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0 Optimization problem and asymptotic as ¢ — 0

e Time-dependent problems

© Coupling with fluid dynamics

0 Other related models: Membranes, Solidification, Tumors

e Mixed models: Nematic-Isotropic, Tumor-membranes
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1. Optimization problem and asymptotic as
e—0
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Diffuse-interface Phase-Field
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Diffuse-interface Phase-Field

@ Situation: Two materials (f.e. two immiscible fluids) or two phases of the same
material (f.e. solid-liquid, liquid-gas)

@ Assumption: there exists a sharp-interface separating the phases.

@ Approximation: Diffuse-interface (with small width ¢) approaching sharp interface.

¢ =1 phase A

@ Scalar Phase variable, ¢ : Q — R (order parameter) s.t.
¢=—-1 phaseB

and ¢ = 0 as approximation of the interface I'.

@ Double-well potential function F(¢), with two stable values (¢ = £1) and one
unstable (¢ = 0). Then, fQ F(¢) is a convex-concave functional, but it's essentially

convex and bounded from below.

@ Examples: polynomial F(¢) = (¢* — 1)?/4, (singular) logarithmic ....
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Area-dependent Energy

Energy [van der Waals]: competition between philic Ja |V¢|2 and phobic Jo F(#),

averaged by a small width parameter ¢:

&) =<5 [ 1VeF+ 1 [ Flo)

Interface width of order O(¢), because

Q@ If width O(az)thens/ Vo2 >> %/ F(¢).
Q Q

. 1 2
@ If width O(,/¢) then g/ﬂF(‘f’) >> E/Q|V¢| .
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Diffuse-interface towards sharp-interface

° m|n E(9p) = \V¢| + F(¢>) subject to BCs for ¢: ¢|aq, = ¢p on 9Qp.
Q2

@ Euler-Lagrange optimality system ( =0):

d¢
—eA¢p + %F’(Qﬁ) =0inQ, ¢|39D =¢ponodp, eVeo- n|aQN = 0o0n oQy,

@ Th. Weistrass: Existence of (global) minimum ¢°.
@ As e — 0, sharp interface limit I (zero width), s.t. ¢* — ¢° = +1 on I+.
@ [-convergence results can be obtained [Modica-Mortola’77, Modica’87, ...].

@ In fact, the I'-limitin L'(Q) as ¢ — 0 of £(¢%) is CoP(¢°)
P(¢°) is the “surface-area of I = {¢° = 0} in Q".
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Liquid Crystals
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Liquid Crystals

@ Situation: An intermediate material between solid and liquid. Microscopically, it's

(partially) ordered and macroscopically flows like liquids.
@ Assumption: there exists a preferred orientation of molecules
@ Director vector variable d : Q — R" (order parameter)

@ Elastic Energy [Oseen-Frank]: resistance to change the uniform orientation

£(d) = %/ﬂ (Ki(V - d)? + Ko(d - (V x &) + Kold x (V x d)?) dx

Ki, Kz, K3 splay, twist and bend elastic constants.
@ Simplification: equal constant case £(d) = %/ IVd[?
Q
@ The energy £(d) must be minimized under the non-convex constraint |d| = 1.

@ Defects: zones where anisotropic orientation is lost, i.e. singularities for the vector
field d.
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Defects in liquid crystals

Defects are singularities in vector fields. Defect points and BCs. Annihilations.

What dictates tactoid structure & shape?
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Penalization

@ Approximation by penalization: competition between elastic energy } |, |Vd|? and

constraint |d| = 1, averaged by a small penalization parameter ¢:

e =5 [ vd*+ 5 [ Fa)

@ F(d) is a vectorial double-well potential, with stable points at |d| = 1 and unstable
atd=0.

@ Example: polynomial F(d) = (|d|? — 1)?/4.
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—0

° minE(d)(: 1/ |Vd[® + 12/ F(d)) subject to Dirichlet BCs for d
d 2 Q & Q

@ Euler-Lagrange optimality system (% =0):

—Ad + ;—2F/(d) =0in Q7 d|aQD =dpon 0p, vd - n‘aQN =0 on 0Qy,

@ Th. Weistrass: Existence of (global) minimum d°.
@ Limit of penalization problem as ¢ — 0. Harmonic functions with values in the unit

sphere surface S [F. Bethuel, H. Brezis, F. Helein], [J.Ball,A.Zarnescu]

d® — d° s.t. |d°| = 1 in Q solution of

—Ad® — [Vd°Pd® =0inQ, d°|se, = dpondQp, Vd°-n|sg, =0 ondQy.

