
Space-Efficient Geometric Divide-and-Conquer Algorithms

P. Bose a,1, A. Maheshwari a,1, P. Morin a,1, J. Morrison a,1, M. Smid a,1, J. Vahrenhold b,2

aSchool of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6
bWestfälische Wilhelms-Universität, Institut für Informatik, 48149 Münster, Germany

Abstract

We present an approach to simulate divide-and-conquer algorithms in a space-efficient way, and illustrate it by

giving space-efficient algorithms for the closest-pair, bichromatic closest-pair, all-nearest-neighbors, and orthogonal

line segment intersection problems.

Key words: Computational geometry, space-efficient algorithms, all-nearest-neighbors, orthogonal line segment intersection

Researchers have studied space-efficient algo-
rithms since the early 70’s. Examples include merg-
ing, (multiset) sorting, and partitioning problems;
see [3,7,6]. Brönnimann et al. [2] were the first to
consider space-efficient geometric algorithms and
showed how to compute the convex hull of a planar
set of n points in O(n log h) time using O(1) extra
space, where h denotes the size of the output.

In this paper, we present a space-efficient
scheme for performing divide-and-conquer algo-
rithms without using recursion. We apply this
scheme to several problems.

1. Space-efficient divide-and-conquer
In this section, we describe a simple scheme for

space-efficiently performing divide-and-conquer.
Using the standard recursive approach requires
Ω(log n) pointers for maintaining a recursion stack
as noted in the context of space-efficiently imple-
menting the Quicksort algorithm [5,8]. Our tech-
nique traverses the recursion tree in the same man-
ner without requiring the extra pointers. In many
cases, the same type of result can be obtained us-
ing bottom-up merge, however, it is well known
that bottom-up merge has poor performance in the
presence of caches.

The main idea (which is probably folklore, even
though we have not seen it in the literature) is

1 These authors were supported by NSERC.
2 Part of this work was done while visiting Carleton Uni-
versity. Supported in part by DAAD grant D/0104616.

to simulate a post-order traversal of the recursion
tree. We assume for simplicity that the data to
be processed is stored in an array A of size n =
2k for some positive integer k. The recursion tree
corresponding to a divide-and-conquer scheme is a
perfectly balanced binary tree, in which each node
at depth 0 ≤ i < k corresponds to a subarray of
the form A[j · 2k−i . . . (j + 1) · 2k−i − 1] for some
integer 0 ≤ j ≤ i.

Our scheme is presented in Algorithm 1. We
maintain two indices b and e that indicate the sub-
array A[b . . . e−1] currently processed. We will use
the binary representation of the index e to im-
plicitly store the current status of the post-order
traversal, i.e., the node of the simulated recursion
tree currently visited.

Algorithm 1 Stackless simulation of a post-order
traversal.
1: Let b = 0 and e = 1.
2: while b 6= 0 or e ≤ n do
3: Let i be the index of the least significant bit

of e (note the lowest index is 1).
4: for c := 1 to i − 1 do
5: Set b := e − 2c.
6: Merge the two subarrays in A[b . . . e − 1]
7: end for
8: Let e := e + 1.
9: end while

Determining the value of i (Step 3) can be done
in O(1) amortized time without extra space us-

20th EWCG Seville, Spain (2004)

20th European Workshop on Computational Geometry

ing a straightforward implementation of a binary
counter.

2. Nearest Neighbor Problems
2.1. Closest Pair

Given a set P of n points in the plane stored in
an array A[0 . . . n − 1], the closest pair is the pair
of points in P whose Euclidean distance is smallest
among all pairs of points. The above scheme can
be used to modify an algorithm by Bentley and
Shamos [1] to compute the closest pair in space
efficient manner using only O(1) extra space.

We first outline Bentley and Shamos’ algorithm.

Algorithm 2 Divide-and-Conquer algorithm for
finding a closest pair [1].

Require: All points in the input array A are
sorted according to x-coordinate.

