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Abstract

Given any simple closed curve C in the Euclidean plane, let w and D denote the minimal and the maximal
caliper distances of C, correspondingly. We show that any such curve C has a geometric dilation of at least
arcsin( w

D
) +

√

( w

D
)2 − 1.
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1. Introduction

Let C be a simple closed curve C in the Eu-
clidean plane. For any two points, p and q, on C
let π(p, q) denote the shorter of the two curve seg-
ments of C that connects p with q. Then the geo-
metric dilation, δ(C), of C is defined as

δ(C) := sup
p,q∈C,p6=q

|π(p, q)|
|pq| (1)

The computation of the geometric dilation (then
called detour) was first studied in [5], where an
O(n log n) approximation algorithm for polygonal
chains in the plane was given. Further efficient al-
gorithms to compute the geometric dilation of cer-
tain classes of curves and networks were presented
in [1], [11], and [9].

The question of embedding a finite point set in
the plane into a network with low geometric dila-
tion was recently studied in [4]. There it has been
shown that any simple closed planar curve has di-
lation δ(C) ≥ π/2, using Cauchy’s surface area
formula.

Note, that the analogue concept on graphs,
where only the point set of the vertices is taken
into account for computing the dilation, was ex-
tensively studied under the notion of spanners
and low dilation graphs, see e.g. [7] for a survey
and [3], [2] for recent results. However, there are
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structural differences between the two concepts,
as already mentioned e.g. in [5].

In this paper we prove a powerful generalization
of the lower bound from [4]. Namely, let w and D
denote the width and the diameter of the convex
hull of C, correspondingly, that is, the minimal
and the maximal distances of a rotating caliper
measuring C; see Figure 1.
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Fig. 1. Diameter D and width w of ch(C).

Then,

δ(C) ≥ arcsin
( w

D

)

+

√

( w

D

)2

− 1 (2)

holds for the geometric dilation of C. This lower
bound has a minimum value of π/2 if and only if
w = D holds. (Note, however, that the circle is not
the only closed curve satisfying w = D.)

The proof of formula (2) uses a well-known trans-
formation of convex curves called the central sym-
metrization, see e.g. [6] and [10].

The rest of this paper is organized as follows. In
Section 2 we give some necessary definitions and
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basic lemmata. Then, in Section 3 we cite the sym-
metrization transformation. Finally, Section 4 con-
tains the proof of our lower bound.

2. Definitions and basic properties

Throughout this paper we consider simple pla-
nar cycles C, i.e. closed curves in the Euclidean
plane without self-intersections. A simple cycle C
is convex iff it always turns into the same direction,
that is, iff C has a convex interior domain.
Definition 1 (Dilation) Let C be a simple cycle,
and let p, q ∈ C be two points on C.

(i) Cq
p denotes one of the two possible sub-paths

of C connecting p and q, characterized by its
turning direction: If one moves from p to q on
Cq

p , one turns anti-clockwise (C = Cq
p ∪Cp

q ).
(ii) The dilation of a pair of points (p, q) ∈

C × C is the length of a shortest sub-path
πC(p, q) of C connecting p and q, |πC(p, q)| =
min(

∣

∣Cq
p

∣

∣ ,
∣

∣Cp
q

∣

∣), divided by its Euclidean

distance, i.e. δC(p, q) := |πC(p,q)|
|pq| .

(iii) The geometric dilation of C is the supremum
of the dilation values of all pairs of points of
C, i.e. δ(C) := supp,q∈C,p6=q δC(p, q).

By continuity and compactness arguments one
can show that every finite convex curve has a pair
of points attaining maximum dilation.
Definition 2 (Partition Pair) Let p ∈ C be a
point on a cycle C. Then the unique partition part-
ner p̂ of p is characterized by |πC(p, p̂)| = |C| /2.
We say that (p, p̂) is a partition pair of C.

By continuity arguments it is easy to show that
for every direction v ∈ S

1 there exists a partition
pair (p, p̂), i.e. p̂ − p = |p̂ − p| v.
Definition 3 (Breadths) Let C be a simple cycle,
and let v ∈ S

1 be an arbitrary direction.
(i) The v-length of C is the maximum distance of

a pair of points with direction v , i.e. lC(v) :=
max {|pq| | p, q ∈ C, q − p = |q − p| v}.

