Liquid Crystal and Phase-Field models are related by Mathematics

Francisco Guillén-González

Depto EDAN & IMUS, Universidad de Sevilla, Spain.

Collaborators:

B. Climent, J.V.Gutiérrez-Santacreu, M.A.Rguez-Bellido (Sevilla),

G.Tierra (Praha, Czech R.),

M.A.Rojas-medar, R.Cabrales (Chillan, Chile)

G.Grun (Erlangen, Germany)

Mineco project MTM2012-32325

1 Optimization problem and asymptotic as $\varepsilon \to 0$

2 Time-dependent problems

Coupling with fluid dynamics

4 Other related models: Membranes, Solidification, Tumors

Mixed models: Nematic-Isotropic, Tumor-membranes

1. Optimization problem and asymptotic as $\varepsilon \to 0$

Diffuse-interface Phase-Field

Diffuse-interface Phase-Field

- Situation: Two materials (f.e. two immiscible fluids) or two phases of the same material (f.e. solid-liquid, liquid-gas)
- Assumption: there exists a sharp-interface separating the phases.
- \bullet Approximation: Diffuse-interface (with small width $\varepsilon)$ approaching sharp interface.
- Scalar Phase variable, $\phi:\Omega\to \mathbf{R}$ (order parameter) s.t. $\left\{ \begin{array}{ll} \phi=1 & \text{ phase A} \\ \phi=-1 & \text{ phase B} \\ \text{and } \phi=0 \text{ as approximation of the interface } \Gamma. \end{array} \right.$
- Double-well potential function $F(\phi)$, with two stable values $(\phi=\pm 1)$ and one unstable $(\phi=0)$. Then, $\int_{\Omega} F(\phi)$ is a convex-concave functional, but it's essentially convex and bounded from below.
- Examples: polynomial $F(\phi) = (\phi^2 1)^2/4$, (singular) logarithmic

Area-dependent Energy

Energy [van der Waals]: competition between philic $\frac{1}{2} \int_{\Omega} |\nabla \phi|^2$ and phobic $\int_{\Omega} F(\phi)$, averaged by a small width parameter ε :

$$\mathcal{E}(\phi) = \varepsilon \frac{1}{2} \int_{\Omega} |\nabla \phi|^2 + \frac{1}{\varepsilon} \int_{\Omega} F(\phi)$$

Interface width of order $O(\varepsilon)$, because

- If width $O(\varepsilon^2)$ then $\varepsilon \int_{\Omega} |\nabla \phi|^2 >> \frac{1}{\varepsilon} \int_{\Omega} F(\phi)$.
- $\textbf{ 2} \quad \text{If width } O(\sqrt{\varepsilon}) \text{ then } \frac{1}{\varepsilon} \int_{\Omega} F(\phi) >> \varepsilon \int_{\Omega} \left| \nabla \phi \right|^2.$

Diffuse-interface towards sharp-interface

- $\min_{\phi} \mathcal{E}(\phi) = \left(\int_{\Omega} \frac{\varepsilon}{2} |\nabla \phi|^2 + \frac{1}{\varepsilon} \int_{\Omega} F(\phi)\right)$ subject to BCs for ϕ : $\phi|_{\partial\Omega_D} = \phi_D$ on $\partial\Omega_D$.
- ullet Euler-Lagrange optimality system ($rac{\delta \mathcal{E}}{\delta \phi}=$ 0):

$$-\varepsilon\Delta\phi + \frac{1}{\varepsilon}F'(\phi) = 0 \text{ in } \Omega, \quad \phi|_{\partial\Omega_D} = \phi_D \text{ on } \partial\Omega_D, \quad \varepsilon\nabla\phi \cdot \boldsymbol{n}|_{\partial\Omega_N} = 0 \text{ on } \partial\Omega_N,$$

