On a initial-boundary Q-Tensor problem related to Liquid Crystals

F. Guillén-Gonzalez & M. A. Rodríguez Bellido

Dpto. Ecuaciones Diferenciales y Análisis Numérico and IMUS Facultad de Matemáticas Universidad de Sevilla, Spain

DIMO 2013/10-13 September, Levico Terme

イロト イポト イヨト イヨト

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla DIMO2013

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

2 Models with Stretching Terms

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

★ 문 ► ★ 문 ►

Complex Fluids

It is not possible to decouple microscopic and macroscopic effects.

- Fluids with elastic properties. They possesses intermediate properties between solids and liquids. Examples: liquid crystals, polymers (macromolecules), ...
- Phase-field models.

Examples: multi-fluids (mixture of fluids), multi-phases (solidification), ...

These complex materials have practical utilities because its microstructure can be handled in order to produce good mechanical, optical or thermic properties.

イロト イポト イヨト イヨト

Liquid Crystals

Liquid crystals (LC) are intermediate phases between solid and liquid; at the macroscopic level, they are (viscous) liquids but their molecules have a anisotropic order due to their elastic properties.

- Nematic Liquid Crystals have an orientation order.
- Smectic Liquid Crystals have also a positional order (arranged by layers).

The derivation and the analysis falls into a general energetic variational framework for complex fluids with elastic effects due to the presence of nontrivial microstructures, coupling

- Navier-Stokes equations for the velocity and pressure.
- Partial Differential Equations for the microscopic variable (called order parameter)

Figura: Types of Liquid Crystals

イロン イ団ン イヨン イヨン

э.

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla DIMO2013

A simplified model by F. H. Lin Some known results

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Terms

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model
- Some analytical results for *Q*-tensor models
 - Weak existence
 - Weak/strong uniqueness
 - Maximum Principle
 - Strong solution ?
 - Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

イロト イポト イヨト イヨト

Nematic Liquid Crystals - Macroscopic model

Director field $d(t, \mathbf{x})$, representing the average orientation of the liquid crystal molecules.

The shear stress tensor depends on elastic and viscous effects (Ericksen-Leslie theory, 1980s):

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^{\boldsymbol{d}}(\boldsymbol{D}, \boldsymbol{d}) + \lambda \, \boldsymbol{\sigma}^{\boldsymbol{e}}(\boldsymbol{d}),$$

where σ^d is the dissipative tensor, σ^e the elastic tensor and $\lambda > 0$ a "balance" coefficient.

Then, equations for equilibrium of forces remains as:

$$D_t \mathbf{u} + \nabla p - \nabla \cdot \sigma^d - \lambda \nabla \cdot \sigma^e = 0$$
 in $Q = (0, T) \times \Omega$.

A simplified model by F. H. Lin Some known results

Nematic Liquid Crystals: Microscopic Model (of Allen-Canh's type)

Starting from the Ericksen-Leslie's formulation, a penalized model is presented by [F.H. Lin]:

$$\mathcal{D}_{\mathbf{t}}\mathbf{d} + \gamma \, rac{\delta \mathbf{E}_{\mathbf{e}}}{\delta \mathbf{d}} = \mathbf{0}, \quad ext{in } \mathbf{Q},$$

where

$$rac{\delta E_{m{e}}}{\delta {f d}} = -\Delta {f d} +
abla_{f d} {f F}_{m{\epsilon}}({f d})$$

is the *Euler-Lagrange* equation associated to the elastic energy functional:

$$E_e(\mathbf{d}) = \left(rac{1}{2}\int_{\Omega}|
abla \mathbf{d}|^2 + \int_{\Omega}\mathbf{F}_{\epsilon}(\mathbf{d})
ight)$$

A simplified model by F. H. Lin Some known results

イロン 不得 とくほ とくほとう

Ginzburg-Landau's functional:

$$\mathsf{F}_{\epsilon}(\mathsf{d}) = rac{1}{4 \epsilon^2} \left(|\mathsf{d}|^2 - 1
ight)^2$$

such that $\mathbf{f}_{\epsilon}(\mathbf{d}) = \nabla_{\mathbf{d}}(\mathbf{F}_{\epsilon}(\mathbf{d}))$ for every $\mathbf{d} \in \mathbb{R}^3$, hence

$$\mathbf{f}_{\epsilon}(\mathbf{d}) = rac{\mathbf{1}}{\epsilon^{\mathbf{2}}} \left(|\mathbf{d}|^{\mathbf{2}} - \mathbf{1}
ight) \, \mathbf{d},$$

where $|\mathbf{d}|$ denotes the euclidean norm in \mathbb{R}^3 and $\epsilon > 0$ is a penalization parameter.

