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1. Introduction

Geometric networks arise frequently in our ev-
eryday life: road networks, telephone networks,
and computer networks are all examples of geo-
metric networks that we use daily. They also play
a role in disciplines such as VLSI design and mo-
tion planning. Almost invariably, the purpose of
the network is to provide a connection between
the nodes in the network. Often it is desirable
that the connection through the network between
any pair of nodes be relatively short. From this
viewpoint, one would ideally have a direct con-
nection between any pair of nodes. This is usually
infeasible due to the costs involved, so one has to
compromise between the quality and the cost of
the connections.

For two given nodes in a graph, the ratio of their
distance in the graph and their ‘direct’ distance is
called the dilation or stretch factor for that pair
of nodes, and the dilation of a graph is the maxi-
mum dilation over all pairs of nodes. For geometric
networks, this is more precisely defined as follows.
Let S be a set of n points (in the plane, say), and
let G be a graph with node set S. Now the dilation
for a pair of points p, ¢ is defined as the ratio of the
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length of the shortest path in G between p and g,
and the length of the segment pg. (The length of a
path is the sum of the lengths of its edges.) Again,
the dilation of G is the maximum dilation over all
pairs of points in S. A graph with dilation ¢ is
called a t-spanner. Ideal networks are t-spanners
for small ¢ with small cost.

Spanners were introduced by Peleg and Schéffer [6]
in the context of distributed computing, and by
Chew [1] in the context of computational geome-
try. They have attracted much attention since—
see for instance the survey by Eppstein [2]. The
cost of spanners can be measured according to var-
ious criteria. For example, it is sometimes defined
as the number of edges (here the goal is to find a
spanner with O(n) edges), or as the total weight
of the edges (here the goal is to find a spanner
whose total weight is a constant times the weight
of a minimum spanning tree). Additional proper-
ties, such as bounding the maximum degree or the
diameter, have been considered as well.

We generalize the notion of spanners to geo-
metric networks whose nodes are rectangles rather
than points. Let S be a set of n non-intersecting,
axis-parallel rectangles and let E be a set of axis-
parallel segments connecting pairs of rectangles.
For any two points p, ¢ in the union of the rect-
angles, the dilation is now the ratio of the length
of the shortest rectilinear path in the network be-
tween p and g and their L;-distance. Here a path in
the network is a path that stays within the union
of the rectangles and the connecting segments. The
dilation of the network is the maximum dilation
over all pairs p, q. Again, our aim is to construct a
network whose dilation is small. To illustrate the
concept, imagine one is given a number of rect-
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angular buildings, which have to be connected by
footbridges. It is quite frustrating if, to walk to a
room opposite ones own room in an adjacent build-
ing, one has to walk all the way to the end of a
long corridor, then along the footbridge, and then
back again along the corridor in the other building.
Hence, one would usually place the footbridge in
the middle between buildings. Following this anal-
ogy, we will call the rectangles in the input build-
ings from now on, and the connecting segments
bridges. We call the underlying graph of the net-
work the bridge graph.

The generalization we study introduces one im-
portant additional difficulty in the construction of
a spanner: for points one only has to decide which
edges to choose in the spanner, but for buildings,
one also has to decide where to place the bridge
between a given pair of buildings. It is the latter
problem we focus on in this paper: we assume the
topology of the network (the bridge graph) is given,
and our only task is to place the bridges so as to
minimize the dilation.

Formally, our problem can be stated as follows:
we are given a set S of axis-parallel disjoint rect-
angles (buildings) in the plane, a graph G with
node set S, and for each arc e of G a bridge re-
gion A., an axis-aligned rectangle connecting the
two buildings. Buildings may degenerate to seg-
ments or points. The bridge graph G must only
have arcs between buildings that can be connected
by a horizontal or vertical segment, and may not
have multiple edges or loops. The bridge regions
must be disjoint from each other and the buildings.
Our goal is to find a set of horizontal or vertical
bridges lying in the bridge regions that has mini-
mum dilation.

Figure 1 shows a bridge graph (the bridge re-
gions are shaded) and a set of possible bridges.
Note that the bridge regions As and As simply
allow any bridge between the two buildings, but
bridge region A; has been chosen so as to avoid
intersecting s4 or the bridge between s3 and s4.

