
On the Number of Pseudo-Triangulations of Certain Point Sets 1

Oswin Aichholzer a,2, David Orden ∗,b,3, Francisco Santos c,3and Bettina Speckmann d

aInstitute for Software Technology, Graz University of Technology, Austria.
bMathematics Department, University of Alcalá, Spain.
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Abstract

We compute the exact number of pseudo-triangulations for two prominent point sets, namely the so-called double

circle and the double chain. We also derive a new asymptotic lower bound for the maximal number of pseudo-

triangulations which lies significantly above the related bound for triangulations.
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1. Introduction

Pseudo-triangulations, a.k.a. geodesic triangu-
lations, generalize triangulations and have found
multiple applications in Computational Geome-
try in the last years. They were originally studied
in the context of visibility [10,11] and ray shoot-
ing [5,6], but have been used in kinetic collision
detection [1,8], rigidity [16], and guarding [15].

A pseudo-triangle is a polygon with exactly three
vertices, called corners, with internal angles less
than π. A pseudo-triangulation of a set S of points
in the plane is a partition of the convex hull of S
into pseudo-triangles whose vertex set is exactly S.
A vertex is called pointed if it has an adjacent angle
greater than π. Pointed pseudo-triangulations, are
the ones with all vertices pointed.

The set of all pseudo-triangulations of a point set
has somewhat nicer properties than that of all tri-
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angulations. For example, pseudo-triangulations of
a point set with n elements form the vertex set
of a certain polyhedron of dimension 3n − 3 [9].
The diameter of the graph of pseudo-triangulations
is O(n log n) [3] versus the Θ(n2) diameter of the
graph of triangulations of certain point sets. For
standard triangulations it is not know which sets
of points have the fewest or the most triangula-
tions, but it was shown in [2] that sets of points in
convex position minimize the number of pointed
pseudo-triangulations.

Let A be a point set and let AI be its subset of
interior points. The pseudo-triangulations of A can
naturally be stratified into 2AI sets. More precisely,
for each subset W ⊆ AI we denote by PTW (A)
the set of pseudo-triangulations of A in which the
points of W are pointed and those of AI \ W are
non-pointed. For example, PT ∅(A) is the set of tri-
angulations of A and PTAI

(A) is the set of pointed
pseudo-triangulations of A. The following conjec-
ture is implicit in previous work:
Conjecture 1 For every point set A in general
position in the plane, the cardinalities of PTW (A)
are monotone with respect to W . That is to say, for
any W ⊆ AI and for every v ∈ W , one has

|PTW (A)| ≥ |PTW\{v}(A)|.
Note that [12] proves the following inequality in
the other direction:

3 |PTW\{v}(A)| ≥ |PTW (A)|.
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In this paper we compute the number of pseudo-
triangulations, and so check Conjecture 1, for
two prominent point sets, namely those with the
asymptotically maximal and minimal number of
triangulations known so far:

1.1. Points in almost convex position.

For any given pair of numbers (v, i), 3 ≤ i ≤ v,
a point set in almost convex position with param-
eters (v, i) consists of the v vertices of a convex v-
gon and a set of i interior points, placed sufficiently
close to i different edges of the v-gon.

This is a special case of the “almost-convex poly-
gons” studied in [7]. There it is shown that the
number of triangulations of such a point set does
not depend on the choice of the i edges of the v-
gon. Indeed, if we call this number n(v, i) one has

n(v, i) = n(v + 1, i − 1) − n(v, i − 1)

and from this n(v, i) can be computed recur-
sively, starting with n(v, 0) = Cv−2 (the Catalan
number). The array obtained by this recursion
(difference array of Catalan numbers) appears in
Sloane’s Online Encyclopedia of Integer Sequences
[14] with ID number A059346 (note that there
n(v, i) appears for every i ≥ 0 and v ≥ 2, although
only the cases v ≥ max{i, 3} have an interpreta-
tion as counting triangulations). Asymptotically,
n(v, i) equals 4v3i, modulo a polynomial factor.

The extremal case with v = i = n/2 (re-
ferred to as double circle), has asymptotically

Θ(
√

12
n
n−3/2) triangulations. It is conjectured in

[4] that this is the smallest number of triangula-
tions that a point set with n points can have.