- ullet Th. Weistrass: Existence of (global) minimum $\phi^{arepsilon}.$
- As $\varepsilon \to 0$, sharp interface limit Γ (zero width), s.t. $\phi^{\varepsilon} \to \phi^{0} = \pm 1$ on Γ_{\pm} .
- Γ-convergence results can be obtained [Modica-Mortola'77, Modica'87, ...].
- In fact, the Γ -limit in $L^1(\Omega)$ as $\varepsilon \to 0$ of $\mathcal{E}(\phi^{\varepsilon})$ is $C_0 \mathcal{P}(\phi^0)$ $\mathcal{P}(\phi^0)$ is the "surface-area of $\Gamma = \{\phi^0 = 0\}$ in Ω ".

thermotropic liquid crystals

Liquid Crystals

- Situation: An intermediate material between solid and liquid. Microscopically, it's (partially) ordered and macroscopically flows like liquids.
- Assumption: there exists a preferred orientation of molecules
- Director vector variable $\mathbf{d}: \Omega \to \mathbb{R}^N$ (order parameter)
- Elastic Energy [Oseen-Frank]: resistance to change the uniform orientation

$$\mathcal{E}(\boldsymbol{d}) = \frac{1}{2} \int_{\Omega} \left(K_1(\nabla \cdot \boldsymbol{d})^2 + K_2(\boldsymbol{d} \cdot (\nabla \times \boldsymbol{d}))^2 + K_3 |\boldsymbol{d} \times (\nabla \times \boldsymbol{d})|^2 \right) d\boldsymbol{x}$$

 K_1, K_2, K_3 splay, twist and bend elastic constants.

- Simplification: equal constant case $\mathcal{E}(\mathbf{d}) = \frac{1}{2} \int_{\Omega} \left| \nabla \mathbf{d} \right|^2$
- The energy $\mathcal{E}(\mathbf{d})$ must be minimized under the non-convex constraint $|\mathbf{d}| = 1$.
- Defects: zones where anisotropic orientation is lost, i.e. singularities for the vector field d.

Defects in liquid crystals

Defects are singularities in vector fields. Defect points and BCs. Annihilations.

What dictates tactoid structure & shape?

Penalization

• Approximation by penalization: competition between elastic energy $\frac{1}{2} \int_{\Omega} |\nabla \mathbf{d}|^2$ and constraint $|\mathbf{d}| = 1$, averaged by a small penalization parameter ε :

$$\mathcal{E}(\mathbf{d}) = \frac{1}{2} \int_{\Omega} \left| \nabla \mathbf{d} \right|^2 + \frac{1}{arepsilon^2} \int_{\Omega} F(\mathbf{d})$$

- $F(\mathbf{d})$ is a vectorial double-well potential, with stable points at $|\mathbf{d}| = 1$ and unstable at $\mathbf{d} = 0$.
- Example: polynomial $F(d) = (|d|^2 1)^2/4$.

$\varepsilon ightarrow 0$

- $\min_{\boldsymbol{d}} \mathcal{E}(\boldsymbol{d}) \Big(= \frac{1}{2} \int_{\Omega} |\nabla \boldsymbol{d}|^2 + \frac{1}{\varepsilon^2} \int_{\Omega} F(\boldsymbol{d}) \Big)$ subject to Dirichlet BCs for \boldsymbol{d}
- ullet Euler-Lagrange optimality system ($rac{\delta \mathcal{E}}{\delta oldsymbol{d}}=0$):

$$-\Delta \boldsymbol{d} + \frac{1}{\varepsilon^2} F'(\boldsymbol{d}) = 0 \text{ in } \Omega, \quad \boldsymbol{d}|_{\partial \Omega_D} = \boldsymbol{d}_D \text{ on } \partial \Omega_D, \quad \nabla \boldsymbol{d} \cdot \boldsymbol{n}|_{\partial \Omega_N} = 0 \text{ on } \partial \Omega_N,$$

- Th. Weistrass: Existence of (global) minimum d^{ε} .
- Limit of penalization problem as $\varepsilon \to 0$. Harmonic functions with values in the unit sphere surface \mathcal{S}^1 [F. Bethuel, H. Brezis, F. Helein], [J.Ball,A.Zarnescu]