A simplified model by F. H. Lin Some known results

イロト 不得 トイヨト イヨト

э.

A simplified model [F. H. Lin]

Taking

$$\sigma^{d} = \nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{t} \right) \quad (\text{Stokes' law})$$

$$\sigma^{e} = -(\nabla \mathbf{d})^{t} \nabla \mathbf{d} \quad \Rightarrow \quad \nabla \cdot \sigma^{e} = (\nabla \mathbf{d})^{t} (-\Delta \mathbf{d} + \mathbf{f}_{e}(\mathbf{d})) + \nabla \left(\cdots \right)$$

$$\left\{ \begin{array}{rcl} \partial_{t} \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \Delta \mathbf{u} + \nabla \widetilde{p} &= -\lambda (\nabla \mathbf{d})^{t} \Delta \mathbf{d} \\ \nabla \cdot \mathbf{u} &= 0 \\ \partial_{t} \mathbf{d} + \mathbf{u} \cdot \nabla \mathbf{d} + \gamma \left(-\Delta \mathbf{d} + \mathbf{f}_{e}(\mathbf{d}) \right) &= 0 \\ \mathbf{u}|_{\partial\Omega} = \mathbf{0}, \quad \mathbf{d}|_{\partial\Omega} &= \mathbf{d}_{\partial\Omega} \\ \mathbf{u}|_{t=0} &= \mathbf{u}_{0}, \quad \mathbf{d}|_{t=0} &= \mathbf{d}_{0} \end{array} \right.$$

A simplified model by F. H. Lin Some known results

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Terms

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model
- 3 Some analytical results for Q-tensor mod
 - Weak existence
 - Weak/strong uniqueness
 - Maximum Principle
 - Strong solution ?
 - Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

イロト イポト イヨト イヨト

Known results for $\mathbf{u} = \mathbf{0}$, $\mathbf{d} = \mathbf{d}_{\partial\Omega}$ on $\partial\Omega$,

- [F. H. Lin & C. Liu '95]:
 - Existence of global in time weak solution: $(\mathbf{u}, \mathbf{d}) \in L^{\infty}(0, T; \mathbf{L}^{2}(\Omega) \times \mathbf{H}^{1}(\Omega))) \cap L^{2}(0, T; \mathbf{H}^{1}(\Omega) \times \mathbf{H}^{2}(\Omega)),$
 - Existence (and uniqueness) of local in time strong solution:
 (u, d) ∈ L[∞](0, T_{*}; H¹(Ω) × H²(Ω)) ∩ L²(0, T_{*}; H²(Ω) × H³(Ω)), for T_{*} ≤ T small enough or T_{*} = T (∀T > 0) if ν large.

[F. G-G,M. A. Rodríguez-Bellido & M.A. Rojas-Medar '09]: Regularity criteria for uniqueness and global in time regularity

[H.Wu'12]: Convergence of trajectories towards an unique equilibrium

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Terms

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model
- 3

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

A nematic model with Stretching

 $(StNLC) \begin{cases} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \Delta \mathbf{u} + \nabla \widetilde{p} + \lambda (\nabla \mathbf{d})^t \Delta \mathbf{d} \\ \lambda \nabla \cdot ((-\Delta \mathbf{d} + \mathbf{f}_{\epsilon}(\mathbf{d})) \otimes \mathbf{d}) &= 0 \\ \nabla \cdot \mathbf{u} &= 0 \\ \partial_t \mathbf{d} + \mathbf{u} \cdot \nabla \mathbf{d} - \mathbf{d} \cdot \nabla \mathbf{u} + \gamma (-\Delta \mathbf{d} + \mathbf{f}_{\epsilon}(\mathbf{d})) &= \mathbf{0} \\ \mathbf{u}|_{t=0} &= \mathbf{u}_0, \quad \mathbf{d}|_{t=0} &= \mathbf{d}_0 \end{cases}$

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla DIMO2013

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

イロト イポト イヨト イヨト

Effects of the stretching term

- Lose of the maximum principle
- Existence of local in time strong solution only for space-periodic boundary conditions or large viscosity