In fact, X = |[Vd°[>d® is the Lagrange multiplier related to |d°| = 1
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2. Time-dependent problems

@ Idea: ODE ¢; + F'(c) = 0 with F(c) = (¢® — 1)2.
@ Critical points: ¢ = 41 (stables) and ¢ = 0 (unstable)

@ Energy’s law: %F(c(t)) + c(t)2 = 0, hence F(c) is a Lyapunov functional.
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Phase-Field

@ Phase variable : ¢ = ¢(f,x). Energy: £(¢) = / %|V¢|2 I %F(dﬁ
Q

o Chemical potential - % Y ;F’(qb), +BCs
@ (AC) Allen-Cahneq: 01¢ + 7% =0inQ (v > 0 relaxation time).

e Maximum principle: If data take values in [—1, 1] then ¢(t, x) € [-1,1].

. g _ h_ /
o No conservative: dt/gd)(t) 776/@9 Vé-n . /QF(d)(t)) #0

@ (CH) Cahn-Hilliard eq:  8:¢ — V - (mv(%)) =0inQ.
o Flux: mv(%), with m = m(¢) > 0 the mobility.

o Conservative: %/ o(t)=0 (f mVu-njgq =0).
o Not maximum princ?ple in general.
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Dissipative models

5&\?
J 5 / % for (AC)
Energy’s law: —&(t) + DISS = 0 where DISS = Q 5
at o0&
/ mv (—) for (CH)
Q éo

Theorem (Analysis of the initial-boundary problem)
@ Weak solutions. Regularity.

@ Time-periodicity for periodic time-dependent BCs.

Theorem (Asymptotic behavior as t — +00)
@ Existence of attractor.

@ Convergence of trajectories to a (steady) equilibrium with polynomial decay:

o(t) = ¢~ and |l¢(t) — ¢ H<C(1+t)p

@ Stability of local minima. In general, not asymptotic stability (“continuous” of

critical points with the same energy).
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Liquid crystals

Energy &(d /\Vd\ + = /F(d

Equilibrium system: £ —Ad + F’(d) +BCs

Allen-Cahn system.  o:d + 7% =0, +ICs,BCs.

@ Maximum principle: If |datal < 1 then |d(t, x)| < 1.

e a9 3¢ 2
Energy’s law: Eg(t)+7/§7‘ﬁ
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3. Coupling with fluid dynamics
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Navier-Stokes for incompressible fluids

@ Linear momentum balance and incompressibility constraint):
v+ (v-V)v—V.-X=f V-v=0 +ICs, BCs,

@ Viscous newtonian fluids: Stress tensor ¥ = —p Id 4+ 2vDv, with p = p(t, x) the
pressure (normal force), v > 0 viscosity coeff. and Dv = (Vv + (Vv)")/2 the
deformation tensor.

@ In particular, for constant viscosity
v+ (v-VIVv+Vp—vAv=Ff V.-v=0 +ICs,BCs,

@ Dissipative energy’s law: %Sk,-n(v) + DISS = / f - v where
Q
Ekin(V) = 15/ lv|?> (Kinetic's energy) and
Q

DISS = | v|Vv[* >0 (viscosity’s dissipation)

Q
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Some results

Theorem (Analysis of the initial-boundary problem)
Existence of weak solutions. Regularity and uniqueness (local in time in 3D, global in

time near of regular stationary solutions).

Theorem (Asymptotic behavior as t — +o0)
When f = V q then v(t) — 0 with exponential decay.

Theorem (Numerical approx.)
@ Finite-Element space approx, compatibility between velocity and pressure approx.,

“inf-sup" stability cond.
@ Energy-stable time approx. and Large-time stability. Time-splitting schemes. Time

adaptation.
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Two-fluids via Diffuse-Interface Phase-Field

@ Situation: Two immiscible fluids (A and B) with matched densities (and viscosities),

assuming a mixed diffuse-interface between them, of width O(e).
@ Conservative phenomena: NS fluids + CH phase

@ Stress tensor: X = —p ld + 20DV + X ppase With T ppase = —Ae(Vp @ V). Then
Ae 2
—V - Xphase = Ae ApVp + V Echb\

i.e. capillary effects (= surface tension coefficient (\) x curvature (A¢) x normal

direction to the interface (V¢) + normal force changing the pressure).
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1

Phase energy: Eppase(¢) = / Ephase(P) = A/ (%|V¢|2 + EF(¢)>
Q Q

By using F'(¢)V¢ = V(F(¢)), the phase tensor can be rewritten as

(]

—V - Ephase = —u Vo + V (Ephase(¢))

(]

PDE coupled system (Model H) [Hohenberg and Halperin’77]:

NS: v+ (v-VI)V+Vp—vAV=uVe, V-v=0, (p=p+ Eppase(®))

CH: &p+Vv: Vo—V-(mVpu)=0, :Mg—’;fse:A(fsAdng’(@)

(]

Conservation of phase: %/ ¢=0 (ifv-nlao=0and mVu- njsq = 0)
Q

Dissipative problem: g(Ek,-,,(v) + Sphase(qb)) + / v|Vv|? +/ m|Vu/? =0,
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Theorem ((Analysis) [Abels, Garcke, Grasselli, Gal, .... )

Existence of weak solutions. Global in time regularity of the phase. Regularity of
velocity and uniqueness (local in time in 3D or global in time for dominant viscosity).

