
Finding Planar Regions in a Terrain

Stefan Funke

1

, Theoharis Malamatos, Rahul Ray

Max-Plank-Institut f�ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbr�uken, Germany

Abstrat

We onsider the problem of omputing large onneted regions in a triangulated terrain of size n for whih

the normals of the triangles deviate by at most some small �xed angle. In previous work an exat near-quadrati

algorithm was presented, but only a heuristi implementation with no guarantee was pratiable. We present a

new approximation algorithm for the problem whih runs in O(n=�

2

) time and|apart from giving a guarantee

on the quality of the produed solution|has been implemented and shows good performane on real data sets

representing frature surfaes with around half a million triangles.

1. Introdution

A terrain is a surfae in R

3

de�ned by a fun-

tion f : R � R ! R. If f is pieewise linear and

the surfae onsists of a olletion of triangles, the

terrain is alled a triangulated irregular network

(TIN). Given a TIN T , the goal is to �nd large,

nearly planar regions in T . We de�ne `near pla-

narity' as follows: for a real parameter Æ > 0, we

say that a subset of triangles T in T is Æ-planar if

(i) the adjaeny graph of the triangles in T is on-

neted, and (ii) there is a vetor

�!

r suh that for

eah t 2 T , \(n

t

; r) � Æ, where n

t

denotes the nor-

mal of triangle t. We all

�!

r the referene normal.

(Throughout the paper \(v; u) denotes the angle

between two vetors

�!

v and

�!

u .)

Researhers in the material sienes examine

surfae topographies of materials as they provide

useful information about the generation proess

and the internal struture of the material. Sur-

faes generated by frature, wear, orrosion and

mahining are of interest. Among many other

riteria, they want to examine feature-related pa-

rameters like faets in brittle frature surfaes.

This appliation motivated our work.
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Related work. Assume that eah triangle in T

is assigned a weight and that any set of trian-

gles has weight equal to the sum of the weights

of its triangles. Smid, Ray, Wendt and Lange [2℄

onsidered the problem of �nding a Æ-planar sub-

set of T of maximum weight. They presented an

O(n

2

logn(log logn)

3

) algorithm, where n is the

number of triangles in T . Sine this is impratial

they proposed a heuristi whih omputes nearly

planar regions quite quikly but with no guaran-

tee. Also they suggested that �nding a Æ-planar set

with weight at least a onstant fration of the opti-

mum may be equally diÆult as solving the prob-

lem exatly, see [2℄.

Our results. In this paper we adopt the following

notion of approximation. Given a real parameter

� > 0, we say that a subset of triangles T of T is

�-approximate Æ-planar if it is Æ(1 + �)-planar and

has weight at least as large as an optimal Æ-planar

set. Under this notion, we present a new approxi-

mation algorithm that runs in O(n=�

2

) time whih

is independent of Æ. For n suÆiently large, the

algorithm uses optimal O(n) spae. Reently Har-

Peled andMazumdar [1℄ have used a similar notion

of approximation for the problem of omputing the

smallest k-enlosing disk.

We have implemented and empirially evaluated

the algorithm on real test data from the appliation

domain onsisting of frature surfae terrains with

more than 500,000 triangles. It provides very good

quality results in reasonable time.
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2. Preliminaries

Let T be a TIN. We assoiate with T an undi-

reted weighted graph G

T

(V;E) as follows. Eah

triangle t in T has an assoiated weight w(t) and

orresponds to a vertex v

t

in V . An edge onnets

two verties of V if and only if the orresponding

triangles in T are adjaent. Note that G

T

is the

dual graph of T , is planar and has degree three.

Eah vertex v

t

2 V is assigned the weight of its

assoiated triangle w(t) whih an be, for exam-

ple, equal to the area of the triangle t or one (when

we want to maximize the area of the deteted re-

gion or the number of triangles, respetively). The

weight w(V

0

) of any subset V

0

of V is de�ned as

the sum of the weights of the verties in V

0

.

For a point u 2 R

3

we denote by

�!

u the vetor

�!

Ou, where O is the origin. Let S

2

denote the unit

sphere, i.e., the boundary of the three-dimensional

ball of radius one entered at the origin. For eah

triangle t 2 T , we an assoiate a point p

t

2 S

2

whih represents the normalized normal of triangle

t. Spei�ally,

�!

p

t

=

�!

n

t

=j

�!

n

t

j. Our goal is to approx-

imate the spae S

2

of all possible normals by a �-

nite set of points V � S

2

suh that for any p 2 S

2

,

there is a point v 2 V nearby.

De�nition 1 A set of point V � S

2

is alled

a Æ�-disretization of S

2

if 8p 2 S

2

: 9v 2

V with \(v; p) � Æ � �.

