hand or right hand to its start point. This problem can be solved with

the well-known doubling strategy yielding an optimal competitive factor of 9 with the assumption, that the robot

does not make any errors during its movements. We study the case, that the robots movement is errorneous. We

give upper bounds for the movement error, such that reaching the door is guaranteed. More precisely the error

range δ has to be smaller than 1

3
. Additionally, the corresponding competitive factor is given by 1 + 8 1+δ

1−3δ
.
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1. Introduction

Online motion planning in unknown environ-
ments is theoretically well-understood and prac-
tically solved in many settings. During the last
decade many different objectives where discussed
under several robot models. For a general overview
of theoretical online motion planning problems and
its analysis see the surveys [3,9,10,7].

Theoretical correctness results and performance
guarantees often suffer from idealistic assump-
tions, therefore in the worst case a correct im-
plementation is impossible. On the other hand
practioners analyze correctness results and perfor-
mance guarantees mainly statistically. Therefore
it is useful to investigate, how online algorithms
with idealistic assumptions behave, if those as-
sumptions cannot be fulfilled. More precisely, can
we incorporate assumptions of errors in sensors
and motion directly into the theoretical analysis?
We already successfully considered the behaviour
of the well-known pledge algorithm, see Abelson
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and diSessa [1] and Hemmerling [6], in the pres-
ence of errors [8].

The task of finding a point on a line without
knowing the direction or the distance to the start
point was considered by Baeza-Yates et. al. [2] and
independently by Gal [5] and lead to the so called
doubling strategy, which gives a basic paradigma
for other searching algorithms, i.e., searching for
a point on m rays or approximating the optimal
search path, see [4].

Under the competitive framework doubling with
a factor of two is the optimal strategy for search-
ing a point on the line. The competitive analysis
compares the cost of the strategy with the cost of a
solution which is computed under full information,
see [2].

In this paper we investigate how the doubling
strategy behaves in the presence of errors and how
the error influences the correctness and the corre-
sponding competitive factor of the strategy.

We assume that an error range for a single step
is known in advance but the agent gets no further
information about the cummulated error. There-
fore for the agent it makes no sense not to use the
doubling heuristic.
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2. The lost cow problem

The task is to find a door in a wall, respectively
a point, t, on a line. The robot does not know
whether t is located left hand or right hand to its
start position, s, nor does it know the distance from
s to t. Baeza-Yates et. al. [2] describe the strategy
to solve this problem using a function f . f(i) is
the distance the robot walks in the ith step. If i is
odd, the robot moves f(i) steps from the start to
the right and f(i) steps back; if i is even, the robot
moves to the left. It is assumed, that the movement
is correct, so after moving f(i) steps from the start
point to the right and moving f(i) steps to the left,
the robot has reached its start point. Baeza-Yates
et. al. showed, that a strategy with f(i) = 2i is 9-
competitive and this is optimal.

An online strategy that produces a path of
length |πonl| is called C-competitive if for all scenes

|πonl| ≤ C · |πopt| + A

holds, where |πopt| denotes the path length of the
optimal strategy which makes use of full informa-
tion.

3. Modelling the error

The robot moves straight line segments of a cer-
tain length from the start point alternately to the
left and to the right. Every movement can be af-
flicted with an error, that causes the robot to move
more or less far than expected. However, we require
the robots error in every step is within a certain er-
ror bound, δ. More precisely if the strategy moves
the robot a distance ℓ we require that the covered
distance is in the range [ℓ · (1− δ), ℓ · (1 + δ)] with
δ ∈ [0, 1[.

4. Reaching the door

How large can the error bound δ become under
the restiction, that the robot should be able to
reach the door? W. l. o. g. we consider the case, that
the door is located on the same side as the first step
of the agent. We assume that the door is located
at d = 22j − ε, so an error-free robot hits the door
during the iteration with step width f(j) = 22j .
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Fig. 1. In the worst case, the start point of every iteration
drifts away from the door. The vertical path segments
are to highlight the single iterations, the robot moves on
horizontal segments only.

In the worst case, every step to the right of the
error afflicted robot is too short and every step to
the left is too long, so start point of the iterations
drifts to the left, see Fig. 1. Let ∆k denote the drift
after k iterations.

∆k =
k∑

i=0

(

2i · (1 + δ)
︸ ︷︷ ︸

Steps, that are too long

− 2i · (1 − δ)
︸ ︷︷ ︸

Steps, that are too short

)

= 2δ ·

k∑

i=0

2i = 2δ(2k+1 − 1).