1.2. Double chain.

For any two numbers l, m ≥ 0, a double chain is
a convex 4-gon with l and m points, respectively,
placed forming concave chains next to opposite
edges of the 4-gon in a way that the they do not
cross the two diagonals of the convex 4-gon (see
Fig. 1). The double chain decomposes into a con-
vex l+2-gon, a convex m+2-gon, and a non-convex
l+m+4-gon, which have Cl, Cm, and

(

l+m+2

l+1

)

tri-
angulations respectively. Hence, the double chain
has

ClCm

(

l + m + 2

l + 1

)

triangulations. In the extremal case l = m = (n −
4)/2 this gives Θ(8nn−7/2). This is (asymptoti-
cally) the point set with the largest number of tri-
angulations known so far.

Fig. 1. A double chain: l = 5 and m = 4.

2. The double circle and its relatives

Fix two integers i, v, 3 ≤ i ≤ v, and let A be a
point set in almost convex position with parame-
ters (v, i). Let p be a specific interior point of A
and let qr be the convex hull edge which has p next
to it. Let B and C be the point sets obtained re-
spectively by deleting p from A and by moving p
to convex position across the convex hull edge qr:
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Fig. 2. The point sets A, B and C. Here v = 9 and i = 4.

Lemma 2 Let W be a set of interior points of A
not containing p (so that W is also a set of interior
points of B and C). Then:

(i) |PTW (A)| = |PTW (C)| − |PTW (B)|.
(ii) |PTW∪{p}(A)| = 2 |PTW (C)| − |PTW (B)|.

Corollary 3 (i) A satisfies Conjecture 1.
(ii) The numbers |PTW (A)| depend only on v, i

and k := |W |.
We omit the proofs of these and other results

due to the limited space available for this abstract.
Let n(v, i, k) denote the numbers referred to in

part 2 of the corollary. Since n(v, i, 0) = 4v3i (mod-
ulo a polynomial factor) and since

n(v, i, k) = 2(v +1, i− 1, k− 1)−n(v, i− 1, k− 1),

we conclude that n(v, i, k) ∼ 4v3i−k7k, modulo a
polynomial factor. Adding the numbers over all the
possible subsets of interior points gives

i
∑

k=0

(

i

k

)

4v3i−k7k = 4v10i.

Hence, a double circle (the case i = v = n/2)

has
√

28
n

pointed pseudo-triangulations and
√

40
n

pseudo-triangulations in total, modulo a polyno-
mial factor.
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3. The single chain

As a step towards the study of the double chain,
let us start with a single chain. By this we mean
a point set A with three extremal vertices and a
concave chain of l points next to an edge. Equiva-
lently, a convex l + 2-gon together with a point in
its exterior and which sees all but one of its edges.
We call this special point the top point and denote
it by p. Let p0, . . . , pl+1 be the rest of the points,
numbered from left to right, so that the interior
points are p1, . . . , pl. We define AI = {p1, . . . , pl}.

We are particularly interested in the pointed
pseudo-triangulations of the single chain. We clas-
sify them according to which interior points are
joined to the top. For any subset W ⊂ AI we
denote by PPTW (A) the set of pointed pseudo-
triangulations of A in which p is joined to pi if and
only if pi ∈ W . Clearly, PPT ∅(A) is in bijection to
the set of triangulations of the convex l + 2-gon,
hence its cardinality is the Catalan number Cl.

Lemma 4 For every W :

|PTW (A)| =
∑

W ′⊂W

|PPTW ′(A)|.

Hence, Conjecture 1 holds for A.

As a special case of this lemma, |PT ∅(A)| =
|PPT ∅(A)|. That is to say, triangulations of A are
in bijection to triangulations of the convex l + 2-
gon. Curiously enough, PPTAI

(A) (that is, the
pointed pseudo-triangulations in which the top
point p is joined to everything), have the cardi-
nality of the next Catalan number Cl+1, and flips
between them form the graph of the correspond-
ing associahedron (see [13], Section 5.3 and the
remark and picture on pp. 728–729). The following
is a 1-dimensional analog of Conjecture 1.