Convergence of trajectories to a unique equilibrium

- [C. Liu, H. Wu & X. Xu '12]: for periodic boundary conditions
- [H. Petzeltová, E. Rocca & G. Schimperna'13]: for homogeneous Neumann boundary conditions

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Terms

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

3

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Free energy

Free energy operator:

$$\mathcal{E}(Q) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla Q|^2 + F(Q)$$

where

$$F(Q) = \frac{a}{2} |Q|^2 - \frac{b}{3} (Q^2 : Q) + \frac{c}{4} |Q|^4 \quad (\text{non-convex}) \quad (1)$$

Let $H(Q) = \frac{\delta \mathcal{E}(Q)}{\delta Q}$ be the variational derivative in $L^2(\Omega)$.

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

Velocity system

The variables describing the (QT)-model are $(\mathbf{u}, Q, p) : (0, T) \times \Omega \rightarrow \mathbb{R}^3 \times \mathbb{R}^{3 \times 3} \times \mathbb{R}$:

$$\begin{cases} D_t \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p = \nabla \cdot \tau(Q) + \nabla \cdot \sigma(H, Q) & \text{in } \Omega \times (0, T) \\ \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega \times (0, T) \end{cases}$$

where $D_t \mathbf{u} = \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u}$ is the material derivative,

$$\tau_{ij}(Q) = -\varepsilon \left(\partial_j Q : \partial_i Q \right) = -\varepsilon \partial_j Q_{kl} \partial_i Q_{kl}, \varepsilon > 0$$
(symmetric part)

 $\sigma(H,Q) = HQ - QH$ (antisymmetric part when Q and H are symmetric)

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

イロト イポト イヨト イヨト 二日

Q-tensor system

$$\partial_t Q + (\mathbf{u} \cdot \nabla) Q - S(\nabla \mathbf{u}, Q) = -\gamma H(Q) \text{ in } \Omega \times (\mathbf{0}, T)$$

where

 $\begin{cases} S(\nabla \mathbf{u}, Q) = \nabla \mathbf{u} Q^t - Q^t \nabla \mathbf{u}, \quad \text{(stretching term)} \\ H(Q) = -\varepsilon \Delta Q + f(Q) \quad \text{where} \\ f(Q) = aQ - \frac{b}{3} \left(Q^2 + QQ^t + Q^tQ\right) + c |Q|^2 Q \\ & \text{with } c > 0, a, b \in \mathbb{R} \\ & (H \text{ is a symmetric tensor if } Q \text{ is symmetric,} \\ & \text{ in fact } f(Q)^t = f(Q^t)) \end{cases}$

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

イロト イポト イヨト イヨト

Previous results for an initial-value problem (in the whole \mathbb{R}^3) [Paicu-Zarnescu'12]

- Existence of weak solution in (0, T), for each T > 0.
- Global strong solution in 2D.
- Weak-Strong uniqueness

Nematic Liquid Crystals with Stretching Terms A generic Q-tensor model

イロト 不得 トイヨト イヨト

3

Initial and boundary conditions

Initial conditions:

$$\mathbf{u}|_{t=0} = \mathbf{u}_0, \ Q|_{t=0} = Q_0 \quad \text{in } \Omega,$$

Boundary conditions ($\Gamma = \partial \Omega$:):

- For the velocity: $\mathbf{u}|_{\Gamma} = \mathbf{0}$ in (0, T).
- For the Q-tensor:

$$\partial_{\mathbf{n}} Q|_{\Gamma} = 0$$
 or $Q|_{\Gamma} = Q_{\Gamma}$ in $(0, T)$.

イロト イポト イヨト イヨト

Main results for the initial-boundary QT-model

- existence of global in time weak solution (without using maximum principle).
- Modification of the model to enforce traceless and symmetry constraints for *Q*.
- maximum principle
- uniqueness criteria for weak solutions
- local existence (and uniqueness) of a "intermediate" regular solution

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for ($\partial_t \mathbf{u}, \partial_t Q$) and uniqueness

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Term

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

3

Some analytical results for *Q*-tensor models • Weak existence

- weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

イロト 不得 とくき とくきとう

э.