Theorem

$$\boldsymbol{d}^{\varepsilon} \rightarrow \boldsymbol{d}^{0}$$
 s.t. $|\boldsymbol{d}^{0}| = 1$ in Ω solution of

$$-\Delta \boldsymbol{d}^0 - |\nabla \boldsymbol{d}^0|^2 \boldsymbol{d}^0 = 0 \text{ in } \Omega, \quad \boldsymbol{d}^0|_{\partial\Omega_D} = \boldsymbol{d}_D \text{ on } \partial\Omega_D, \quad \nabla \boldsymbol{d}^0 \cdot \boldsymbol{n}|_{\partial\Omega_N} = 0 \text{ on } \partial\Omega_N.$$

In fact, $\lambda = |\nabla \mathbf{d}^0|^2 \mathbf{d}^0$ is the Lagrange multiplier related to $|\mathbf{d}^0| = 1$

2. Time-dependent problems

- Idea: ODE $c_t + F'(c) = 0$ with $F(c) = (c^2 1)^2$.
- ullet Critical points: $c=\pm 1$ (stables) and c=0 (unstable)
- Energy's law: $\frac{d}{dt}F(c(t)) + c_t(t)^2 = 0$, hence F(c) is a Lyapunov functional.

Phase-Field

- Phase variable : $\phi = \phi(t, \mathbf{x})$. Energy : $\mathcal{E}(\phi) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla \phi|^2 + \frac{1}{\varepsilon} F(\phi)$
- Chemical potential : $\frac{\delta \mathcal{E}}{\delta \phi} = \mu = -\varepsilon \Delta \phi + \frac{1}{\varepsilon} F'(\phi), \quad + \text{BCs}$
- (AC) Allen-Cahn eq: $\partial_t \phi + \gamma \frac{\delta \mathcal{E}}{\delta \phi} = 0 \text{ in } \Omega \quad (\gamma > 0 \text{ relaxation time}).$
 - Maximum principle: If data take values in [-1,1] then $\phi(t, \mathbf{x}) \in [-1,1]$.
 - No conservative: $\frac{d}{dt} \int_{\Omega} \phi(t) = \gamma \varepsilon \int_{\partial \Omega} \nabla \phi \cdot \mathbf{n} \frac{\gamma}{\varepsilon} \int_{\Omega} F'(\phi(t)) \neq 0$
- (CH) Cahn-Hilliard eq: $\partial_t \phi \nabla \cdot (m \nabla (\frac{\delta \mathcal{E}}{\delta \phi})) = 0 \text{ in } \Omega.$
 - Flux: $m \nabla (\frac{\delta \mathcal{E}}{\delta \phi})$, with $m=m(\phi)\geq 0$ the mobility.
 - Conservative: $\frac{d}{dt} \int_{\Omega} \phi(t) = 0$ (if $m \nabla \mu \cdot \boldsymbol{n}|_{\partial \Omega} = 0$).
 - Not maximum principle in general.

Dissipative models

Energy's law:
$$\frac{d}{dt}\mathcal{E}(t) + DISS = 0$$
 where $DISS = \begin{cases} \gamma \int_{\Omega} \left(\frac{\delta \mathcal{E}}{\delta \phi}\right)^2 & \text{for (AC),} \\ \int_{\Omega} \left| m \nabla \left(\frac{\delta \mathcal{E}}{\delta \phi}\right) \right|^2 & \text{for (CH)} \end{cases}$

Theorem (Analysis of the initial-boundary problem)

- Weak solutions. Regularity.
- Time-periodicity for periodic time-dependent BCs.

Theorem (Asymptotic behavior as $t o +\infty$)

- Existence of attractor.
- Convergence of trajectories to a (steady) equilibrium with polynomial decay:

$$\phi(t) o \phi^{\infty}$$
 and $\|\phi(t) - \phi^{\infty}\| \le C \frac{1}{(1+t)^p}$.

 Stability of local minima. In general, not asymptotic stability ("continuous" of critical points with the same energy).