Conjecture 5 For every W ⊂ AI and p ∈ AI\W ,

|PPTW∪{v}(A)| ≥ |PPT W (A)|.
Unfortunately, we do not know how to compute
the numbers PPTW (A), or even recursive formulae
for them. But we can compute the sum of all the
PPTW (A)’s for each cardinality of W .

Theorem 6 Let a(l, i) :=
∑

|W |=i |PPTW (A)|.
(i) a(l, 0) = Cl, and a(l, 1) = (l + 1)Cl.
(ii) For every i ≥ 2,

a(l, i) =

(

l + 1

i

)

Cl − a(l − 1, i − 2).

Part 2 of Theorem 6 allows to compute all the
values of a(l, i) recursively, starting from those

stated in part 1. The following table shows the
first few values:

l \
i 0 1 2 3 4 5

∑

l

i=0
a(l, i)

0 1 1

1 1 2 3

2 2 6 5 13

3 5 20 28 14 67

4 14 70 135 120 42 381

5 42 252 616 770 495 132 2307

The recursion also tells us that the array a(l, i)
coincides with the sequence with ID A062991 in
[14]. There, we learn that the row sums, that
is, the numbers |PTAI

(A)| of pointed pseudo-
triangulations of these point sets, form the se-
quence A062992 and satisfy:

|PTAI
(A)| = 2

l
∑

j=0

(−1)l−jCj2
j − (−1)l.

Corollary 7 The following inequalities hold for
the number of pointed pseudo-triangulations of a
single chain of l interior points, l ≥ 2 :

2lCl < 2l+1Cl − 2lCl−1 < |PTAI
(A)| < 2l+1Cl.

In particular, the number is in Θ(8ll−3/2).

4. The double chain

Let A be a double chain with l and m interior
points in the two chains, resp. (so A has l + m +
4 points in total). We call the l + 2 and m + 2
vertices in the two chains the “top” and “bottom”
parts. We show how to count the number of pointed
pseudo-triangulations of A.

Let us call B and C single chains with l and m
interior points each. B can be considered the subset
of A consisting of the top part plus a bottom vertex,
and analogously for C. Every pseudo-triangulation
TA of A induces pseudo-triangulations TB and TC

of B and C as follows: consider on the one hand
all the pseudo-triangles of TA that use at most one
vertex of the bottom, and contract these vertices
to a single one. Do the same for pseudo-triangles
with at most one vertex in the top (see Fig. 3).

Conversely, given a pair of pseudo-triangulations
of B and C, if i (resp. j) denotes the number of
interior edges incident to the bottom (resp. top)
point, there are exactly

(

i+j+2

i+1

)

ways to recover a
pseudo-triangulation of A from that data, by shuf-
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Fig. 3. Decomposing double chain pseudo-triangulations.

fling the i + 1 pseudo-triangles of TB incident to
the bottom and the j +1 of TC incident to the top.

Theorem 8 Let V and W be subsets of the top and
bottom interior points. For each V ′ ⊂ V and W ′ ⊂
W let tV,W

V ′,W ′ =
(

l−|V \V ′|+m−|W\W ′|+2

l−|V \V ′|+1

)

. Then:

|PTV ∪W (A)| =
∑

V ′⊂V

W ′⊂W

tV,W
V ′,W ′ |PPTV ′(B)||PPT W ′(C)|.

Corollary 9 If Conjecture 5 holds, then the double
chain satisfies Conjecture 1.

For pointed pseudo-triangulations of the double
chain, Theorem 8 says that:

|PTAI
(A)| =

l
∑

i=0

m
∑

j=0

(

i + j + 2

i + 1

)

a(l, i)a(m, j),

where a(·, ·) is as in the previous section. The se-
quence for l = m is

2, 38, 1476, 81310, 5495276, 424398044, . . .

In order to analyze the asymptotics of this se-
quence we need the following lemma on the num-
bers a(l, i):
Lemma 10

1 − i(i − 1)

(4l − 2)(l − i + 2)
≤ a(l, i)

(

l+1

i

)

Cl

≤ 1

Corollary 11 Let A be a double chain with n
points and with equal numbers on both sides (that
is to say, l = m = (n − 4)/2). Then:

Ω(12nn−9/2) ≤ |PTAI
(A)| ≤ O(12nn−3/2).
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