Ensure: All points in the array A are sorted ac-
cording to <y, and two points realizing a clos-
est pair in A are known.

1: If A has a constant number of points, sort the
points according to <y, compute a closest pair
using a brute-force algorithm, and return.

2: Subdivide the array based upon the median x-
coordinate and recurse on both parts.

3: Determine the minimal distance δ given by the
two (locally) closest pairs of the subarrays to
be merged. Set the closest pair for the current
subarray to be the closer of those two points.

4: For both subarrays, extract the points that fall
within a strip of width 2δ centered at the me-
dian x-coordinate.

5: Simultaneously scan through both sets con-
taining the extracted points (backing up at
most a constant number of steps for each point
examined) and determine whether there is a
pair of points with distance smaller than δ. Up-
date δ and the closest pair as necessary.

6: Merge both subarrays such that all points are
sorted according to <y.

7: Return the closest pair.

To make this algorithm in-place, we require
that for each “recursive” call on a subarray
A[b . . . e], e > b, the following invariants are ful-
filled as a postcondition:
Invariant 1: The first two entries A[b] and A[b+1]

of the subarray contain two points p and q that
form a closest pair in A[b . . . e].

Invariant 2: A[b] <y A[b + 1].

Invariant 3: If e > b + 1, then A[b + 2 . . . e] is
sorted according to <y.
These invariants can be enforced trivially in-

place in Step 1 of the above algorithm. After re-
turning from the “recursive” call on A[0 . . . n− 1],
i.e., at the end of the algorithm, the first two en-
tries A[0] and A[1] contain two points that realize
a closest pair.

We can transform the above algorithm into an
in-place space-efficient variant as follows: The pre-
condition of the algorithm can be met by running
any in-place sorting algorithm, e.g., heapsort, to
sort the points according to their x-coordinate.

The merge step of the divide-and-conquer
scheme can be realized in-place as well. We parti-
tion each of the subarrays into two parts where the
front part contains the points within the 2δ strip
in sorted order by y-coordinate and the back part
contains the points outside the strip in sorted or-
der by y-coordinate. We use a stable in-place par-
titioning algorithm, e.g. [6], to partition each sub-
array.

Upon completion of the scan in step 5, to com-
pute the sorted order of the subarrays, we sim-
ply need to perform a merge of four sorted parts
(two parts are points in the strip and two parts are
points outside the strip). This merging can be done
in-place using the algorithm by Geffert et al. [3].
Theorem 1 Given a set P of n points in the plane

stored in an array A[0 . . . n−1], the closest pair in P

can be computed in O(n log n) time using O(log n)
extra bits of storage.

2.2. Bichromatic Closest Pair

In the Bichromatic Closest Pair Problem, we are
given a set R of red points and a set B of blue
points in the plane. The problem is to return the
pair of points, one red and one blue, whose distance
is minimum over all red-blue pairs. For simplicity
of exposition, we assume that |R| = |B| = n with
the red set stored in an array R[0 . . . n−1] and blue
set in an array B[0 . . . m − 1].

We first consider solving the problem when the
red and blue sets are separated by a vertical line,
with red points on the left of the line and blue
points on the right of the line. The approach is
similar to the merge step in the previous section,
except that we no longer have the luxury of the
value δ. To circumvent this problem we proceed in
the following way.

The above algorithm runs in linear-expected
time since each time through the loop, with con-

March 25-26, 2004 Seville (Spain)

Algorithm3 Bichromatic closest pair when R and
B are separated by a vertical line.

Require: All points in R and B are sorted by x-
coordinate.

Ensure: All points R and B are sorted by y-
coordinate, and the pair R[0], B[0] realize the
bichromatic closest pair.

1: If both R and B store only a constant number
of points, sort the points according to <y, com-
pute a bichromatic closest pair using a brute-
force algorithm, and return.