Liquid crystals

$$\bullet \ \ \mathsf{Energy} \quad \ \mathcal{E}(\textbf{\textit{d}}) = \frac{1}{2} \int_{\Omega} |\nabla \textbf{\textit{d}}|^2 + \frac{1}{\varepsilon^2} \int_{\Omega} F(\textbf{\textit{d}})$$

- $\qquad \qquad \textbf{Equilibrium system:} \quad \frac{\delta \mathcal{E}}{\delta \textbf{\textit{d}}} = -\Delta \textbf{\textit{d}} + \frac{1}{\varepsilon^2} F'(\textbf{\textit{d}}), \quad \textbf{+ BCs}$
- Allen-Cahn system. $\partial_t \mathbf{d} + \gamma \frac{\delta \mathcal{E}}{\delta \mathbf{d}} = 0$, +ICs, BCs.
- Maximum principle: If $|data| \le 1$ then $|d(t, x)| \le 1$.
- Energy's law: $\frac{d}{dt}\mathcal{E}(t) + \gamma \int_{\Omega} \left| \frac{\delta \mathcal{E}}{\delta \mathbf{d}} \right|^2 = 0.$

3. Coupling with fluid dynamics

Navier-Stokes for incompressible fluids

Linear momentum balance and incompressibility constraint):

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla \cdot \Sigma = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = 0 + \mathit{ICs}, \mathit{BCs},$$

- Viscous newtonian fluids: Stress tensor $\Sigma = -p \, ld + 2\nu D \boldsymbol{v}$, with $p = p(t, \boldsymbol{x})$ the pressure (normal force), $\nu > 0$ viscosity coeff. and $D \boldsymbol{v} = (\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^t)/2$ the deformation tensor.
- In particular, for constant viscosity

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{f}, \quad \nabla \cdot \mathbf{v} = 0 + ICs, BCs,$$

• Dissipative energy's law: $\frac{d}{dt}\mathcal{E}_{kin}(\mathbf{v}) + DISS = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}$ where $\mathcal{E}_{kin}(\mathbf{v}) = \frac{1}{2} \int_{\Omega} |\mathbf{v}|^2$ (Kinetic's energy) and $DISS = \int_{\Omega} \nu |\nabla \mathbf{v}|^2 \geq 0$ (viscosity's dissipation)

Some results

Theorem (Analysis of the initial-boundary problem)

Existence of weak solutions. Regularity and uniqueness (local in time in 3D, global in time near of regular stationary solutions).

Theorem (Asymptotic behavior as $t \to +\infty$)

When $\mathbf{f} = \nabla q$ then $\mathbf{v}(t) \to 0$ with exponential decay.

Theorem (Numerical approx.)

- Finite-Element space approx, compatibility between velocity and pressure approx., "inf-sup" stability cond.
- Energy-stable time approx. and Large-time stability. Time-splitting schemes. Time adaptation.

Two-fluids via Diffuse-Interface Phase-Field

- Situation: Two immiscible fluids (A and B) with matched densities (and viscosities), assuming a mixed diffuse-interface between them, of width $O(\varepsilon)$.
- Conservative phenomena: NS fluids + CH phase
- Stress tensor: $\Sigma = -p \operatorname{Id} + 2\nu D \mathbf{v} + \Sigma_{phase}$ with $\Sigma_{phase} = -\lambda \varepsilon (\nabla \phi \otimes \nabla \phi)$. Then

$$-\nabla \cdot \boldsymbol{\Sigma}_{\textit{phase}} = \lambda \varepsilon \, \Delta \phi \nabla \phi + \nabla \left(\frac{\lambda \varepsilon}{2} \big| \nabla \phi \big|^2 \right)$$

i.e. capillary effects (= surface tension coefficient (λ) \times curvature ($\Delta \phi$) \times normal direction to the interface ($\nabla \phi$) + normal force changing the pressure).