Step 1. Energy equality (Lyapunov functional)

$$\frac{d}{dt}\left(\frac{1}{2}\|\mathbf{u}\|_{L^{2}(\Omega)}^{2}+\mathcal{E}(Q)\right)+\nu\|\nabla\mathbf{u}\|_{L^{2}(\Omega)}^{2}+\gamma\|H(Q)\|_{L^{2}(\Omega)}^{2}=0,$$

with
$$\mathcal{E}(Q) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla Q|^2 + F(Q) \, d\mathbf{x} \geq 0$$

Using that:

$$\begin{array}{rcl} (S(\nabla \mathbf{u}, Q), H(Q))_{L^2} &= & (\sigma(H, Q), \nabla \mathbf{u}))_{L^2} \\ (\mathbf{u} \cdot \nabla Q, H(Q))_{L^2} &= & (\nabla \cdot \tau(Q), \mathbf{u})_{L^2} \\ Q \text{-system} & & \mathbf{u} \text{-system} \end{array}$$

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

Step 2. Lower bound of the potential

But the term F(Q) could be negative. Observe that:

$$F(Q) \geq \begin{cases} \frac{a}{2} |Q|^2 + \frac{c}{8} |Q|^4 - \alpha_1, & \text{for } \alpha_1 = \alpha_1(b, c) > 0 \text{ if } a > 0, \\ \frac{c}{8} |Q|^4 - \alpha_2 - \beta, & \text{for } \alpha_2 = \alpha_2(b, c), \ \beta = \beta(a, c) > 0 \\ & \text{if } a < 0, \end{cases}$$

Defining $\widetilde{F}(Q) = F(Q) + \mu$ with $\mu = \alpha_1$ if $a \ge 0$ and $\mu = \alpha_2 + \beta$ if a < 0, then:

$$\widetilde{F}(Q) \geq \left\{ egin{array}{c} rac{a}{2} \, |Q|^2 + rac{c}{8} \, |Q|^4 \geq 0 & ext{if } a > 0, \ rac{c}{8} \, |Q|^4 \geq 0 & ext{if } a < 0, \end{array}
ight.$$

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

Step 3. Weak regularity

$$\frac{1}{2} \|\mathbf{u}(t)\|_{\mathsf{L}^2(\Omega)}^2 + \frac{\varepsilon}{2} \|\nabla Q(t)\|_{\mathbb{L}^2(\Omega)}^2 + \int_{\Omega} \widetilde{F}(Q(t)) < +\infty,$$

(here, $|\Omega| < +\infty$ is essential). Therefore:

 $\begin{cases} \mathbf{u} \in L^{\infty}(\mathbf{0}, +\infty; \mathbf{L}^{2}(\Omega)) \cap L^{2}(\mathbf{0}, +\infty; \mathbf{H}^{1}(\Omega)), \\ \nabla Q \in L^{\infty}(\mathbf{0}, +\infty; \mathbb{L}^{2}(\Omega)) \\ \widetilde{F}(Q) \in L^{\infty}(\mathbf{0}, +\infty; \mathcal{L}^{1}(\Omega)) \\ -\varepsilon \Delta Q + f(Q) \in L^{2}(\mathbf{0}, +\infty; \mathbb{L}^{2}(\Omega)) \end{cases}$

Finally

 $Q\in L^\infty(0,+\infty;\mathbb{H}^1(\Omega)), \quad Q\in L^2(0,T;\mathbb{H}^2(\Omega)), \; orall \, T>0.$

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla

DIMO2013

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for ($\partial_t \mathbf{u}, \partial_t Q$) and uniqueness

イロト イポト イヨト イヨト

Modifications of the model to enforce traceless

Replace

$$H$$
 by $\tilde{H} = H + \alpha(Q) Id$
with $\alpha(Q) = \frac{1}{3} \left(-a tr(Q) + \frac{b}{3} (tr(Q^2) + 2|Q|^2) \right)$ or
 $\alpha(Q) = -\frac{1}{3} tr(f(Q))$
Idea: To eliminate the non-convex part (at least) of the trace of Q -system

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for ($\partial_t \mathbf{u}, \partial_t Q$) and uniqueness

