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Abstract

It is shown that for any set of disjoint line segments in the plane there exists a pointed binary encompassing tree,

that is, a spanning tree on the segment endpoints that contains all input segments, has maximal degree three, and

such that every vertex is incident to an angle greater than π. As a consequence, it follows that every set of disjoint

line segments has a bounded degree pseudo-triangulation.

1. Introduction

Disjoint line segments in the plane are the fun-
damentals of computational geometry. They form
the atomic structure of most planar geometric
data structures and geographic information sys-
tems. Planar objects are typically represented
by a polygonal approximation which, in turn, is
composed of (interior) disjoint line segments. Not
surprisingly, researchers studied many of their
combinatorial properties, such as visibility, com-
pact representation, and ray shooting.

Geometric graphs. We follow one particularly
well-studied trail: that of constrained geometric
graphs. A geometric graph is a graph together
with a planar embedding such that the edges are
straight line segments. We consider crossing-free

geometric graphs, that is, we do not allow two
edges to cross. Observe that crossing-free is not
equivalent to planar, since planar graphs may
have embeddings in the plane with crossing edges.
Given a set of disjoint segments in the plane (that
is, a crossing-free geometric matching), we say
that a graph is encompassing if it is a connected
crossing-free geometric graph that contains all
input segments as edges (without Steiner points).

It is known that there does not always exists a
Hamiltonian circuit (nor path) through a set of dis-

joint segments. In fact, it is NP-complete to decide
if a Hamiltonian circuit exists for a given set of
segments, if the segments are allowed to intersect
at their endpoints [16]. Rappaport et al. [17] gave
a polynomial time algorithm for a set of convexly
independent segments. Among n disjoint segments
in the plane there are always Θ(log n) for which an
encompassing path exists [7], this number amounts
to Θ(

√
n) if all segments are axis-parallel [21].

The maximal degree of an encompassing tree on
the segment endpoints that is constrained to con-
tain all input segments is, therefore, at least three.
After a preliminary upper bound of seven by Bose
and Toussaint [6], Bose et al. [5] proved that an en-
compassing tree with maximal degree three always
exists. Later Hoffmann and Tóth [8] showed that
there is also a Hamiltonian encompassing graph
with maximum degree three.

Pointedness. Pseudo-triangulations are de-
compositions of the plane invented by Pocchi-
ola and Vegter [14]. A pseudo-triangulation is
a partition of the convex hull of input points
or polygonal objects into pseudo-triangles, that
is, simple polygons with exactly three vertices
whose interior angle is less than or equal to π.
They obtained considerable attention recently, as
they have found numerous important applications
in visibility [13,14], rigidity [20], kinetic colli-
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sion detection [1,11], and guarding [19]. Pseudo-
triangulations, just like triangulations, are also
crossing-free geometric graphs. A characteristic
property of minimal pseudo-triangulations is that
for every vertex p all the incident edges are on one
side of a line through p (in other words, every ver-
tex is incident to an angle greater than π). Using
Streinu’s terminology [20], this property is called
pointedness.

By a result of Streinu [20], there is an encom-
passing pointed pseudo-triangulation for any set
of disjoint line segments: We obtain a pseudo-
triangulation by adding edges greedily while
pointedness is maintained. Rote et al. [18] recently
studied the size of minimum pseudo-triangulations
constrained to contain a set of non-crossing seg-
ments. The pointed (or equivalently, minimum)
pseudo-triangulation of n disjoint segments always
has 4n − 3 edges and 2n − 2 faces.

2. Results

On one hand, both the algorithm of Hoffmann
and Tóth [8] and that of Bose et al. [5] are doomed
to violate pointedness due to their proof tech-
niques. In fact, the algorithm in [8] can output
a binary encompassing graph for which no span-
ning subgraph is pointed. On the other hand,
the pointed encompassing tree obtained by the
straightforward method of Streinu [20] has no
guarantee on the degree of the resulting geometric
graph. Here, we show how to construct an encom-
passing tree that respects pointedness and has
maximal vertex degree at most three:

Theorem 1 For any set of disjoint line segments

in the plane there exists a pointed binary encom-

passing tree.