- Phase energy: $\mathcal{E}_{phase}(\phi) = \int_{\Omega} \mathcal{E}_{phase}(\phi) = \lambda \int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla \phi|^2 + \frac{1}{\varepsilon} F(\phi) \right)$
- By using $F'(\phi)\nabla\phi=\nabla(F(\phi))$, the phase tensor can be rewritten as

$$-\nabla \cdot \Sigma_{phase} = -\mu \, \nabla \phi + \nabla \left(\mathcal{E}_{phase}(\phi) \right)$$

PDE coupled system (Model H) [Hohenberg and Halperin'77]:

$$\begin{cases} \mathsf{NS}: & \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla \widetilde{p} - \nu \Delta \mathbf{v} = \mu \nabla \phi, \quad \nabla \cdot \mathbf{v} = 0, \quad (\widetilde{p} = p + E_{phase}(\phi)) \\ \mathsf{CH}: & \partial_t \phi + \mathbf{v} \cdot \nabla \phi - \nabla \cdot (m \nabla \mu) = 0, \quad \mu = \frac{\delta \mathcal{E}_{phase}}{\delta \phi} = \lambda (-\varepsilon \Delta \phi + \frac{1}{\varepsilon} F'(\phi)) \end{cases}$$

- Conservation of phase: $\frac{d}{dt}\int_{\Omega}\phi=0$ (if ${m v}\cdot{m n}|_{\partial\Omega}=0$ and $m
 abla\mu\cdot{m n}|_{\partial\Omega}=0$)
- Dissipative problem: $\frac{d}{dt} \Big(\mathcal{E}_{\textit{kin}}(\textbf{\textit{v}}) + \mathcal{E}_{\textit{phase}}(\phi) \Big) + \int_{\Omega} \nu |\nabla \textbf{\textit{v}}|^2 + \int_{\Omega} \textit{m} |\nabla \mu|^2 = 0,$

Theorem ((Analysis) [Abels, Garcke, Grasselli, Gal,)

Existence of weak solutions. Global in time regularity of the phase. Regularity of velocity and uniqueness (local in time in 3D or global in time for dominant viscosity). Asymptotic $\varepsilon \to 0$

Theorem (($t \to +\infty$), [Feiresl, Miranville, Grasselli, Wu, Schimperna,)

 $(\mathbf{v}(t), \phi(t)) \to (0, \phi^{\infty})$ with polynomial decay, where $\nabla \mu^{\infty} = 0$ with $\mu^{\infty} = \frac{\delta \mathcal{E}_{phase}}{\delta \phi}(\phi^{\infty})$. Stability of local minima.

Theorem ((Numeric), [Elliot, Boyer, Wise, Eyre, Shen, Grun, FGG-Tierra,...)

Unique-solvable and Energy-stable first order numerical schemes. Convergence. Error estimates. Time-splitting.

Open problems

- **1** Global regular solutions near of regular stationary solutions $(0, \phi^{\infty})$.
- Second order time-splitting schemes

Liquid crystal fluids

- Situation: Fluid dynamic of a nematic liquid crystal.
- 2 Vector director \mathbf{d} , with $|\mathbf{d}| \approx 1$.
- **③** Nematic (elastic) stress tensor: $\Sigma_{nem} = -\lambda ((\nabla \mathbf{d})^t \nabla \mathbf{d})$
- PDE coupled system (Lin's model) [F.H.Lin] as a simplification of the Erickseen-Leslie's model (NS-AC):

$$\begin{cases}
\operatorname{NS}: & \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla \widetilde{\rho} - \nu \Delta \mathbf{v} = (\nabla \mathbf{d})^t \mathbf{w}, \quad \nabla \cdot \mathbf{v} = 0, \quad (\widetilde{\rho} = \rho + E_{nem}(\mathbf{d})) \\
\operatorname{AC}: & \partial_t \mathbf{d} + (\mathbf{v} \cdot \nabla)\mathbf{d} + \gamma \mathbf{w} = 0, \quad \mathbf{w} = \lambda(-\Delta \mathbf{d} + \frac{1}{\varepsilon^2}F'(\mathbf{d}))
\end{cases}$$

 $\textbf{ 0} \text{ Dissipative problem: } \frac{d}{dt} \Big(\mathcal{E}_{\textit{kin}}(\textbf{\textit{v}}) + \mathcal{E}_{\textit{nem}}(\textbf{\textit{d}}) \Big) + \int_{\Omega} \nu |\nabla \textbf{\textit{v}}|^2 + \gamma \int_{\Omega} |\textbf{\textit{w}}|^2 = 0$

Theorem ((Analysis), Lin-Liu, FGG-Rguez Bellido-Rojas Medar,)

Existence of weak solutions. Regularity and uniqueness (local in time in 3D or global in time for dominant viscosity). Uniqueness and regularity criteria. Time-periodic.