イロト イポト イヨト イヨト

Modifications of the model to enforce symmetry

Replace

$S(\nabla \mathbf{u}, Q)$ by $S(W(\mathbf{u}), Q)$,

with $W(\mathbf{u}) = (\nabla \mathbf{u} + \nabla \mathbf{u}^t)/2$

Idea: To eliminate the symmetric part of the stretching term of *Q*-system

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Term

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_tQ) and uniqueness

Uniqueness criteria

Let $(\mathbf{u}_1, q_1, Q_1, H_c^1)$, $(\mathbf{u}_2, q_2, Q_2, H_c^2)$ be two solutions, $(H_c)^i = -\varepsilon \Delta Q_i + F'_c(Q_i))$, for $F = F_c + F_e$ $\mathbf{u} = \mathbf{u}_1 - \mathbf{u}_2$, $q = q_1 - q_2$, $Q = Q_1 - Q_2$, $H_c = H_c^1 - H_c^2$.

$$\frac{1}{2} \frac{d}{dt} \left(\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \varepsilon \|Q\|_{\mathbb{H}^{1}(\Omega)}^{2} + \int_{\Omega} Q_{mn} \frac{\partial^{2} F_{c}(R)}{\partial Q_{mn} \partial Q_{pq}} Q_{pq} d\mathbf{x} \right) \\
+ \nu \|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \gamma \|H_{c}\|_{\mathbb{L}^{2}(\Omega)}^{2} \\
\leq C(t) \left(\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \varepsilon \|Q\|_{\mathbb{H}^{1}(\Omega)}^{2} \right)$$

where $C(t) \in L^1(0, T)$ under the regularity hypothesis:

$$(\textit{RH}) \left\{ \begin{array}{ll} \nabla \mathbf{u}_2 \in L^{\frac{2q}{2q-3}}(0, T; \mathbf{L}^q(\Omega), & \text{for } 2 \leq q \leq 3 \\ \Delta Q_2 \in L^{\frac{2r}{2r-3}}(0, T; \mathbb{L}^r(\Omega), & \text{for } 2 \leq r \leq 3 \end{array} \right.$$

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Term

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

イロン 不得 とくほ とくほ とうほ

Maximum Principle

Based on:

$$S(\nabla \mathbf{u}, Q) : Q = 0$$

2)
$$f(Q): Q \ge \frac{c}{2}|Q|^2 \left(|Q|^2 - \beta\right)$$
 for $\beta = \frac{b^2}{c^2} - \frac{2a}{c}$.

I hen,

$$\partial_t \left(|Q|^2 \right) + \mathbf{u} \cdot \nabla \left(|Q|^2 \right) - \gamma \, \boldsymbol{\varepsilon} \, \Delta \left(|Q|^2 \right) + \gamma \, \frac{\mathbf{c}}{2} |Q|^2 \, \left(|Q|^2 - \beta \right) \leq \mathbf{0}$$

If $\|Q_0\|_{\mathbb{L}^{\infty}(\Omega)} \leq \alpha$ (and $\|Q_{\Gamma}\|_{\mathbb{L}^{\infty}(\Gamma)} \leq \alpha$) with $\alpha \geq \beta$, then:

 $\|Q(t)\|_{\mathbb{L}^{\infty}(\Omega)} \leq \alpha \quad \forall t \geq 0.$

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (A.u. A.Q) and uniqueness

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Term

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle

Strong solution ?

• Local weak regularity for $(\partial_t \mathbf{u}, \partial_t \mathbf{Q})$ and uniqueness

Weak existence Weak'strong uniqueness Maximum Principle Strong solution ? Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

イロト イポト イヨト イヨト

Problems with the strong regularity

- Prodi's (space) estimates (taking -Δu for u-system and -Δ(-εΔQ + f(Q)) for Q-system) only works for
 - periodic-space boundary conditions for Q,
 - Iarge enough viscosity.
- Modified Ladyzhenskaya's (time) estimates works for Neumann and Dirichlet boundary conditions for *Q*.

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_r**u**, ∂_rQ) and uniqueness

イロト 不得 トイヨト イヨト

э

The key point for Prodi's estimates

Due to the boundary condition for Q (non space-periodic):

$$(S(\nabla \mathbf{u}, Q), -\Delta H(Q))_{L^2} \neq (\sigma(H, Q), \nabla(-\Delta \mathbf{u})))_{L^2}$$

and

$$(\nabla \cdot \tau(Q), -\Delta \mathbf{u})_{L^2} \neq (\mathbf{u} \cdot \nabla Q, -\Delta H(Q))_{L^2}$$

because some (high nonlinear) boundary terms don't vanish.