2: Assume |R| ≥ |B|, otherwise reverse the roles
of R and B

3: Pick a random element r from R.
4: Find the closest element of b ∈ B to r.
5: Compute the left envelope of disks having ra-

dius |rb| centered at each of the points in B.
6: Remove all elements of R that are outside the

envelope

stant probability, we reduce the size of R or B by
a constant fraction.

To implement this algorithm in-place, we ob-
serve all steps except Steps 5 and 6 are trivial to
implement in-place.

Step 5, computing the left-envelope (portions of
the disks visible from the point (+∞, 0)), is very
similar to the convex hull problem and can be
solved in O(n) time with an algorithm identical to
Graham’s scan since the points are sorted by <y.
The implementation of Graham’s scan given by
Brönnimann et al.[2] does this in-place and results
in an array that contains the elements that con-
tribute to the left envelope in the first part of the
array and the elements that do not contribute in
the second part of the array. Also, we observe that
it is not particulary difficult to run Graham’s scan
“in reverse” to restore the <y sorted order of the
elements in O(n) time once we are done with the
left envelope. Details are included in the full ver-
sion of the paper.

To perform Step 6 in-place we simultaneously
scan the left envelope and the red points from top
to bottom and move the discarded points, using
swaps to the end of the array. Again the details
are exactly like the implementation of Graham’s
scan given by Bronnimann et al. and the algorithm
can be run in reverse to recover the <y sorted or-
der of the points. Unfortunately, the algorithm is
run recursively on the sorted prefix of the array, so

we need O(log2 n) extra bits to remember the sub-
problem sizes at the O(log n) levels of recursion.
Note, it may be possible to apply the algorithm by
Katajainen and Pasanen [6] to remove a log n fac-
tor from the space requirement.
Theorem 2 Given sets R and B of n points in the

plane, the closest bichromatic pair can be computed

in O(n log n) time using O(log2) extra bits of stor-

age.

2.3. The all-nearest-neighbors problem

In this section, we apply the divide-and-conquer
scheme of Section 1 to solve the all-nearest-
neighbors problem space-efficiently. Again, we
present a modification of Bentley and Shamos’ al-
gorithm.

Algorithm 4 Computing all nearest neighbors [1].

Require: All points in the input array A are
sorted according to x-coordinate.

Ensure: All points in A are sorted according
to <y, and for each point, its nearest neighbor
in A is known.

1: If A stores only a constant number of points,
sort the points according to <y, compute all
nearest neighbors using a brute-force algo-
rithm, and return.

2: Subdivide the array based upon the median x-
coordinate x = ℓ and recurse on both subar-
rays A0 and A1.

3: Simultaneously scan through both subarrays
A0 and A1, and for each point p ∈ Ai check
all points in A1−i whose nearest-neighbor ball
contains the projection of p onto the line x =
ℓ. Update the nearest neighbor information as
necessary.

4: Merge the points according to <y.

We can make this algorithm space-efficient using
the framework of Section 1. One detail, however,
needs special attention. Bentley and Shamos argue
that for each of the points in the sets to be merged,
only a constant number of other points needs be
examined [1, p. 229]. More specifically, this num-
ber is four for points in two dimensions under the
Euclidean metric [1, p. 228].

Note that when processing a point p, the four
points above and below p’s y-coordinate whose
nearest neighbor balls intersect the vertical line
may be interspersed (with respect to the <y or-
der) by linearly many points. In order to provide
constant-time access to these points, we proceed

20th European Workshop on Computational Geometry

as follows. We use 2n · log
2
n bits of extra space to

maintain the following invariants that have to be
fulfilled as a postcondition after each “recursive”
call on a subarray A[b . . . e], e > b:
Invariant 1: A[b . . . e] is sorted according to <y.
Invariant 2: Any point p ∈ A[b . . . e] stores an

index i ∈ [b . . . e] such that A[i] is the nearest
neighbor of p with respect to A[b . . . e].
If these invariants are maintained throughout

the algorithm, each point will store the index of
its global nearest neighbor at the end of the algo-
rithm. The main problem in performing the merge
step is that while simultaneously scanning the two
sorted arrays of points, i.e., before merging them,
for each point we need to compute the index of its
nearest neighbor with respect to the merged ar-
ray. This is done in two phases. First, we do a lin-
ear scan to compute the index of each element in
the merged array and store this index with the el-
ement (this is where we use n · log

2
n extra bits).

