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Abstract

We describe a general technique to construct data structures for similarity search in semialgebraic pattern spaces.
These spaces capture most known combinations of geometric patterns (e.g., point sets, polygons, polygonal curves)
and geometric distance measures for them (e.g. Hausdorff-distance, area of overlap, Fréchet-distance) together
with their quotients under various transformation classes (e.g., translations, rigid motions) and they provide the
first non-trivial exact search structures in these settings.
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1. Introduction

Similarity search is a much-studied and practi-
cally important type of problem: Given a set D
of n patterns from a suitable class of valid geo-
metric patterns (e.g., polygonal curves), preprocess
them in such a way that we can determine quickly
for a query pattern Q, which of the n preprocessed
patterns is most similar to the query object (this
is called a similarity query). We assume that we
have an appropriate distance measure δ (e.g., the
smallest Fréchet distance that can be achieved un-
der translations) to asses the similarity of two pat-
terns.

Satisfactory algorithmic results exist only in the
case that the patterns can be encoded in a Eu-
clidean space, or an L1- or L∞-space such that
δ is the corresponding metric [9], or in the case
that they can be embedded in such spaces with
a low distortion [7,6]. Then we have available the
very powerful techniques of Voronoi decomposi-
tions. Some algorithms were formulated with ‘van-
tage points’ or similar devices [2,3,5,10], but then
there are no general performance bounds: only un-
der additional assumptions that enforce in some
way that the distance measure is a metric that is
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‘similar’ to a Euclidean metric it is possible to ob-
tain nontrivial bound on the performance of these
algorithms [9].

In this paper, we study the case where the size
of the individual patterns is small, compared to n.
To be more precise, we assume that |I| = O(1)
for all I ∈ D. In that case the distances δ(Q, I),
can be computed in O(1) time (for reasonable δ).
So the query can be answered in O(n) time with-
out additional storage and preprocessing, but up
to now there are no algorithms and data structures
that allow such queries with a nontrivial query
time among preprocessed pattern sets. We de-
scribe a general technique to construct data struc-
tures for similarity queries for many combinations
of geometric patterns (e.g., point sets, polygons,
polygonal curves) and geometric distance measures
(e.g. Hausdorff-distance, area of overlap, Fréchet-
distance) together with their quotients under vari-
ous transformation classes (e.g., translations, rigid
motions). The solution achieves sublinear query
time with quadratic preprocessing time and stor-
age and provides the first non-trivial search struc-
tures in these settings.

A pattern space Π = (Ω, δ) of dimension d is
a set of geometric objects Ω, where each object
can be described by exactly d real parameters, to-
gether with a distance measure δ that maps pairs
of objects to non-negative real numbers. Usually
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we identify Ω with R
d, the parameter space of Π.

The objects in Ω are called patterns. Intuitively,
when δ(P, I) is small, we consider the patterns P
and I to be similar. Note that we do not demand
that δ has some special properties (like being a
metric, etc.). As an example consider polygonal
chains in the plane with at most r vertices and the
Fréchet-distance as a distance measure. Each such
chain can be encoded by a sequence of at most 2r
real numbers, the coordinates of the vertices of the
chain. If a chain has less than r vertices we can
simply pad this description by repeating the last
vertex; note that this padding does not interfere
with the distance function.

A pattern space Π = (Rd, δ) is called semialge-
braic, if the set FΠ := {(P, I, ǫ) ∈ R

d × R
d × R |

δ(P, I) ≤ ǫ} is semialgebraic, i.e., there is a boolean
formula B in s boolean variables z1, . . . , zs, and
there are s polynomials g1, . . . , gs in (2d + 1) real
variables xP , xI , xǫ (xP and xI are actually se-
quences of d variables each), such that

δ(P, I) ≤ ǫ ⇐⇒

B(z1 ← [g1(xP ← P, xI ← I, xǫ ← ǫ) ≥ 0],

. . .

zs ← [gs(xP ← P, xI ← I, xǫ ← ǫ) ≥ 0])

is true

(← denotes variable substitution and [X ] is the
truth value of the predicate X).

As an example consider the set of all point sets
in the plane with at most r points each and the di-
rected Hausdorff-distance as a distance measure.
Recall that for compact sets P, I ⊆ R

d the di-
rected Hausdorff distance from P to I, is defined as
h(P, I) := maxx∈P miny∈I ||x− y||.

This is a pattern space of dimension 2r, since
each pattern P can be encoded by a sequence of at
most 2r real numbers, the coordinates of the points
in P . If P has less than r points we can simply pad
this description by repeating some point; note that
this padding does not interfere with the distance
function. To see that it is actually a semialgebraic
pattern space, note that for two finite point sets P ,
I and ǫ > 0 we have that

h(P, I) ≤ ǫ ⇐⇒ ∀p ∈ P∃i ∈ I : ||p− i||2 − ǫ2 ≤ 0

⇐⇒
∧

p∈P

∃i ∈ I : ||p− i||2 − ǫ2 ≤ 0

⇐⇒
∧

p∈P

∨

i∈I

||p− i||2 − ǫ2 ≤ 0.