Our results are as follows.

e In general, the problem is NP-hard.

e If the bridge graph is a tree, then the prob-
lem can be solved by a linear program with
O(n?) variables and constraints.

e If the bridge graph is a path, then the prob-
lem can be solved in O(n3logn) time.

e If the bridge graph is a path and the build-
ings are sorted vertically along this path, the

problem can be solved in time O(n?). A (1+
¢)-approximation can be computed in linear
time.
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Fig. 1. A bridge graph and a bridge configuration

2. The bridge graph is arbitrary

The bridge-placement problem is NP-hard if the

bridge graph is allowed to be arbitrary. We prove
this by a reduction from PARTITION. The input to
PARTITION is a set B of n positive integers, and
the task is to decide whether B can be partitioned
into two subsets of equal sum. PARTITION is NP-
hard [3, Problem SP12].
Theorem 1 It is NP-hard to decide whether the
bridges in a given bridge graph on m rectangular
buildings can be placed such that the dilation is at
most 2.

3. The bridge graph is a tree

In this section we will show that the bridge-
placement problem can be solved by a linear pro-
gram if the bridge graph is a tree. We start by in-
troducing some terminology and notation, and by
proving some basic lemmas. As before, we denote
the bridge graph by G. Any set of bridges realiz-
ing G will be called a configuration.

/2 L ;

7(p,q, B)

Fig. 2.
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Fig. 3.

Given a configuration B and two points p and ¢
in the union of all buildings, we use 7(p, ¢, B) to de-
note the family of rectilinear shortest paths from p
to g within the configuration (that is, paths whose
links lie inside buildings or on bridges). The paths
of this family are essentially the same, they dif-
fer only in how they connect two points inside the
same building, and so we will simply speak about
the unique path m(p, q, B). The dilation of the path
m = mw(p,q, B) is dil(7) = |n|/|lpql|, where || is
the total length of 7 and ||pq|| is the Li-distance
of p and ¢. Figure 2 shows a configuration and an
example path.

The dilation dil(B) of a configuration B is de-
fined as the maximum dilation of any path with
respect to B. Our aim is to find a configuration
of minimum dilation. We first characterize pairs
of points that are responsible for the dilation of a
given configuration.
Lemma 2 Let o be the dilation of a configura-
tion B whose underlying graph is a tree. Then there
are points p and q with dil(7(p, ¢, B)) = o such that
the closed bounding box of p and q does not contain
any point of a building other than p and q, and at
least one of the points p and q is a building corner.
A point pair (p, ¢) as in the lemma—its bounding
box contains no other point of any building and
at least one of p and ¢ is a building corner—will
be called a visible pair—see Figure 3 for examples.
We denote the set of all visible pairs by V.

Given a bridge graph G, our goal is to minimize

max dil(7(p,q, B
nax (7(p,q, B))

over all configurations B realizing G. We show that
this problem can be reformulated as a linear pro-
gram.

Theorem 3 If the bridge graph G is a tree, then
a placement of the bridges that minimizes the di-
lation can be computed by solving a linear program
with O(n?) wvariables and constraints, where n is
the number of bridges in the bridge graph.
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4. The bridge graph is a path

In the previous section we have given a linear
program for the bridge-placement problem for the
case where the bridge graph is a tree. Linear pro-
grams can be solved in practice, and for integer
coefficients, interior-point methods can solve them
in time polynomial in the bit-complexity of the in-
put [4]. It is not known, however, if they can be
solved in polynomial time on the real RAM, the
standard model of computational geometry. In this
section, we give polynomial time algorithms for the
case where the bridge graph is a path.

Since the bridge graph G is a path, we can num-
ber the buildings and bridges so that bridge b; con-
nects buildings s;,—1 and s;, for 1 <4 < n (so there
are n + 1 buildings and n bridges). Before we con-
tinue, we need to introduce some more terminol-
ogy. We consider a path 7 = w(p, ¢, B) to be ori-
ented from p to q. After traversing a bridge b, the
path can continue straight on to traverse the next
bridge b’ if b and b’ are collinear. In all other cases,
it has to turn.

Fig. 4. U-turns and their outer sides

Given a path 7, a link £ of 7 is a maximal straight
segment of the path. A link can contain more than
one bridge if they are collinear. For example, in
Figure 4 there is a link containing b; and be, and
another link containing bg, bg, and byg.

The path 7 turns at both ends of a link (except
for the first and last link). The link is a right U-
turn if 7 turns right before and after the link. A
left U-turn is defined symmetrically. In Figure 4,
the links containing bridges (b1,b2), (ba,bs), and
b2 are right U-turns, while the links containing
b7, (bg, bg, blo), b117 and (blg, b14) are left U-turns.
Note that there can be U-turns that do not contain
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any bridges, as the link of 7 inside building sg in
Figure 4.