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_t*Q*) and uniqueness

イロト 不得 トイヨト イヨト

3

The bad terms (only bounded for large viscosity)

$$\frac{1}{2} \frac{d}{dt} \left(\|\nabla \mathbf{u}\|_{L^{2}(\Omega)}^{2} + \|\Delta Q\|_{L^{2}(\Omega)}^{2} \right) + \boldsymbol{\nu} \|A\mathbf{u}\|_{L^{2}(\Omega)}^{2} + \gamma \|\nabla(\Delta Q)\|_{L^{2}(\Omega)}^{2} \\
= -(\mathbf{u} \cdot \nabla \mathbf{u}, A\mathbf{u}) + (A\mathbf{u} \cdot \nabla Q, \Delta Q) + (\nabla \cdot \sigma, A\mathbf{u}) + \dots \\
-(\nabla(\mathbf{u} \cdot \nabla Q), \nabla(\Delta Q)) + (\nabla S(\nabla \mathbf{u}, Q), \nabla(\Delta Q)) \\
\leq \dots + \int_{\Omega} |Q| |\nabla(\Delta Q)| |A\mathbf{u}| d\mathbf{x} \leq \dots \quad \bullet$$

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla DIMO2013

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂,u, ∂,Q) and uniqueness

イロト イポト イヨト イヨト

Nematic Liquid Crystals

- A simplified model by F. H. Lin
- Some known results

Models with Stretching Term

- Nematic Liquid Crystals with Stretching Terms
- A generic Q-tensor model

Some analytical results for Q-tensor models

- Weak existence
- Weak/strong uniqueness
- Maximum Principle
- Strong solution ?
- Local weak regularity for $(\partial_t \mathbf{u}, \partial_t Q)$ and uniqueness

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_tQ) and uniqueness

Modified Ladyzhenskaya's estimates

Weak estimates for $(\partial_t \mathbf{u}, \partial_t \mathbf{u})$

Deriving in time **u**-system and *Q*-system, and taking $\partial_t \mathbf{u}$ and $-\Delta(\partial_t Q)$ as test functions:

$$\frac{d}{dt} \left(\|\partial_{t}\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \varepsilon \|\partial_{t}Q\|_{\mathbb{H}^{1}(\Omega)}^{2} \right)
+ \nu \|\partial_{t}\mathbf{u}\|_{\mathbf{H}^{1}(\Omega)}^{2} + \gamma \varepsilon^{2} \|\partial_{t}Q\|_{\mathbb{H}^{2}(\Omega)}^{2}
\leq a(t) \left(\|\partial_{t}\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\partial_{t}Q\|_{\mathbb{H}^{1}(\Omega)}^{2} \right)
+ C_{\nu,\gamma,\varepsilon} \left(\|\nabla\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{4} + \|H\|_{\mathbb{L}^{2}(\Omega)}^{4} \right) \left(\|\partial_{t}\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\partial_{t}Q\|_{\mathbb{H}^{1}(\Omega)}^{2} \right)$$
(2)

where $a \in L^1(0, T)$ (due to weak estimates).

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_tQ) and uniqueness

イロト 不得 とくき とくきとう

3

Intermediate strong estimates for **O**

Taking $\partial_t H = \partial_t (-\varepsilon \Delta Q + f(Q))$ as test function in the *Q*-system:

$$\frac{\gamma}{2} \frac{d}{dt} \|H\|_{\mathbb{L}^{2}(\Omega)}^{2} + \varepsilon \|\partial_{t}(\nabla Q)\|_{\mathbb{L}^{2}(\Omega)}^{2} \\
\leq C_{\delta} \left(1 + \|Q\|_{\mathbb{H}^{2}(\Omega)}\right) \|\partial_{t}Q\|_{\mathbb{L}^{2}(\Omega)}^{2} \\
+ \delta \|\partial_{t}H\|_{\mathbb{L}^{2}(\Omega)}^{2} + C_{\delta} \|Q\|_{\mathbb{H}^{2}(\Omega)} \|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2}$$
(3)

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_tQ) and uniqueness

イロト 不得 トイヨト イヨト

э

Intermediate strong estimates for u

Taking $\partial_t \mathbf{u}$ as test function in the equation for \mathbf{u} :

$$\nu \frac{d}{dt} \|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\partial_{t}\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
\leq C \Big(\|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{3} + \|Q\|_{\mathbb{H}^{2}(\Omega)} \|H\|_{\mathbb{L}^{2}(\Omega)}^{2} \Big)$$
(4)

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla DIMO2013

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_tQ) and uniqueness

イロト 不得 トイヨト イヨト

э.