Lemma 2 There exists a Æ�-disretization of S

2

of

size O(1=(Æ�)

2

) whih an be omputed in the same

time.

The following onstrution yields a Æ�-disretiza-

tion of S

2

as needed in Lemma 2. (We omit its

proof in this abstrat.) Consider a ube L with

sidelength two entered at the origin. Note that

S

2

� L. Plae a 2-dimensional grid of size k � k

with k = d

p

2=(Æ�)e over eah of the six faes of

L. This generates k

2

equally sized square grid ells

on eah fae of L, where eah ell has sidelength at

most (Æ�

p

2), and 6k

2

+ 2 grid points overall. See

Figure 1. Let A be the set onsisting of these grid

points. Our Æ�-disretization V of S

2

is de�ned as

V =

n
�!

z

j

�!

z j

: z 2 A

o

;

that is, for eah gridpoint z we shoot a ray from the

origin through z and we inlude the point where

the ray leaves S

2

into set V.

k

k

Fig. 1. Cube with sidelength two ontaining S

2

and with a

k � k grid on eah of its faes.

3. Finding Large Planar Regions

3.1. The Basi Algorithm

We�rst desribe a simple algorithm for the prob-

lem that omputes an �-approximate solution in

O(n=(Æ�)

2

) time. The algorithm proeeds as fol-

lows:

1. Compute a Æ�-disretization V of S

2

.

2. For eah p 2 V,

(a) Compute the set V

p

of verties v

t

with

\(p; n

t

) � (1 + �) � Æ.

(b) Consider the subgraph of G

T

indued by

set V

p

and determine its heaviest onneted

omponent C

p

.

3. Report the set of triangles T orresponding to

the heaviest omponent C

p

found in Step 2 and

the assoiated referene normal

�!

p .

We now disuss the running time and orretness

of the algorithm. Computing the Æ�-disretization

takes O(1=(Æ�)

2

) by Lemma 2. For eah element

p 2 V we determine the subgraph indued by V

p

and ompute its onneted omponents, whih an

be done in O(n) time. So the total running time

of Step 2 is O(n=(Æ�)

2

) whih also dominates the

overall running time.

For orretness, observe �rst that learly the

omputed set T is Æ(1 + �)-planar. It remains to

show that the weight of T is at least that of an

optimal Æ-planar set T

�

. For set T

�

there exists

a vetor

�!

r

�

suh that for all triangles t 2 T

�

,

\(r

�

; n

t

) � Æ. Let p be a point in V for whih

\(p; r

�

) = min

u2V

\(u; r

opt

). By the de�nition of

V, the angle \(p; r

�

) must be at most Æ�. Then, for

any triangle t 2 T

�

the angle between

�!

n

t

and

�!

p is

at most Æ+(Æ�) = Æ(1+�). Therefore for all t 2 T

�

,
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v

t

2 V

p

and hene, the algorithm will �nd a on-

neted omponent with at least the same weight.

Lemma 3 Given a triangulated irregular network

T , and two real parameters Æ > 0 and � > 0 we

an ompute in O(n=(Æ�)

2

) time an �-approximate

Æ-planar set of triangles in T .

The running time of the basi algorithm is opti-

mal in terms of n. But one may ask whether the de-

pendene on � or Æ an be improved. In the follow-

ing we will re�ne the algorithm to ahieve O(n=�

2

)

running time, whih is independent of Æ.

3.2. The Re�ned Algorithm

The improvement in the running time of the

algorithm omes from two fators. First we de-

termine a set of referene normals V

0

of size at

most O(n=�

2

) that ontains all relevant referene

normals, avoiding the inspetion of 
(1=(Æ�)

2

)

potential referene normals. Seond by a buket-

ing sheme, we redue signi�antly the number

of times eah triangle is onsidered. The re�ned

algorithm proeeds as follows:

1. For eah triangle t 2 T with normal n

t

,

let p

t

be a point in V for whih \(p

t

; n

t

) =

min

u2V

\(u; n

t

); store t in the buket assoiated

with p

t

.

2. Determine a set V

0

� V of potential referene

normals as V

0

= fp 2 V : 9p

t

with non-empty

buket and \(p; p

t

) � (1 + 2�) � Æg.

3. For eah v 2 V

0

,

(a) Collet the set of triangles N

v

whih are

ontained in bukets of referene normals

r

0

2 V

0

with \(r

0

; v) � (1 + 2�) � Æ.

(b) Prune N

v

keeping only those triangles t

with \(n

t

; v) � (1 + �) � Æ. Let N

0

v

be the

pruned set.