An application. It is known that the trian-
gulation of a planar point set can have arbitrar-
ily high degree. This is also true for triangulations
constrained to contain disjoint line segments. Ket-
tner et al. [10] proved that for any set of points
in the plane there is a pseudo-triangulation with
maximal degree at most five. Bounded vertex de-
gree is a useful property in most applications, as
local operations or kinetic data structures require a
constant amount of updates. Recently, Aichholzer
et al. [2] showed that a bounded degree pseudo-

triangulation constrained to contain a Hamiltonian
circuit (a simple polygon) also exists, with a de-
gree bound of ten. We can extend these results to
pseudo-triangulations constrained to contain dis-
joint line segments (that is, a perfect matching).

Theorem 2 Every set of disjoint line segments

has a pointed pseudo-triangulation with maximum

vertex degree at most ten.

The best lower bound we could generate is a
set of disjoint segments such that in any pointed
pseudo-triangulation there is a vertex of degree at
least six.

3. Proof technique

We define a class of weakly simple polygons that
we call pearl polygons. Every vertex of a pearl poly-
gon has either degree two or degree four. Moreover,
for every degree four vertex we mark one incident
edge such that deleting all marked edges from the
pearl polygon results in a spanning tree. The con-
vex hull of the segments belongs to the class of
pearl polygons. We start out from the convex hull,
and modify it locally using geodesic curves while
maintaining a pearl polygon until certain condi-
tions are satisfied. The proof is completed by ap-
plying induction in each face of a suitable convex
subdivision of the interior of the pearl polygon.

The general scheme of the induction and the use
of geodesic curves are similar to the proof tech-
niques applied in [8]. However, the details are quite
different and there are too many to list them within
the scope of this abstract. Hence, we have to refer
the reader to the full paper at this point.

4. Bounded degree pseudo-triangulations
for disjoint segments

A more careful analysis reveals that the following
form of Theorem 1 also holds:

Theorem 3 For any set S of disjoint line seg-

ments in the plane there exists a pointed binary en-

compassing tree such that the maximal degree is at

most three, and if a convex hull vertex has degree

three then at least one of the incident edges is part

of the convex hull.
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We combine this theorem with an algorithm of
Aichholzer et al. [2], according to which a simple
polygon can be pseudo-triangulated such that the
degree of every convex vertex is at most four and
the degree of every reflex vertex is at most five,
that is, every convex (reflex) vertex has at most
two (three) new incident edges in addition to the
two incident polygon edges. This result also holds
for weakly simple polygons that may have reflex
interior angles of 2π.

Let us consider the union of the binary pointed
encompassing tree T claimed by Theorem 3 and
the convex hull conv(S) of the segments in S.
The tree T partitions the polygonal domain
conv(S) into weakly simple polygons. We obtain a
bounded degree pseudo-triangulation by pseudo-
triangulation each polygon using the algorithm
of Aichholzer et al. [2]. Every interior vertex pint

has degree three, and one of the incident angu-
lar domains is greater than π. So the degree of
pint increases by at most 3 + 2 + 2 to at most
10. Every convex hull vertex phull has degree at
most 4 in T ∪ conv(S) according to Theorem 3,
and the one reflex angular domains lies at the
exterior of conv(S) which does not need to be
pseudo-triangulated. Therefore the degree of phull

increases by at most 2 + 2 + 2 to at most 10. This
proves Theorem 2.

Fig. 1. Lower bound construction.

In the remainder, we describe a set of 14 disjoint
segments whose every pseudo-triangulation has a
vertex of degree at least 6. The segment endpoints
form a regular 28-gon P = (p1, p2, . . . , p28). Place
seven disjoint segments along the sides p4k+2p4k+3,
and along parallel the diagonals p4k+1p4k+4 for k =
1, 2, . . . , 7, see Fig. 1. The pseudo-triangulation of
a convex polygon is also a triangulation. Any tri-
angulation of the inner 14-gon either has a vertex
of degree five, or it has three consecutive vertices,
each of degree four. Taking the seven outer seg-
ments into account adds an additional convex hull
edge to each vertex. Moreover, out of any three

consecutive vertices of the inner 14-gon one gets
another edge, since the outer quadrilaterals have to
be (pseudo-)triangulated by any diagonal. There-
fore, there is a vertex of degree at least six in P .
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