(ii) The v-width (v-breadth) of C is the distance
of the two supporting lines of C perpendicular
to v, i.e. wC(v) := maxp∈C p·v−minp∈C p·v.

(iii) The v-partition pair distance, hC(v), of C is
the distance of the partition pair with direc-
tion v.

(iv) The diameter, D(C), of C is the maximal
v-length, i.e. D(C) := maxv∈S1 lC(v). The
width, w(C), of C is the minimal v-length,

i.e. w(C) := minv∈S1 lC(v).
(v) The maximal partition pair distance is de-

noted by H(C) := maxv∈S1 hC(v) and the
minimal partition pair distance by h(C) :=
minv∈S1 hC(v).

l(v)

w(v)

v

h(v)

C

Fig. 2. Three different breadth measures.

As used in the introduction, width and diameter
can also be defined using the v-width values which
is proved in [8], [12] respectively:
Lemma 4 Let C be a simple cycle, then D(C) =
maxv∈S1 wC(v). If C is convex, then w(C) =
minv∈S1 wC(v).

The next statement follows immediately from
the definitions; see Figure 2.
Lemma 5 Let C be a simple convex cycle, and let
v ∈ S

1 be an arbitrary direction. Then the following
inequalities hold: hC(v) ≤ lC(v) ≤ wC(v).

3. Central symmetrization

The central symmetrization (see e.g. [6], [8], [10])
is a well-known transformation which maps any
convex cycle to a convex point-symmetric cycle.
In our notion, the central symmetrization is based
on the length values lC(v), introduced in Defini-
tion 3(i).

Amazingly, it preserves all the width values
wC(v). And Cauchy’s surface area formula implies
that the perimeter is not changed either.
Definition 6 Let C be a convex cycle. The central
symmetrization of C is the cycle C′ given by the

parametrization c′ : S
1 → R

2, c′(v) := lC(v)
2 v.

As depicted in Figure 3, we can construct the
central symmetrization by translating all the cen-
ters of the segments of maximal length connecting
pairs of points on C to the origin.

However, there is an easier and more helpful con-
struction, described in the following lemma.
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Fig. 3. The central symmetrization of an isosceles
right-angled triangle.

Lemma 7 Let X := f(C)∪C be the face bounded
by C including C itself. Then define a set X ′ to be
the arithmetic mean of X and −X; see [10]. It is
the Minkowski sum X ⊕−X scaled by 1/2. Then,
the central symmetrization C′ is the boundary of
this arithmetic mean X ′:

X := f(C) ∪ C

X ′ :=
1

2
(X ⊕−X)) =

{

1

2
(u − v)

∣

∣

∣

∣

u, v ∈ X

}

⇒ C′ = ∂X ′

PROOF. The proof that this second way of con-
structing C′ is also correct is straightforward.
Let v ∈ S

1 be an arbitrary direction. Define l :=
sup{c ∈ R

>0 | cv ∈ X ′}. Then due to X ′ being
closed, lv is an element of X ′. And for k > l the
point kv is not in X ′. Thus, lv ∈ ∂X ′.

It also follows that there are p, q ∈ X such that
lv = (1/2)(q−p). On the other hand, the definition
of l yields that k > l implies there are no p, q ∈ X
satisfying kv = (1/2)(q−p). Thus, l = (1/2)lC(v).

Hence, our analysis results in the following
parametrization of ∂X ′: c′(v) = (1/2)lC(v)v. And
this is exactly the parametrization we used to
define C′.

The following lemma, stated here without proof,
lists the most important properties of the central
symmetrization. The fact that the width values are
preserved is mentioned without proof in [6]. Gritz-
mann and Klee [8] prove the width-preserving and
length-preserving property. The statement that
the perimeter is preserved is also proved in [10].
Lemma 8 Let C be a simple convex cycle, and let
C′ be its central symmetrization. Then, the cycle
C′ has the following properties:

(i) Cycle C′ is convex.
(ii) Cycle C′ is point-symmetric with respect to

the origin.
(iii) For every direction v ∈ S

1, hC′(v) = lC′(v) =
lC(v) ≥ hC(v), and wC′(v) = wC(v).

(iv) Width, diameter and perimeter are preserved
by central symmetrization, i.e. w(C′) =
w(C), D(C′) = D(C) and |C′| = |C|.