() Consider the subgraph of G

T

indued by

the verties orresponding to triangles in

N

0

v

and determine its heaviest onneted

omponent C

v

.

4. Output the heaviest onneted omponent C

v

found in Step 3.

Before analysing the algorithm, we state a

small lemma whih informally says that in the

Æ�-disretization, for any point p there is a small

number of other points nearby.

Lemma 4 Let p be a point in the Æ�-disretization

V. Then the number of points p

0

2 V with\(p; p

0

) <

(1 + 2�) � Æ is at most O(1=�

2

).

The proof of this lemma follows easily from our

onstrution of V and it is omitted. We note also

that given a triangle normal n

t

we an ompute

the point p

t

with \(n

t

; p

t

) = min

u2V

\(n

t

; u) in

onstant time by �rst determining whih fae of

the ube L is hit by the ray

�!

n

t

and then loating

the position of the intersetion point within the

grid on that fae. We now state the main result of

this setion:

Theorem 5 Given a triangulated irregular net-

work T , and two real parameters Æ > 0 and � > 0

we an ompute in O(n=�

2

) time an �-approximate

Æ-planar set of triangles in T .

PROOF. We laim that the output of the re�ned

algorithm give us suh a set. To show orretness,

it suÆes to prove that the algorithm omputes the

same solution as the basi algorithm. We leave this

proof to the reader. We fous now on the running

time. Step 1 of the algorithm takes O(n) sine for

eah twe an in onstant time determine p

t

and a-

ess the assoiated buket using a hashing sheme.

Step 2, where we form the set V

0

, takes O(n=�

2

)

sine there are at most n non-empty bukets. For

eah of the non-empty bukets, we exploreO(1=�

2

)

points in the neighborhood by Lemma 4. Finally,

for the overall running time of Step 3, observe that

again by Lemma 4, eah triangle an be olleted

by at most O(1=�

2

) referene normals and that the

running time of one iteration of Step 3 is O(jN

v

j).

Therefore Step 3 takes O(n=�

2

) time in total. 2

4. Experimental Results

We have implemented the re�ned algorithm of

Setion 3.2 in C++ using the LEDA library [3℄.

Experiments were arried out on a 1.8 GHz Pen-

tium 4mahine with 256MBof RAM.We used sev-

eral data sets representing frature surfaes from

the appliation domain in material sienes. Input

data were given as 512�512 raster images with the

intensity of eah pixel orresponding to its height

value. To obtain the TIN, we triangulated the point

set by reating triangles (i; j); (i+1; j); (i+1; j+1)

and (i; j); (i; j + 1); (i+ 1; j + 1). See Figure 2.

To speed-up our program (while preserving the

same guarantee), we have ome up with the follow-

ing three heuristis:
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(i,j+1) (i+1,j+1)

(i+1,j)(i,j)

Fig. 2. Triangulation sheme for the array of height values.

(i) With eah potential referene normal we asso-

iate the weight of all triangles in bukets at dis-

tane at most (1 + 2�) � Æ and examine the ref-

erene normals in dereasing order of weight. If

the urrent best solution exeeds the assoiated

weight of the next referene normal, we an stop

examining further.

(ii) If the normal of a triangle t forms an angle

larger than 2(1 + �)Æ with the normal of eah of

the three adjaent triangles, we an prune t out

(at Step 1). It an only form a singleton solution.

(iii) In Step 3(b) where we ompute the set of

relevant triangles N

0

v

we only hek triangles in

bukets at angle distane more than Æ, thus sav-

ing some expensive oating-point operations.

In our experiments, the three heuristis om-

bined redue the running time by nearly a fator

of two. For our test instanes onsisting of roughly

500; 000 triangles and a hoie of Æ = 0:2 (about

11.5 degrees) and � = 0:2, the running time varied

between 70 and 110 se. The best solution was in

all ases found within the �rst 20 seonds due to

the prioritization sheme. Thus most of the run-

ning time was spent on heking that no better

solution exists. (A heuristi ould just report the

solution omputed, for example, after 30 seonds.)

We also ran experiments to determine the vari-

ations of the running time as a funtion of n and

�. The dependene graph on � for a �xed data set

is shown in Figure 3. The upper urve denotes the

total running time and the lower urve denotes the

time when the reported solution was deteted. In

Figure 4 we examine the dependene on n (number

of triangles). Note that again the reported solution

was found after only few seonds.

For the heuristi implementation in [2℄, running

times reported are in the range of 30{40 seonds

but as it is mentioned the solution omputed may

be far from optimal.
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Fig. 3. CPU time versus � for n = 522K, Æ = 0:2.
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Fig. 4. CPU time versus n for Æ = 0:2, � = 0:2.
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