Weak-t estimates

Putting together (2)-(3)-(4), we get:

$$\mathbf{y}'(t) + \mathbf{z}(t) \leq \widetilde{\mathbf{a}}(t) \, \mathbf{y}(t) + \mathbf{C} \, \mathbf{y}(t)^3$$

where

$$\begin{cases} \mathbf{y}(t) = \|\partial_t \mathbf{u}\|^2_{\mathbf{L}^2(\Omega)} + \|\partial_t Q\|^2_{\mathbb{H}^1(\Omega)} + \|\nabla \mathbf{u}\|^2_{\mathbf{L}^2(\Omega)} + \|H\|^2_{\mathbb{L}^2(\Omega)} \\ z(t) = \|\partial_t \mathbf{u}\|^2_{\mathbf{H}^1(\Omega)} + \|\partial_t Q\|^2_{\mathbb{H}^2(\Omega)} \end{cases}$$

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_tu, ∂_tQ) and uniqueness

Intermediate regularity results

Thus, we obtain:

• Local in time weak solution for $(\partial_t \mathbf{u}, \partial Q)$:

weak-t)
$$\begin{cases} \partial_t \mathbf{u} \in L^{\infty}(0, T^*; \mathbf{L}^2(\Omega)) \cap L^2(0, T^*; \mathbf{H}^1(\Omega)) \\\\ \partial_t Q \in L^{\infty}(0, T^*; \mathbb{H}^1(\Omega)) \cap L^2(0, T^*; \mathbb{H}^2(\Omega)) \\\\ \mathbf{u} \in L^{\infty}(0, T^*; \mathbf{H}^1(\Omega)) \\\\ Q \in L^{\infty}(0, T^*; \mathbb{H}^2(\Omega)) \end{cases}$$

and uniqueness !! (because uniqueness criteria (*RH*) is satisfied for q = 2 and r = 2.)

 Under regularity hypothesis (*RH*), global in time weak solution for (∂_tu, ∂_tQ).

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_tu, ∂_tQ) and uniqueness

Intermediate regularity results

Thus, we obtain:

(we

• Local in time weak solution for $(\partial_t \mathbf{u}, \partial Q)$:

$$ak-t) \begin{cases} \partial_t \mathbf{u} \in L^{\infty}(0, T^*; \mathbf{L}^2(\Omega)) \cap L^2(0, T^*; \mathbf{H}^1(\Omega)) \\\\ \partial_t Q \in L^{\infty}(0, T^*; \mathbb{H}^1(\Omega)) \cap L^2(0, T^*; \mathbb{H}^2(\Omega)) \\\\ \mathbf{u} \in L^{\infty}(0, T^*; \mathbf{H}^1(\Omega)) \cap L^2(0, T^*; \mathbf{H}^2(\Omega)) ? \\\\ Q \in L^{\infty}(0, T^*; \mathbb{H}^2(\Omega)) \cap L^2(0, T^*; \mathbb{H}^3(\Omega)) ? \end{cases}$$

and uniqueness !! (because uniqueness criteria (*RH*) is satisfied for q = 2 and r = 2.)

 Under regularity hypothesis (*RH*), global in time weak solution for (∂_tu, ∂_tQ).

イロト イポト イヨト イヨト

Why long-time behavior for intermediate regularity is not clear

Using Prodi's estimates, we would have the following generic situation (without stretching):

$$\begin{array}{ll} (\text{weak}) & \textbf{E}'(t) + \textbf{F}(t) \leq \textbf{0} \\ (\text{strong}) & \textbf{F}'(t) + \textbf{G}(t) \leq \textbf{C}_2(\textbf{F}(t)^3 + \textbf{1}) \end{array} \right\} \Rightarrow \exists \lim_{t \to +\infty} \textbf{F}(t) = \textbf{0}.$$

$$\begin{cases} \mathbf{E}(\mathbf{t}) &= \|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\nabla\mathbf{Q}\|_{\mathbb{L}^{2}(\Omega)}^{2}, \\ \mathbf{F}(\mathbf{t}) &= \|\nabla\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\mathbf{H}\|_{\mathbb{L}^{2}(\Omega)}^{2} \\ \mathbf{G}(\mathbf{t}) &= \|A\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\nabla\mathbf{H}\|_{\mathbb{L}^{2}(\Omega)}^{2}. \end{cases}$$