The inner side and outer side of a U-turn
are rectangular regions infinite on one side, and
bounded by the line supporting the link and the
two lines orthogonal to it through the first and
last points of the link. The outer side lies locally
to the left of a right U-turn, or to the right of a
left U-turn, the inner side lies locally to the right
of a right U-turn or to the left of a left U-turn. In
Figure 4, the outer sides of all U-turns are shaded.

U-turns are the links of a path that determine
its dilation, as the following lemma shows.
Lemma 4 Let B and B’ be configurations, (p,q)
a wvisible pair, and © = 7(p,q,B) and © =
m(p,q, B’) the paths between p and q with respect
to the two configurations. If dil(z") < dil(w) then
there exists a U-turn £ containing b; ... b; of m such
that the corresponding bridges b}, ..., b, of B lie
strictly on the inner side of €.

We will give an algorithm that takes as input the
set of buildings s, . .., s, and areal number o > 1,
and computes a configuration B with dil(B) < o,
or determines that no such configuration exists.

The algorithm computes n sets Iy, Is, ..., I,,
where I; is a set of possible bridges between
si—1 and s;. The sets are defined recursively
as follows. Assume that Iy,...,I;_1 have al-
ready been defined. For each visible pair (p,q)
with p € U;;E sj and ¢ € s; we define I(p,q)
as the set of bridges b; connecting s;—; and s;
such that the following holds: there is a set of
bridges by € I1,by € Iy, ...,b;_1 € I;_1 such
that dil(w(p, g, (b1,...,b;))) < o. Finally, I; is the
intersection of all I(p, q).

Note that for each visible pair (p,q) we can
choose the bridges in Iy,...,I;—1 independently.
This makes it possible to compute I; efficiently, as
we will see below. On the other hand, it implies
that not every sequence of bridges chosen from
the sets will be a configuration with dilation at
most o—our main lemma will be to show that
such a sequence does indeed exist.

Once we know Iy,...,I,, we can recursively
compute a configuration with dilation at most o:
Choose an arbitrary bridge b, € I,. If bridges
bn—1,bn—2,...,b;+1 have been computed, choose a
bridge b; € I; whose distance from b;1 is minimal.
Since I; is an “interval of bridges”, this implies
that either b; and b;; are collinear, or b; is one of

the extreme bridges in I;. We now prove that this
approach is correct.
Lemma 5 Letly,..., I, be given as defined above.
A configuration B with dilation dil(B) < o ewists
if and only if I, # 0. If it exists, it can be computed
in O(n) time from the intervals.
Lemma 6 The intervals Iy, ..., I, defined above
can be computed in O(n?) time and O(n) space.
Lemmas 6 and 5 imply the following theorem.
Theorem 7 Given a bridge graph G on a set of
n—+1 buildings that is a path and a real number o >
1, we can in time O(n?) compute a configuration B
realizing G with dil(B) < o or determine that no
such configuration exists.
It seems hard to improve this result when there
are ©(n?) visible pairs that could determine the
dilation. In fact, we do not even know how to decide
in o(n?) time whether a given configuration has
dilation < ¢. If the number k of visible pairs of the
given set of buildings is o(n?/logn), the running
time can be improved to O(klogn).

We solve the original optimization problem using
Megiddo’s parametric search [5].
Theorem 8 Given a bridge graph on a set of n+1
buildings that is a path, we can compute a configu-
ration with the optimal dilation in time O(n®logn),
or in time O(nklog®n), where k is the number of
visible pairs.

References

(1] L. P. Chew. There are planar graphs almost as good as
the complete graph. J. Comput. Syst. Sci., 39:205-219,
1989.

[2] David Eppstein. Spanning trees and spanners. In Jorg-
Ridiger Sack and Jorge Urrutia, editors, Handbook
of Computational Geometry, pages 425-461. Elsevier
Science Publishers B.V. North-Holland, Amsterdam,
2000.

[3] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, NY, 1979.

[4] N. Karmarkar. A new polynomial-time algorithm for
linear programming. Combinatorica, 4:373-395, 1984.

[5] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. J. ACM, 30(4):852—
865, 1983.

(6] D. Peleg and A. Schéffer. Graph spanners. J. Graph
Theory, 13:99-116, 1989.



