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Abstract

A rectangular cartogram is a type of map where every region is a rectangle. The size of the rectangles is chosen
such that their areas represent a geographic variable (for example population). Rectangular cartograms are a useful
tool to visualize statistical data. However, good cartograms are generally hard to generate: The area specifications
for each rectangle may make it impossible to realize correct adjacencies between the regions and so hamper the
intuitive understanding of the map.

Here we present the first fully automated algorithms for rectangular cartograms. Our algorithms depend on a
precise formalization of region adjacencies and are building upon existing VLSI layout algorithms. Furthermore,
we characterize a non-trivial class of rectangular subdivisions for which exact cartograms can be efficiently com-
puted. An implementation of our algorithms and various tests show that in practice, visually pleasing rectangular
cartograms with small cartographic error can be effectively generated.

1. Introduction

Cartograms. Cartograms are a useful and intu-
itive tool to visualize statistical data about a set of
regions like countries, states or counties. The size
of a region in a cartogram corresponds to a partic-
ular geographic variable [1,6]. Since the sizes of the
regions are not their true sizes they generally can-
not keep both their shape and their adjacencies. A
good cartogram, however, preserves the recogniz-
ability in some way. Globally speaking, there are
three types of cartogram. The standard type (the
contiguous area cartogram) has deformed regions so
that the desired sizes can be obtained and the ad-
jacencies kept. Algorithms for such cartograms are
described in [10,2,3]. The second type of cartogram
is the non-contiguous area cartogram [7]. The re-
gions have the true shape, but are scaled down and
generally do not touch anymore. The third type
of cartogram is the rectangular cartogram intro-
duced by Raisz in 1934 [8] where each region is
represented by a single rectangle.
Quality criteria. Whether a rectangular car-
togram is good is determined by several factors.
One of these is the cartographic error of the car-
togram [2,3], which is defined for each region as
|Ac − As| /As, where Ac is the area of the region
in the cartogram and As is the area of that region
as specified by the geographic variable to be dis-
played. The following list shows all quality criteria:
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Fig. 1. A cartogram depicting the native
population of the United States.

– Average cartographic error.
– Maximum cartographic error.
– Correct adjacencies of the rectangles.
– Maximum aspect ratio.
– Suitable relative positions.
For a purely rectangular cartogram we cannot ex-
pect to simultaneously satisfy all criteria well.
Related work. Rectangular cartograms are
closely related to floor plans for electronic chips.
Floor planning aims to represent a planar graph
by its rectangular dual, defined as follows. A rect-
angular partition of a rectangle R is a partition of
R into a set R of non-overlapping rectangles such
no four rectangles in R meet at the same point.
A rectangular dual of a planar graph (G,V ) is a
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rectangular partition R, such that (i) there is a
one-to-one correspondence between the rectangles
in R and the nodes in G, and (ii) two rectangles
in R share a common boundary if and only if
the corresponding nodes in G are connected. The
following theorem was proven in [5]:
Theorem 1 A planar graph G has a rectangular
dual R with four rectangles on the boundary of R if
and only if

(i) every interior face is a triangle and the exte-
rior face is a quadrangle

(ii) G has no separating triangles.
Note that although every triangulated planar

graph without separating triangles has a rectan-
gular dual this does not imply that an error free
cartogram for this graph exists.
Results. We present the first fully automated
algorithms for the computation of rectangular
cartograms. We formalize the region adjacencies
based on their geographic location and are so able
to enumerate and process all feasible rectangular
layouts for a particular subdivision (i.e., map).
The precise steps that lead us from the input
data to an algorithmically processable rectangular
subdivision are sketched in Section 2.

We describe three algorithms that compute a
cartogram from a rectangular layout. The first is an
easy and efficient (segment moving) heuristic which
we evaluated experimentally. The visually pleas-
ing results of our implementation can be found in
Section 3. Secondly, we show how to formulate the
computation of a cartogram as a bilinear program-
ming problem. The details concerning these two
methods can be found in the full paper.

For our third, exact, algorithm we introduce an
effective generalization of sliceable layouts, namely
L-shape destructible layouts. We show that:
Theorem 2 An L-shape destructible layout with
a given set of area values has exactly one or no
realization as a cartogram.

The proof of Theorem 2 (which is given in the full
paper) immediately implies an efficient algorithm
to compute an exact (up to an arbitrarily small
error) cartogram for subdivisions that arise from
actual maps.

Finally we also establish the following theorem:
Theorem 3 A subdivision S with n vertices whose
face graph is outerplanar can be represented by a
rectangular cartogram with the correct adjacencies
and any pre-specified area values. This cartogram
can be computed in linear time.

2. Algorithmic Outline

Assume that we are given an administrative sub-
division into a set of regions. The adjacencies of
the regions can be represented in a graph F , which
is the face graph of the subdivision.
1. Preprocessing: The face graph F is in most
cases already triangulated (except for its outer
face). In order to construct a rectangular dual of F
we first have to process internal vertices of degree
less than four and then triangulate any remaining
non-triangular faces.
2. Directed edge labels: Any two nodes in the
face graph have at least one direction of adjacency
which follows naturally from their geographic lo-
cation. While in theory there are four different di-
rections of adjacency any two nodes can have, in
practice only one or two directions are reasonable.

Our algorithms go through all possible combina-
tions of direction assignments and determine which
one gives a correct or the best result. While in the-
ory there can be an exponential number of options,
in practice there is often only one natural choice
for the direction of adjacency between two regions.
We call a particular choice of adjacency directions
a directed edge labeling.
Definition 4 (Realizable directed edge la-
beling)

A face graph F with a directed edge labeling can
be represented by a rectangular dual if and only if

(i) every internal region has at least one North,
one South, one East, and one West neighbor.