Next, we perform the merge step, and maintain a
look-ahead queue of length 8 for each point set. In
this queue, we maintain the indicies of the next 4
and the last 4 points seen whose nearest neighbor
balls intersect the vertical line at the median x-
coordinate. It is easy to see that these queues can
be maintained space-efficiently while not increas-
ing (asymptotically) the running time.
Theorem 3 All nearest neighbors in a set of n

points in the plane can be computed in O(n log n)
time using 2n log

2
n + O(log n) extra bits of space.

3. Orthogonal line segment intersection
In this section, we present a space-efficient algo-

rithm for the orthogonal line segment intersection
problem. Our algorithm can be seen as a variant of
the (external-memory) distribution sweeping ap-
proach taken by Goodrich et al. [4].

The (internal memory) version of this algorithm
is a top-down divide-and-conquer algorithm, that
is, the (algorithmic) work is done prior to recur-
sion. As a precondition, assume that all vertical
segments are sorted according to the y-coordinate
of their lower endpoint and that all horizontal seg-
ments are sorted according to their y-coordinate.
In each step of the recursion, the set of verti-
cal segments is split according to the median x-
coordinate. These sets define two slabs that are
swept top-down. All horizontal segments that com-
pletely span a slab are pushed onto a stack corre-
sponding to their slab. Whenever (the lower end-

point of) a vertical segment is encountered, the
stack corresponding to the slab containing the seg-
ment is scanned and all intersecting segments are
reported. After this sweep all horizontal segments
(or fragments thereof) not completely spanning
a slab are distributed to the corresponding slab
which in turn is processed recursively.

The first observation that helps making this al-
gorithm space-efficient is that the “stack” used in
the top-down sweep is never accessed using push-
operations. Instead, all horizontal segments are
pushed onto this stack in sorted order. This means
that any sorted (part of an) array in connection
with a single pointer indicating the current “top”
of the “stack” can be used to implement this part
of the algorithm.

A much more challenging problem is that the re-
cursion tree corresponding to the algorithm is tra-
versed in an inorder fashion, i.e., the general frame-
work of Section 1 cannot be used. In the full paper,
we will show how this algorithm can nevertheless
be made space-efficient.
Theorem 4 All k intersections in a set of n hor-

izontal and vertical line segments can be computed

in O(n log n + k) time using O(log n) bits of extra

space.

References

[1] J. L. Bentley and M. I. Shamos. Divide-and-Conquer
in multidimensional space. STOC, pp. 220–230, 1976.

[2] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin,
J. Morrison, and G. T. Toussaint. Optimal in-place
planar convex hull algorithms. LATIN, pp. 494–507,
2002.

[3] V. Geffert, J. Katajainen, and T. Pasanen.
Asymptotically efficient in-place merging. Theoretical

Comp. Sci., 237(1–2):159–181, April 2000.

[4] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry.
FOCS, pp. 714–723, 1993.

[5] B.-C. Huang and D. E. Knuth. A one-way, stackless
quicksort algorithm. BIT, 26:127–130, 1986.

[6] J. Katajainen and T. Pasanen. Stable minimum space
partitioning in linear time. BIT, 32:580–585, 1992.

[7] J. Katajainen and T. Pasanen. Sorting multisets stably
in minimum space. Acta Informatica, 31(4):301–313,
1994.

[8] L. M. Wegner. A generalized, stackless quicksort
algorithm. BIT, 27:44–48, 1987.