Because we can show that the dilation of a con-
vex cycle is always attained by a partition pair, it
follows easily from those properties that the dila-
tion of the transformed cycle cannot be larger then
the original one:
Lemma 9 The dilation of C′ is not larger than the
original dilation, i.e. δ(C′) ≤ δ(C).

4. The lower bound

To apply the transformation described in Sec-
tion 3, we need the fact that the dilation of the
boundary of the convex hull of any planar cycle
C is at most the dilation of C itself. Due to space
limitations we state this here without proof.
Theorem 10 Let C ⊂ R

2 be a simple closed
curve. Let ∂ch(C) denote the boundary of the con-
vex hull of C. Then holds

δ(C) ≥ δ(∂ch(C)).

Now we prove our result on the lower bound,
using the central symmetrization transformation.
Theorem 11 Let C ⊂ R

2 be a simple closed
curve. Let w be the width and let D be the diameter
of ch(C), the convex hull of C. Then the dilation
of C is bounded from below by

δ(C) ≥ arcsin
( w

D

)

+

√

(

D

w

)2

− 1.
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Fig. 4. The shortest cycle not intersecting the disk Br(c).

PROOF. Because of Theorem 10 we can assume
w.l.o.g. that C is convex. To show the main idea
of the proof we first consider a point-symmetric
cycle C̃ ⊂ R

2 with center-point c, see Figure 4.
Then, obviously, the partition pairs are also point-
symmetric with respect to c. Let (p, q) be a parti-
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tion pair having maximum distance |pq| = H(C̃).
We define R := H(C̃)/2.

Let Br(c) be the open disc with center point c
and radius r := h(C̃)/2, that is Br(c) := {b ∈
R

2| |b − c| < r}. Then C̃ cannot intersect with
Br(c), otherwise there would exist a partition pair
having a distance smaller than h(C̃) = 2r.

By using the shortest possible cyclic path con-
necting p and q in the Euclidean plane, not inter-
secting Br(c) but enclosing it, we obtain a curve
C̃minPer , as shown in Figure 4. By construction
C̃minPer is the point-symmetric curve of smallest
perimeter that has minimum partition pair dis-
tance h(C̃) and maximum partition pair distance
H(C̃). Due to symmetry reasons this perimeter is
P = 4x + 4rα, with x denoting the lengths of the
straight path segments from p and q to the tan-
gent points on Br(c), correspondingly, and rα the
lengths of the path segments on ∂Br(c).

Using Pythagoras we get x =
√

R2 − r2. And by
considering the angles in the rectangular triangle,
we obtain sinα = cos(π

2 − α) = r
R

. Because the

maximum dilation of the convex cycle C̃ is attained
by a partition pair having shortest path distance
P̃
2 ≥ P

2 , it holds:

δ(C̃)≥
P
2

2r
=

4x + 4rα

4r
=

√
R2 − r2

r
+ arcsin

( r

R

)

=

√

(

R

r

)2

− 1 + arcsin
( r

R

)

(3)

Now, let C be an arbitrary convex cycle, and let
C′ be its central symmetrization. Then, Lemma 9
yields that δ(C) ≥ δ(C′). And by Lemma 8(iv)
we know that width and diameter are preserved,
i.e. w(C′) = w(C) and D(C′) = D(C). However,
in a point-symmetric convex cycle v-length and v-
partition pair distance are equal, implying w(C′) =
h(C′) and D(C′) = H(C′).

Thus, if we apply formula (3) to C′ keeping in
mind that r = h(C′)/2 = w(C′)/2 = w(C)/2 =
w/2 and R = H(C′)/2 = D(C′)/2 = D(C)/2 =
D/2, we get:

δ(C) ≥

√

(

D

w

)2

− 1 + arcsin
( w

D

)

This lower bound equals the global lower bound
of π

2 shown in [4] only for curves of constant width
(w = D). Further arguments show that the in-

equality gets strict if C is not point-symmetric or
not convex. Hence, only circles have dilation π

2 .
Remark 12 By replacing lC(v) by hC(v) in Defi-
nition 3 we get a new transformation, the partition
pair transformation. Ideas analogous to the ones
presented here show that

δ(C) ≥

√

(

H

h

)2

− 1 + arcsin

(

h

H

)

where H = H(ch(C)) and h = h(ch(C)) for every
simple cycle C.
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