Let the error afflicted robot miss the door dur-
ing the iteration with step width f(j) = 22j due
to the drift to the left. Now we are interested in
the number of additional steps, and whether the
robot is able to reach the door at all. Obviously the
reachability and the number of additional steps de-
pends on the error δ. If the robot hits the door, it
will hit in the iteration with a step with of 22j+2k,
k ∈ N

>0, because the door is located right hand to
the start point. To ensure, that the robot hits the
door, the length of the last straight path must be
at least as large as the distance to door plus the
overall drift to the left. The last straight path may
be error afflicted again, but its length is a least
the lower bound of the error range in the iteration
22j+2k. This yields
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∆2j+2k−1 + d ≤ 22j+2k · (1 − δ)

⇔ 2δ · 22j+2k − 2δ + 22j − ε ≤ 22j+2k − 22j+2kδ

⇒ 22j
[
2δ22k + 1 − 22k + δ22k

]
− 2δ

< 22j
[
3δ22k + 1 − 22k

]
≤ ε

⇔ δ ≤
1

3

22k − 1

22k
+

ε

3 · 22j+2k

⇒ δ ≤
1

3

22k − 1

22k

The last term converges for k → ∞ to 1
3
. Thus

Corollary 1 If the error δ is not greater than 1
3

the robot will hit the door.

With the given analysis it is also possible to present
relations between the error range and the number
of additional iterations. For example:

Corollary 2 If the error δ is not greater than 1
4

the robot will hit the door with only one iteration

step more than the error-free robot.

5. Analyzing the performance

W. l. o. g. for the competitive setting it would be
the worst, if the door is hit during the iteration
with step width 22j+2, but located just a litte bit
further away than the rightmost point that was
reached during the iteration with step width 22j,
i. e.

d = 22j(1− δ)−∆2j−1 + ε = 22j(1− 3δ) + 2δ + ε.

This yields a factor of

|πonl|

d
=

1

d

(

2

2j+1
∑

i=1

2i + ∆2j+1 + d

)

=
1

d

(
2 · (22j+2 − 1) + 2δ(22j+2 − 1) + d

)

=
22j
(
8(1 + δ) − 1+δ+ε

22j

)

22j
(
1 − 3δ + 2δ+ε

22j

) + 1

< 8
1 + δ

1 − 3δ
+ 1

To show that this is the worst case, we show
that the robots errors in the left and in the right
direction are different. Furthermore the error in
each step may be a different one. Let δ+

i be length
of the movement to the right in the i-th step and
δ−i be the length of the movement to the left. Now

2j−1
∑

i=1

(δ−i − δ+
i )

denotes the deviation from the start point before
the 2j-th step and

2j−1
∑

i=1

(δ−i + δ+
i )

is the path length up to this point.
As above the door is hit during the step 2j + 2,

therefore its distance is

d = δ+
2j − ∆2j−1 + ε

= δ+
2j −

2j−1
∑

i=1

(δ−i − δ+
i ) + ε

For the corresponding path length we have

|πonl| =

2j+1
∑

i=1

(δ−i + δ+
i ) +

2j+1
∑

i=1

(δ−i − δ+
i ) + d

due to the fact that we will finally stop at distance
d, we add the deviation to d.

With this we get

|πonl|

d
= 1 +

∑2j+1

i=1 (2δ−i )

δ+
2j −

∑2j−1

i=1 (δ−i − δ+
i ) + ε

We can conclude that the ratio achieves its maxi-
mum if we exceed every δ−i to the greatest extend,
which is 2i(1 + δ). Now we only have to fix δ+

i in
order to maximize the ratio. Obviously the nom-
inator gets its smallest value if every δ+

i is very
small, therefore we use δ+

i = 2i(1 − δ).

Theorem 3 If the error δ is not greater than 1
3

the

robot will hit the door with the doubling strategy.

The generated path is not longer than 8 1+δ
1−3δ

+ 1
times the shortest path to the door.

6. Summary

We have analyzed a simple doubling strategy to
find a door in a wall respectively a point on a line
in the presence of errors in movements. We showed
that the robot is still able to reach the door if the
error is less than 1

3
. Moreover, if the error is less

than 1
4

the robot will need at most two iteration
steps more than the error-free robot. If the error in
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the movement is bound by δ < 1
3
, the competitive

ratio is

8
1 + δ

1 − 3δ
+ 1.

Both error bounds are rather big, so it can be
expected, that real robots will meet this error
bounds.

The problem for m rays is a little bit different
because the robot may detect the starting point if
it changes from one corridor to another. Here, one
may be interested in the probability of entering
correctly the next corridor.
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