[B. Climent-Ezquerra, F.G-G, M.A.Rodriguez-Bellido'10]

イロト 不得 とくほ とくほ とう

3

Why long-time behavior for intermediate regularity is not clear

We have the following generic situation for $\textbf{t} \in (\textbf{0}, +\infty)$:

$$\begin{array}{ll} (\text{weak}) & \textbf{E}'(t) + \textbf{F}(t) \leq \textbf{0} \\ (\text{strong}) & \widetilde{\textbf{F}}'(t) + \widetilde{\textbf{G}}(t) \leq \textbf{C}_{\textbf{2}}(\widetilde{\textbf{F}}(t)^3 + \textbf{1}) \end{array}$$

$$\begin{array}{lll} \left\{ \begin{array}{ll} \textbf{E}(\textbf{t}) &=& \|\textbf{u}\|_{\textbf{L}^2(\Omega)}^2 + \|\nabla\textbf{Q}\|_{\mathbb{L}^2(\Omega)}^2, \\ \textbf{F}(\textbf{t}) &=& \|\nabla\textbf{u}\|_{\textbf{L}^2(\Omega)}^2 + \|\textbf{H}\|_{\mathbb{L}^2(\Omega)}^2 \end{array} \right. \end{array}$$

 $\begin{cases} \widetilde{\mathbf{F}}(t) = \|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\mathbf{H}\|_{\mathbb{L}^{2}(\Omega)}^{2} + \|\partial_{t}\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\partial_{t}\mathbf{Q}\|_{\mathbb{H}^{1}(\Omega)}^{2} \\ \widetilde{\mathbf{G}}(t) = \|\partial_{t}\mathbf{u}\|_{\mathbf{H}^{1}(\Omega)}^{2} + \|\partial_{t}\mathbf{Q}\|_{\mathbb{H}^{2}(\Omega)}^{2}. \end{cases}$

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_tu, ∂_tQ) and uniqueness

イロト イポト イヨト イヨト

Final comment

This methodology can be extended to a more general *Q*-tensor model and Erickseen-Leslie nematic models, and could be applicable to other Diffuse-Interface models.

Some open problems

- To design "energy-stable" numerical schemes, by using traceless and symmetry
- Olobal in time intermediate regular solutions with "explicit" conditions for initial data
- Local in time strong regularity

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_t**u**, ∂_tQ) and uniqueness

イロト イポト イヨト イヨト

- L.C. Berselli. On a regularity criterion for the solutions to the 3D Navier-Stokes equations. Diff. Integral Equ. Appl. 15, No. 9, 1129–1137 (2002).
- B. Climent-Ezquerra, F. Guillén-González &
 M.A. Rodríguez-Bellido. Stability for nematic liquid crystals with stretching terms. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 (2010), no. 9, 2937–2942.
- F. Guillén-González, M.A. Rodríguez-Bellido & M.A. Rojas-Medar. Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model. Math. Nachr. 282 (2009), no. 6, 846–867.

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_tu, ∂_tQ) and uniqueness

イロト イポト イヨト イヨト

- F.H. Lin & C. Liu. Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537, 1995.
- C. Liu, H. Wu & X. Xu. Asymptotic behavior of a hydrodynamic system in the nematic liquid crystal flows Calc. Var. Partial Differential Equations 45 (2012), no. 3-4, 319–345.
- M. Paicu & A. Zarnescu. *Energy Dissipation and Regularity* for a Coupled Navier-Stokes and Q-Tensor System. Arch. Ration. Mech. Anal. **203** (1), 45–67, 2012.

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_tu, ∂_tQ) and uniqueness

イロト イポト イヨト イヨト

- H. Petzeltová, E. Rocca & G. Schimperna. On the long-time behavior of some mathematical models for nematic liquid crystals. Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 623–639.
- F.Guillén-González, M.A.Rodríguez-Bellido. *Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals,* Submitted (2013).
- F.Guillén-González, M.A.Rodríguez-Bellido.*Partial regularity and uniqueness of the reduced Q-tensor model,* In preparation.

Weak existence Weak/strong uniqueness Maximum Principle Strong solution ? Local weak regularity for (∂_tu, ∂_tQ) and uniqueness

イロト イポト イヨト イヨト

Thank you very much!

F. Guillén-Gonzalez, EDAN and IMUS, Univ. Sevilla DIMO2013