We will see in Section 3 that the notion of a
semialgebraic pattern space captures most known
combinations of geometric patterns (e.g., point
sets, polygons, polygonal curves) and geometric
distance measures (e.g. Hausdorff-distance, area of
overlap, Fréchet-distance) together with their quo-
tients under various transformation classes.

In this paper, we study the problem of similarity
search among patterns from a semialgebraic pat-
tern space where the size of the individual pat-
terns is small, compared to their number: Given a
data set D that consists of n patterns from a semi-
algebraic pattern space Π = (Ω, δ) of dimension
d, where d is constant, preprocess D into a data
structure to answer the following kind of similarity
queries: For a query pattern Q ∈ Ω, determine
– ∆(Q,D) := minargI∈D δ(Q, I), the set of pat-

terns in D to which Q has the smallest possible
distance, and

– ∆(D, Q) := minargI∈D δ(I, Q), the set of pat-
terns inD that have the smallest possible distance
to Q.
Since d is constant, the distances δ(Q, I), can be

computed in O(1) time (for reasonable δ). So these
queries can be answered in O(n+k) time (where k
is the size of the answer) without additional stor-
age and preprocessing, but up to now there are
no algorithms and data structures that allow such
queries with a nontrivial query time among prepro-
cessed pattern sets.

We will also consider the decision version of
the similarity queries, called ǫ-similarity queries,
where we are given an additional parameter ǫ > 0,
and we want to determine
– ∆(Q,D, ǫ) := {I ∈ D | δ(Q, I) ≤ ǫ}, the set of

patterns in D to which Q has distance at most
ǫ, and

– ∆(D, Q, ǫ) := {I ∈ D | δ(I, Q) ≤ ǫ}, the set of
patterns in D that have distance at most ǫ to Q.
Again the brute-force approach can answer these

queries in O(n + k) time, but there are no data
structures that allow such queries with a nontrivial
query time among preprocessed pattern sets.

2. Similaritiy queries in pattern spaces

In this abstract we only consider the decision
version of the similarity queries. We describe a data
structure that answers ∆(Q,D, ǫ)-queries (the case
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of ∆(D, Q, ǫ)-queries is completely symmetric).
The same techniques apply to similarity queries as
well and yield similar results. Our main result is
the following
Theorem 1 Suppose we are given a set D that
consists of n patterns from a semialgebraic pattern
space Π of dimension d = O(1). Then we can build
in O(n2) time a data structure of size O(n2) that
answers ǫ-similarity queries in O(n1−1/(2d−3) + k)
time, where k is the size of the answer.

PROOF. The construction works in two steps.
We first describe a data structure that can be built
in O(n2d−2) time (and requires the same amount
of space) and can answer a query in O(log n + k)
time, where k is the size of the answer. Then we
use a simple partitioning approach to yield the de-
sired result (in fact we prove a somewhat stronger
tradeoff that implies the Theorem).

Since Π = (Ω, δ) is a semialgebraic pattern space
of dimension d = O(1), there is a boolean formula
B in s = O(1) boolean variables z1, . . . , zs, and
there are s polynomials g1, . . . , gs in (2d + 1) real
variables xP , xI , xǫ, such that

δ(Q, I) ≤ ǫ ⇐⇒

B(z1 ← [g1(xQ ← Q, xI ← I, xǫ ← ǫ) ≥ 0],

. . .

zt ← [gt(xQ ← Q, xI ← I, xǫ ← ǫ) ≥ 0]).

For j = 1, . . . , s and for all I ∈ D, we compute the
(d + 1)-variate polynomials

gj,I(xQ, xǫ) := gj(xQ, xI ← I, xǫ).

This is done by substituting I for xI in gj and
therefore takes time O(1). The total time to com-
pute all these polynomials is O(n).

For the gj,I we compute a subdivision Ξ of R
d+1

with the property that the sign of each gj,I remains
constant on each cell of the subdivision. Such a
subdivsion of size O(n2d−3) can be computed in
O(n2d−3) time, along with a point-location data-
structure L(Ξ) for the subdivision with O(log n)
query-time, c.f., [8]; the computation also yields for
each cell χ ∈ Ξ a point (Qχ, ǫχ) ∈ χ.

In a next step we process each cell χ ∈ Ξ in
turn and compute a set Dχ ⊂ D, which is initially
empty. For all I ∈ D we do the following: First
compute for j = 1, . . . , s the numbers

γi,I,χ := gj,I(xQ ← Qχ, xǫ ← ǫχ).

Next, we compute the truth-value

BI,χ := B(z1 ← [γ1,I,χ ≥ 0], . . . , zs ← [γs,I,χ ≥ 0]).