Theorem (($t \to +\infty$), Climent-FGG-Rguez Bellido,

Petzeltova-Rocca-Schimperna, Grasselli-Wu,.....)

 $(\mathbf{v}(t)\mathbf{d}(t)) \to (0,\mathbf{d}^{\infty}) \text{ s.t. } \frac{\delta \mathcal{E}_{nem}}{\delta \mathbf{d}}(\mathbf{d}^{\infty}) \text{ with polynomial decay. Stability of local minima.}$

Theorem ((Numeric), Walkington, Liu, Prohl, Shen, Badia, Cabrales-FGG-Santacreu, ...)

Energy-stable numerical schemes, Unconditional (nonlinear) or conditional (linear).

Convergence. Error estimates. Time-splitting.

Open problems

- **①** Asymptotic $\varepsilon \to 0$. Problem: how to control the limit of $(\nabla \mathbf{d}_{\varepsilon})^t \nabla \mathbf{d}_{\varepsilon}$
- 2 For models with stretching: Time-periodic, Attractors, Stability of local minima.

Smectic-A LCs

Smectic-A LCs

- [E, Liu, FGG-Climent, FGG-Tierra]
- Layer variable: $\mathbf{n} = \mathbf{d} = \nabla \varphi$
- Smectic energy + penalization: $\mathcal{E}_{sm} = \lambda \int_{\Omega} \left(\frac{1}{2} |\Delta \varphi|^2 + \frac{1}{\varepsilon^2} F(\nabla \varphi) \right)$
- PDE coupled system (E's model) [E] (NS-AC):

$$\begin{cases}
\mathsf{NS}: & \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla \widetilde{p} - \nu \Delta \mathbf{v} = \mu \nabla \varphi, \quad \nabla \cdot \mathbf{v} = 0, \\
\mathsf{AC}: & \partial_t \varphi + \mathbf{v} \cdot \nabla \varphi + \gamma \mu = 0, \quad \mu = \frac{\delta \mathcal{E}_{sm}}{\delta \varphi} = \lambda (\Delta \varphi - \frac{1}{\varepsilon^2} \nabla \cdot F'(\nabla \varphi))
\end{cases}$$

Energy's law:

$$\frac{d}{dt}\Big(\mathcal{E}_{\textit{kin}}(\textbf{\textit{v}})+\mathcal{E}_{\textit{sm}}(\varphi)\Big)+\int_{\Omega}\nu|D\textbf{\textit{v}}|^2+\gamma\int_{\Omega}|\mu|^2=0$$

4. Other related models: Membranes, Solidification, Tumors

Membranes

Elastic curvature-dependent energy: Willmore or bending energy

$$\mathcal{E}_b(\phi) = \frac{\lambda}{2} \int_{\Omega} (-\varepsilon \Delta \phi + \frac{1}{\varepsilon} F'(\phi))^2 = \frac{\lambda}{2} \int_{\Omega} w^2$$

- Conservative CH problem + Surface Area constraint: $B(\phi) = \int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla \phi|^2\right)$
- As $\varepsilon \to 0$, $\mathcal{E}_b(\phi^{\varepsilon})$ Γ -conv. to the square of the curvature [Belletini'97]
- The elastic bending energy is modified to penalize the area:

$$\mathcal{E}(\phi) = \mathcal{E}_b(\phi) + \frac{1}{\eta} \frac{1}{2} (B(\phi) - \beta)^2$$

• Chemical potential:

$$\mu = \frac{\delta \mathcal{E}(\phi)}{\delta \phi} = -\varepsilon \lambda \Delta w + \frac{\lambda}{\varepsilon} w F''(\phi) + \frac{1}{\eta} (B(\phi) - \beta) (-\varepsilon \Delta \phi)$$
$$= \varepsilon^2 \lambda \Delta^2 \phi + G(\phi)$$