Asymptotic e — 0

Theorem ((t — +o0), [Feiresl, Miranville, Grasselli, Wu, Schimperna,

o0& phase

(v(t), ¢(t)) — (0, =) with polynomial decay, where V> = 0 with u>° = 7

(¢%)-

Stability of local minima.

Theorem ((Numeric), [Elliot, Boyer, Wise, Eyre, Shen, Grun, FGG-Tierra,...)

Unique-solvable and Energy-stable first order numerical schemes. Convergence. Error

estimates. Time-splitting.

| A\

Open problems

@ Gilobal regular solutions near of regular stationary solutions (0, ¢>°).

@ Second order time-splitting schemes

F. Guillén-Gonzélez () LCs-Phase-Field related by Mathematics Mat-US, 15-12-2014 22/39



Liquid crystal fluids

@ Situation: Fluid dynamic of a nematic liquid crystal.

@ Vector director d, with |d| ~ 1.

@ Nematic (elastic) stress tensor: Y pem = —A((Vd)'Vd)

@ Nematic energy: Enem(d) = /Q Enem(d) = A/ﬁ (%Ile2 + é’:(d)>

@ PDE coupled system (Lin’s model) [F.H.Lin] as a simplification of the
Erickseen-Leslie’s model (NS-AC):

NS: v+ (v-VIV+Vp—vAv=(Vd)w, V-v=0, (p=p+ Enem(d))
AC: od+(v-V)d+yw=0, w:A(fAd+€1—2F’(d))

Q Dissipative problem: g(Skm(v) +€nem(d)) +/V|Vv|2 +7/ w2=0
at o a
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Theorem ((Analysis), Lin-Liu, FGG-Rguez Bellido-Rojas Medar, ....)

Existence of weak solutions. Regularity and uniqueness (local in time in 3D or global in

time for dominant viscosity). Uniqueness and regularity criteria. Time-periodic.

Theorem ((t — +o0), Climent-FGG-Rguez Bellido,

Petzeltova-Rocca-Schimperna, Grasselli-Wu,

55{79[17

(V(Dd(1) — (0.d™) s.t. 2

(d=°) with polynomial decay. Stability of local minima.

Theorem ((Numeric), Walkington, Liu, Prohl, Shen, Badia, Cabrales-FGG-Santacreu, ...)

Energy-stable numerical schemes, Unconditional (nonlinear) or conditional (linear).

Convergence. Error estimates. Time-splitting.

| A

Open problems
@ Asymptotic ¢ — 0. Problem: how to control the limit of (Vd.)'Vd.

@ For models with stretching: Time-periodic, Attractors, Stability of local minima.
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Smectic-A LCs

n n

Nematic Smectic A Smectic C
(N) (SmA) (SmC)
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Smectic-A LCs

[E, Liu, FGG-Climent, FGG-Tierra]

Layer variable: n=d = Vo

Smectic energy + penalization: Esm = /\/ <%|A<p|2 + ;—ZF(V@)
Q
PDE coupled system (E’s model) [E] (NS-AC):

NS: v+ (v -VIV+Vp—vAV=puVe, V-v=0,

5E 1 ,
= AAp — =V F(Ve)

AC: Oip+V-Vo+yu=0, p= 5y

Energy’s law:

d . 2 2 _
E(gkln(v)+€sm(@))+AV|Dv| +’Y/Q|/L| =0
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4. Other related models:
Membranes, Solidification, Tumors
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Membranes

@ Elastic curvature-dependent energy: Willmore or bending energy

&(0) = 5 [ (~ebo+ TP =5 [ W

@ Conservative CH problem + Surface Area constraint: B(¢) = / (%\Vqﬂz)
Q
@ Ase — 0, Ey(¢°) -conv. to the square of the curvature [Belletini’97]

@ The elastic bending energy is modified to penalize the area:
11 2
E(¢) = Ev(9) + 55(3@5) - B)

@ Chemical potential:

p= 50— —oxaw+ 2wF(6)+ L(B(@) - B)(-en0)

— &2\ 026 + G(9)
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@ PDE coupled system:

NS: v+ (v-VIV+Vp—vAv=puVe, V-v=0,
CH: 9p+Vv-Vo—V-(mVpu)=0, pu=cAA%%+ G(o)

@ Conservation of phase: %/ ¢=0 (ifv-njpa =0and mVy- njsq = 0)
Q

@ Dissipative problem, satisfying the energy’s law:

G (B +8@) + [ vovi+ [ mivie=o

Open problems:

Asymptotic as t — +oo

Analysis for the non-penalized problem, via Lagrange multiplier [Colli-Laurencot’11,'12]

F. Guillén-Gonzalez () LCs-Phase-Field related by Mathematics Mat-US, 15-12-2014 29/39



Solidification: Canigalp’s model

Phase: ¢(t, x) € [0, 1] fraction of solid (¢ = 1 solid, ¢ = 0 liquid).