If BI,χ is true, we have that δ(Qχ, I) ≤ ǫχ and
we add I to Dχ. We augment the data-structure
L(Ξ) by storing the set Dχ for each cell χ ∈ Ξ. The
total time needed to compute it is O(n2d−2), and
it needs O(n2d−2) space.

To answer a query (Q, ǫ) ∈ Ω×R, we proceed as
follows: Using L(Ξ) we locate the cell χ ∈ Ξ with
(Q, ǫ) ∈ χ in O(log n) time. Since the sign of the
gj,I ’s is constant on each cell of Ξ, we have that
δ(Qχ, I) ≤ ǫχ iff δ(Q, I) ≤ ǫ, so we can report Dχ

as the answer to the query. The total time required
is O(log n + k), where k = |Dχ| is the size of the
answer.

Now we use a simple partitioning approach to
yield the desired result: We split D into g =
Θ(n/m) groups D1, . . . ,Dg , each of size Θ(m),
where 1 ≤ m ≤ n is a suitable parameter (see
below). Then we build the aforementioned data-
structure for eachDi separately. To answer a query
(Q, ǫ) ∈ Ω × R, we query each data-structure
separately and combine the individual answers.
The total time needed to compute all the struc-
tures is O(gm2d−2) = O(nm2d−3) (this is also
the total space requirement), and the query time
is O(g log n) = O((n/m) log n). Setting m =
n1/(2d−3) proves the claimed result. ✷

3. More semialgebraic pattern spaces

In the following we show that the notion of a
semialgebraic pattern space captures many com-
binations of geometric patterns (e.g., point sets,
polygons, polygonal curves) and geometric dis-
tance measures (e.g., Hausdorff-distance, area of
overlap, Fréchet-distance) together with their quo-
tients under various transformation classes (e.g.,
translations, rigid motions).

Since the set accepted by an algebraic decision
tree is semialgebraic we get the following
Lemma 2 Let Π be a pattern space. If FΠ can be
decided by an algorithm in the algebraic decision
tree model, then Π is semialgebraic.

It is straightforward to verify that many of the
algorithms for deciding the most prominent dis-
tance measures can be implemented in the alge-
braic decision tree model, c.f., [1]. This shows for
example that polygonal curves on k vertices in R

d
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wrt. the Fréchet-distance constitute a semialge-
braic pattern space.

Let Π = (Rd, δ) be a semialgebraic pattern
space, and let t : R

d×R
d×R

f → R
d×R

d be a func-
tion. This function induces a new distance mea-
sure and thus a new pattern space Πt := (Rd, δt)
as follows:

δt(P, I) := min
v∈Rf

δ(t(P, I, v)).

We call δt the quotient of δ under t and f the num-
ber of degrees of freedom of t.

As an example consider again the pattern space
of all point sets in the plane with at most r points
each and the directed Hausdorff-distance h(, ) as a
distance measure. The function t(P, I, v) := (P +
v, I) has two degrees of freedom and we have that
ht(P, I) = minv∈R2 h(P + v, I) is the smallest di-
rected Hausdorff distance that a translate of P has
to I.
Theorem 3 If t is rational, then Πt is semialge-
braic. In that case a semialgebraic description of
FΠt

can effectilvey be computed from such a de-
scription of FΠ.

PROOF. First, observe that

δt(Q, I) ≤ ǫ ⇐⇒ ∃v ∈ R
f : δ(t(Q, I, v)) ≤ ǫ.

Since Π = (Ω, δ) is a semialgebraic pattern space
and t is rational, there is a boolean formula B
in s boolean variables z1, . . . , zs, and there are s
polynomials g1, . . . , gs in (2d + 1) real variables
xP , xI , xǫ, such that

δt(Q, I) ≤ ǫ ⇐⇒

∃vB(z1 ← [g1(t(xQ ← Q, xI ← I, xv ← v),

xǫ ← ǫ) ≥ 0],

. . .

zs ← [gs(t(xQ ← Q, xI ← I, xv ← v),

xǫ ← ǫ) ≥ 0]

(xv is a sequence of f new variables).
In general gi(t(), ) is not a polynomial. However,

since t is rational, the conditions ’gi(t(), ) ≥ 0’ can
be rewritten as equivalent polynomial inequalities.
This shows that FΠt

is a Tarski-set, and therefore
semialgebraic. Using standard quantifier elimina-
tion techniques [4], a semialgebraic description of
FΠt

can effectilvey be computed. ✷

If the dimension d of Π is O(1) (relative to n =
|D|), then the dimension d′ of Πt is also O(1) (un-

fortunately, in general, d′ is doubly exponential in
d) and a semialgebraic description of FΠt

can be
computed in O(1) time.

This shows for example that polygonal curves on
k vertices in R

d wrt. the smallest Fréchet-distance
that can be attained under rigid motions constitute
a semialgebraic pattern space of dimension O(1) if
k, d = O(1).
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