(ii) when traversing the neighbors of a node in
clockwise order starting at the western most
North neighbor we first encounter all North
neighbors, then all East neighbors, then all
South neighbors and finally all West neigh-
bors.

3. Rectangular layout: A realizable directed
edge labeling constitutes a regular edge labeling for
F as defined in [4]. Therefore we can employ the
algorithm by He and Kant [4] to construct a rect-
angular layout, i.e., the unique rectangular dual
of a realizable directed edge labeling. The output
of our implementation of the algorithm by He and
Kant is shown in Figure 2.
4. Area assignment: For a given set of area val-
ues and a given rectangular layout we would like
to decide if an exact assignment of the area val-
ues to the regions is possible without destroying



March 25-26, 2004 Seville (Spain)

ME

FL

WA

OR

CA

ID

NV

MT

WY

UT

ND

SD

NE

CO

AZ NM

KS

OK

TX

MN

IA

MO

AR

LA

WI

IL

KY

TN

MS

IN

MI

OH

WV

VA

NC

GAAL

SC

MD

PA

NY

NJ

DE

VT

MA

CT

NH

RI

NORTH

SOUTH

T

S

A

E

T

S

E

W

Fig. 2. One of 4608 possible rectangular layouts of the US.

the correct adjacencies. Should the answer be neg-
ative or should the question be undecidable, then
we still want to compute a cartogram that has a
small amount of cartographic error while maintain-
ing reasonable aspect ratios and relative positions.
Exact algorithm. For certain types of rectangu-
lar layouts we can compute an exact cartogram.
We first determine for a given rectangular layout a
maximal rectangle hierarchy. The maximal rectan-
gle hierarchy groups rectangles that together form
a larger rectangle, as illustrated in Figure 3. It can
be computed in linear time [9]. All groups in the
hierarchy are independent and we will determine
areas separately for each group.

A node of degree 2 in the hierarchy corresponds
to a sliceable group of rectangles. If the maximal
rectangle hierarchy consists of slicing cuts only,
then we can (in a top-down manner) compute the
unique position of each slicing cut.

Nodes of a degree higher than 2 require more
complex cuts (see for example the four thick seg-
ments in Fig. 3). Here we introduce a type of non-
sliceable layout for which the coordinates are still
uniquely determined by the specified areas. We say
a rectangular layout R is irreducible if no proper
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Fig. 3. Rectangular layout of the 12 provinces of the
Netherlands and a corresponding

maximal rectangle hierarchy.

subset of R (of size greater than one) forms a rect-
angle. Furthermore, we call a rectilinear simple
polygon with at most 6 vertices L-shaped. We say
that an L-shaped polygon is rooted at a vertex p if
one of its convex vertices is p.
Definition 5 (L-shape destructible) An ir-
reducible rectangular layout R of a rectangle R is
L-shape destructible if there is a sequence starting
at a corner s of R in which the rectangles of R can
be removed from R such that the remainder forms
an L-shaped polygon rooted at the corner t of R op-
posite to s after each removal.
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Fig. 4. An L-shape destructible layout of the Eastern US.
The shaded area shows the L-shaped polygon after the

removal of rectangles 1 − 4.

3. Implementation and experiments

We have implemented the segment moving
heuristic and tested it on some data sets. The
main objective was to discover whether rectangu-
lar cartograms with reasonably small cartographic
error exist, given that they are rather restrictive
in the possibilities to represent all rectangle areas
correctly. Secondary objectives were to determine
how the cartographic error depends on maximum
aspect ratio and correct or false adjacencies.

Our layout data sets consist of the 12 provinces
of the Netherlands and the 48 contiguous states
of the USA. Here we present only some of the re-
sults pertaining to the US data sets, all other re-
sults can be found in the full paper. We allowed 13
pairs of adjacent states of the USA to be in differ-
ent relative positions leading to 8192 possible lay-
outs. Only 4608 of these correspond to a realizable
directed edge labeling. We considered all 4608 lay-
outs and chose the one giving the lowest average
error as the cartogram.
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Fig. 5. The population of the US.

Data set Adjacency Aspect ratio Av. error Max.

US pop. false 8 0.104 0.278

US pop. false 9 0.085 0.193

US pop. false 10 0.052 0.295

US pop. false 11 0.030 0.091

US pop. false 12 0.022 0.056

US pop. correct 12 0.327 0.618

US pop. correct 13 0.319 0.608

US pop. correct 14 0.317 0.612

US pop. correct 15 0.314 0.569

US pop. correct 16 0.308 0.612

US hw. correct 6 0.073 0.188

US hw. correct 7 0.059 0.111

US hw. correct 8 0.058 0.101

US hw. correct 9 0.058 0.101

US hw. correct 10 0.058 0.101

Table 1. Errors for different aspect ratios, and
correct/false adjacencies. Sea 20%.

As numeric data we considered population, na-
tive population, number of farms, number of elec-
torial college votes, and total length of highways.

Table 1 shows errors for various settings for two
US data sets. Only the average error is significant
in the table, since the rectangular layout chosen for
the table is the one with lowest average error. The
corresponding maximum error is shown only for
completeness. Since cartograms are interpreted vi-
sually and show a global picture, errors of a few per-
cent on the average are acceptable. Such errors are
also present in standard contiguous cartograms.

The error decreases with a larger aspect ratio,
as expected. For the native population data set an
aspect ratio of 7 combined with false adjacency
results in a cartogram with average error below
0.04 (see Fig. 1). Figures 5 and 6 show rectangular
cartograms for two of the five US data sets. The
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Fig. 6. The highway kilometers of the US.

data sets allowed an aspect ratio of 10 or lower to
yield an average error between 0.03 and 0.06.
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