@ Latent heat effect; energy vs temperature is a multivalued function.

@ Dendrite increasing vs anisotropic energy

Models coupling convection in the liquid part are free-boundary models (limit of

models with degenerate viscosity).

Open problem: To obtain a diffuse-interface model (in the whole domain) with

convection in the liquid part
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[Calsavara-FGG]

Energy functional:
E = Ekin(V) + Eneat(0) + Ephase(P),

1 1
Enlv) = 5 [ VP Enea(®) = 5 [ (6~ Omanns),
Q Q

Eomae(®) =2 [ (51708 + 1F(@)). Flo) =61 - 01

where / > 0 (latent heat), A > 0 (capillarity).
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Solidification (free-boundary problem)

(0+19(9) +Vv-V(0+19(¢)) =V - (k(¢)VO) =1 in Q,
otV Vot oy (2 g ()0 ) ) =0 inQ
Vi+Vv-Vv—-V-(2v(¢)Dv)+Vp— %’fev@sz G(9,9) in Qu,
V.-v=0 in Qm,
Dv=0 in Qs,

Qm={(x,1) € Q : ¢(x,t) <1} and Qs ={(x,t) € Q : ¢(x,t) =1}.

The function g = g(¢) will be an interpolation function, with g(1) = 0 (solid phase),
g9(0) = 1 (liquid phase) and 0 < g < 1 in the mushy zone.

v(¢) € [v1, +00]. A classical Carman-Kozeny term is v(¢) = v.¢%/(1 — ¢)3.
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@ Phase eq. is of Allen-Cahn type for the modified free energy:
1
Emo(0.0) = [ (51708 + (@) = [ 90)(0 - troneo)
Q € Q

@ The modified double-well potential gF(qb) — 9(¢)(0 — Ometiing) has the same two
minimum points at ¢ = 0 and ¢ = 1, but modifying its values in these wells
depending on the temperature.

@ Maximum principle: 0 < ¢ <1

@ Energy’s law:

ae 1 1
&+ [ 2DV + ] [ KON~ nang) P+ T [ (014 v- V) = forces
at Q I Ja v Ja
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Tumors [Wu, van Zwieten, van der Zee'13]

@ Phases: concentration of tumor (or necrotic or quiescent) and health cells +
Convection-Diffusion of nutrients (oxygen).

@ ¢(t, x) fraction of tumor cells, n(t, x) concentration of nutrients:

Ct — Dpe = P(C)(kn — pic),  pie = —e?Ac+ F'(c),

ng — A/,Ln = —P(C)(un — Mc)7 pun = 3N,

| =

P(c)=6Pc(1—c) ifcel0,1],

P(c) =0 otherwise

@ P(c) is a nonnegative proliferation function:

@ The total “mass"” is conserved, i.e. %/(c +n)= / Ape+pn) =0
Q Q

2
@ Dissipative system, wrt. the energy £(c, n) = / (%|Vc|2 + F(c) + 2i6n2>:
Q

d
g+ [ (19l + Vol + P(E)(in — 1)) =0
Q
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4. Mixed models: Nematic-Isotropic,
Tumor-membranes
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Nematic-Isotropic

@ Two-fluids + elastic energy in the nematic part (via interpolation function) +

anchoring forces on Nematic-Isotropic interface
@ CH phase + NS fluids + AC nematic + interpolation function
@ [Liu, Yang, Shen, Wang, ....] Modelization and numerical simulations

@ [FGG-Rguez Bellido-Tierra] Stable decoupled numerical scheme + numerical

simulations

Open Problems:

@ Mathematical analysis
@ Splitting second-order schemes

@ Capture the experimental phase diagram of different defects
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Theoretical phase diagram

director field

3
| Kag/Kiy = 1 IEA{ bend-splay ratio ‘
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Tumors and membranes: [Chen, Wise, Shenoy, Lowengrub’14]

@ Competition between tumor increasing and elasticity of biologic membranes
@ Open Problem: To study models with

@ (CH + source terms) for tumors
@ (CH + Area constraint) for membranes
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