PDE coupled system:

$$\begin{cases}
\operatorname{NS}: & \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla \widetilde{\boldsymbol{\rho}} - \nu \Delta \mathbf{v} = \mu \nabla \phi, \quad \nabla \cdot \mathbf{v} = 0, \\
\operatorname{CH}: & \partial_t \phi + \mathbf{v} \cdot \nabla \phi - \nabla \cdot (m \nabla \mu) = 0, \quad \mu = \varepsilon^2 \lambda \Delta^2 \phi + G(\phi)
\end{cases}$$

- Conservation of phase: $\frac{d}{dt}\int_{\Omega}\phi=0$ (if ${m v}\cdot{m n}|_{\partial\Omega}=0$ and $m
 abla\mu\cdot{m n}|_{\partial\Omega}=0$)
- Dissipative problem, satisfying the energy's law:

$$\frac{d}{dt}\Big(\mathcal{E}_{kin}(\mathbf{v}) + \mathcal{E}(\phi)\Big) + \int_{\Omega} \nu |\nabla \mathbf{v}|^2 + \int_{\Omega} m |\nabla \mu|^2 = 0$$

Open problems:

Asymptotic as $t \to +\infty$

Analysis for the non-penalized problem, via Lagrange multiplier [Colli-Laurencot'11,'12]

Solidification: Canigalp's model

- Phase: $\phi(t, \mathbf{x}) \in [0, 1]$ fraction of solid ($\phi = 1$ solid, $\phi = 0$ liquid).
- Latent heat effect; energy vs temperature is a multivalued function.
- Dendrite increasing vs anisotropic energy
- Models coupling convection in the liquid part are free-boundary models (limit of models with degenerate viscosity).
- Open problem: To obtain a diffuse-interface model (in the whole domain) with convection in the liquid part

[Calsavara-FGG]

Energy functional:

$$\begin{split} \mathcal{E} &= \mathcal{E}_{\textit{kin}}(\textbf{\textit{v}}) + \mathcal{E}_{\textit{heat}}(\theta) + \mathcal{E}_{\textit{phase}}(\phi), \\ \mathcal{E}_{\textit{kin}}(\textbf{\textit{v}}) &= \frac{1}{2} \int_{\Omega} |\textbf{\textit{v}}|^2, \quad \mathcal{E}_{\textit{heat}}(\theta) = \frac{1}{2\,\textit{I}} \int_{\Omega} (\theta - \theta_{\textit{melting}})^2, \\ \mathcal{E}_{\textit{phase}}(\phi) &= \lambda \int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla \phi|^2 + \frac{1}{\varepsilon} F(\phi) \right), \quad F(\phi) = \phi^2 (1 - \phi)^2. \end{split}$$

where l > 0 (latent heat), $\lambda > 0$ (capillarity).

Solidification (free-boundary problem)

$$\begin{cases} (\theta + l g(\phi))_t + \mathbf{v} \cdot \nabla (\theta + l g(\phi)) - \nabla \cdot (\mathbf{k}(\phi) \nabla \theta) = f & \text{in } Q, \\ \phi_t + \mathbf{v} \cdot \nabla \phi + \gamma \left(\frac{\delta \mathcal{E}_{phase}}{\delta \phi} - g'(\phi)(\theta - \theta_{melting}) \right) = 0 & \text{in } Q, \\ \mathbf{v}_t + \mathbf{v} \cdot \nabla \mathbf{v} - \nabla \cdot (2\nu(\phi) D \mathbf{v}) + \nabla p - \frac{\delta \mathcal{E}_{phase}}{\delta \phi} \nabla \phi = G(\theta, \phi) & \text{in } Q_{ml}, \\ \nabla \cdot \mathbf{v} = 0 & \text{in } Q_{ml}, \\ D \mathbf{v} = 0 & \text{in } Q_s, \end{cases}$$

$$Q_{ml} = \{(x, t) \in Q : \phi(x, t) < 1\} \text{ and } Q_s = \{(x, t) \in Q : \phi(x, t) = 1\}.$$

The function $g = g(\phi)$ will be an interpolation function, with g(1) = 0 (solid phase), g(0) = 1 (liquid phase) and 0 < g < 1 in the mushy zone.

 $\nu(\phi) \in [\nu_L, +\infty]$. A classical Carman-Kozeny term is $\nu(\phi) = \nu_L \phi^2/(1-\phi)^3$.

• Phase eq. is of Allen-Cahn type for the modified free energy:

$$\mathcal{E}_{ extit{mod}}(\phi, heta) = \lambda \int_{\Omega} \left(rac{arepsilon}{2} |
abla \phi|^2 + rac{1}{arepsilon} extit{F}(\phi)
ight) - \int_{\Omega} extit{g}(\phi) (heta - heta_{ extit{melting}})$$

- The modified double-well potential $\frac{\lambda}{\varepsilon}F(\phi)-g(\phi)(\theta-\theta_{melting})$ has the same two minimum points at $\phi=0$ and $\phi=1$, but modifying its values in these wells depending on the temperature.
- Maximum principle: $0 \le \phi \le 1$
- Energy's law:

$$\frac{d\mathcal{E}}{dt} + \int_{\Omega} 2\nu(\phi) |D\boldsymbol{v}|^2 + \frac{1}{I} \int_{\Omega} k(\phi) |\nabla(\theta - \theta_{\textit{melting}})|^2 + \frac{1}{\gamma} \int_{\Omega} (\phi_t + \boldsymbol{v} \cdot \nabla \phi)^2 = \textit{forces}$$

Tumors [Wu, van Zwieten, van der Zee'13]

- Phases: concentration of tumor (or necrotic or quiescent) and health cells + Convection-Diffusion of nutrients (oxygen).
- $c(t, \mathbf{x})$ fraction of tumor cells, $n(t, \mathbf{x})$ concentration of nutrients:

$$c_t - \Delta \mu_c = P(c)(\mu_n - \mu_c), \quad \mu_c = -\varepsilon^2 \Delta c + F'(c),$$

$$n_t - \Delta \mu_n = -P(c)(\mu_n - \mu_c), \quad \mu_n = \frac{1}{\delta}n,$$

- P(c) is a nonnegative proliferation function: $\begin{cases} P(c) = \delta \, \widehat{P} \, c (1-c) & \text{if } c \in [0,1], \\ P(c) = 0 & \text{otherwise} \end{cases}$
- The total "mass" is conserved, i.e. $\frac{d}{dt}\int_{\Omega}(c+n)=\int_{\Omega}\Delta(\mu_c+\mu_n)=0$
- Dissipative system, wrt. the energy $\mathcal{E}(c,n) = \int_{\Omega} \left(\frac{\varepsilon^2}{2} |\nabla c|^2 + F(c) + \frac{1}{2\delta} n^2 \right)$:

$$\frac{d}{dt}\mathcal{E}(c,n) + \int_{\Omega} \left(|\nabla \mu_c|^2 + |\nabla \mu_n|^2 + P(c)(\mu_n - \mu_c)^2 \right) = 0$$

4. Mixed models: Nematic-Isotropic, Tumor-membranes

Nematic-Isotropic

- Two-fluids + elastic energy in the nematic part (via interpolation function) + anchoring forces on Nematic-Isotropic interface
- CH phase + NS fluids + AC nematic + interpolation function
- [Liu, Yang, Shen, Wang,] Modelization and numerical simulations
- [FGG-Rguez Bellido-Tierra] Stable decoupled numerical scheme + numerical simulations

Open Problems:

- Mathematical analysis
- Splitting second-order schemes
- Capture the experimental phase diagram of different defects

Theoretical phase diagram

Tumors and membranes: [Chen, Wise, Shenoy, Lowengrub'14]

- Competition between tumor increasing and elasticity of biologic membranes
- Open Problem: To study models with
 - (CH + source terms) for tumors
 - (CH + Area constraint) for membranes

THANK YOU FOR YOUR ATTENTION