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Abstra
t

We study the problem of 
onstru
tion of a 
onvex 3-polytope whose (i) shadow boundary has n verti
es and (ii)

two hulls, upper and lower, are isomorphi
 to two given triangulations of a 
onvex n-gon. Barnette [1℄ proved the

existen
e of a 
onvex 3-polytope in general 
ase. We show that, in our 
ase, a polytope 
an be 
onstru
ted using

an operation of edge 
reation.
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1. Introdu
tion

Let P be a 
onvex polygon in the xy-plane with

n verti
es. Two triangulations of P are 
alled dis-

tin
t if the only edges they share are the edges of

P . Let T

1

and T

2

be two distin
t triangulations of

P . At the First Canadian Conferen
e on Compu-

tational Geometry Leo Guibas 
onje
tured that it

is always possible to perturb the verti
es of P ver-

ti
ally out (i.e., by displa
ements parallel to the

z-axis) so that the polygon P be
omes a spatial

polygon P

0

su
h that the 
onvex hull of P

0

is a


onvex polyhedron 
onsisting ot two triangulated


ups glued along P

0

, and the triangulation of the

upper 
up (i.e., those fa
es oriented toward +z) is

that spe
i�ed as T

1

, and the triangulation of the

lower 
up is that spe
i�ed as T

2

[4℄.

Boris Bekster [2℄ disproved Guibas' 
onje
ture

by showing a 
ounterexample, a 
onvex hexagon

with two triangulations. Marlin and Toussaint [3℄


onsidered the 
omputational problem of de
iding

whether a triple (P; T

1

; T

2

) admits a realization in

R

3

. They redu
ed the problem to a linear program-

ming problem with O(n

2

) inequality 
onstraints

and n variables. The variables are z-
oordinates of

lifted verti
es of P and the 
onstraints 
orrepond

to vertex-fa
e relations: the verti
es must be be-

low/above the planes passing through fa
es of the
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upper/lower 
up of P

0

. The number of 
onstraints


an be dropped to 2n�6 = jT

1

j+ jT

2

j by 
onsider-

ing dihedral angles 
orresponding to diagonals of

the triangulations [7℄.

Guibas 
onje
ture is related to Steinitz's theo-

rem [5℄.

Steinitz's Theorem: A graph G is isomorphi


to the edge graph of a 
onvex 3-polytope if and

only if G is 3-
onne
ted and planar.

By Steinitz's theorem the graph (P; T

1

[T

2

) is the

edge graph of a 
onvex 3-polytope [3℄. A

ording

to Barnette's theorem [1℄, every 3-polytope with a

Hamiltonian 
ir
uit has realization su
h that the

Hamiltonian 
ir
uit is a shadow boundary. This

implies that Guibas' 
onje
ture is true up to a 
om-

binatorial deformation [2℄. Formally this 
an be

stated as follows.

Theorem 1 For any two distin
t triangulations

T

1

and T

2

of a 
onvex polygon P

2

in R

2

with n

verti
es, there is a 
onvex polytope P

3

in R

3

with n

verti
es su
h that (i) thexy-shadow S ofP

3


ontains

all its verti
es, and (ii) there is a isomorphism � :

P

2

! S that maps the edges of T

1

(resp. T

2

) to the

edges of the upper hull of P

3

(resp. the lower hull).

Barnette's proof deals with general fa
es (not

just triangles) due to its generality. In this paper

we give a di�erent proof of Theorem 1 that uses

only triangular fa
es of polytopes whi
h 
an be

turned into a more robust algorithm for �nding a


ombinatorial realization of (P; T

1

; T

3

) in R

3

.

Realization questions have been studied in 
om-
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puter graphi
s and s
ene analysis as well. Sugihara

[6℄ established ne
essary and suÆ
ient 
onditions

whether a line drawing in the plane 
an be realized

in R

3

by lifting.

We 
all a triple (P; T

1

; T

2

) a 
on�guration. We


all a map � satisfying the 
onditions of Theorem

1 a realization.

2. Edge 
ontra
tion

(a)

(b)

p1

p2

p3

p1

p2

p3

Fig. 1. (a) Edge 
ontra
tion of a triangulation. (b) Edge


ontra
tion of two triangulations. The diagonals of one tri-

angulation are solid and the diagonals of the other trian-

gulation are dashed.

As in Barnette's proof we use the operation of

edge removal. The di�eren
e is that we will not

apply it for diagonals of P . This prevents the ap-

pearen
e of fa
es with more than three verti
es.

The edge 
ontra
tion in a 
on�guration is de�ned

by idetifying the edge enpoints. If applied to one

triangulation of P , it produ
es a triangulation, see

Fig. 1 (a) for example where the edge p

1

p

2

is 
on-

tra
ted. When applied for two triangulations, we

want the redu
ed triangulations to be distin
t. An

edge e of a 
on�guration (P; T

1

; T

2

) is 
ontra
tible

if the new triangulations T

0

1

and T

00

2

are distin
t.

In general, not all edges are 
ontra
tible. For ex-

ample, the edge p

1

p

2

in the Fig. 2 (a) is not 
on-

tra
tible sin
e two edges p

1

p

6

and p

2

p

6

from di�er-

ent triangulations 
oin
ide after the 
ontra
tion of

p

1

p

2

.

p1

p2

p3

p4

p5

p6

p7

p1

p2

p3

p4

p1 = p4

p2

p3

(a)

(b)

Fig. 2. (a) The edge (p

1

; p

2

) is not 
ontra
tible. (b) The

edge 
ontra
tion for n = 4.

Lemma 2 Let C be a 
on�guration with n � 4

verti
es. There is a 
ontra
tible edge of C among

the edges of the 
onvex polygon.

PROOF. If n = 4 then every edge of the 
onvex

polygon is 
ontra
tible, see Fig. 2 (b). We prove

the lemma for n � 5. Suppose to the 
ontrary that

there is a 
on�guration (P; T

1

; T

2

) su
h that all

edges of P are not 
ontra
tible. Let p

1

; : : : ; p

n

be
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the verti
es of P in 
lo
kwise order. The edge p

1

p

2

is not 
ontra
tible. Then there is a vertex p

k

; 4 �

k � n�1 su
h that p

1

p

k

is an edge of one triangu-

lation, say T

1

, and p

2

p

k

is an edge of T

2

, see Fig. 3

(a).

Consider an edge p

i

p

i+1

; 2 � i � k � 1. Sin
e

p

i

p

i+1

is not 
ontra
tible, there is a vertex p


(i)

su
h that p

i

p


(i)

is a diagonal of T

j

; j = 1; 2 and

p

i+1

p


(i)

is a diagonal of T

3�j

, see Fig. 3 (a). We


all p


(i)

a witness sin
e it indi
ates that p

i

p

i+1

is

not 
ontra
tible. At least one vertex of fp

i

; p

i+1

g,

say p

l

, is di�erent from p

2

and p

k

. Then the edge

p

l

p


(i)

does not 
ross one of the edges p

1

p

k

or p

2

p

k

.

Therefore 
(i) is an index in the range 1; : : : ; k.

p1

p2

pk

P

pi

pi+1

pc(i)

pi

pi+1
pi+2

pc(i+1) pc(i)

p1 pk

(a)

(b)

e1

e2

Fig. 3. Lemma 2.

We 
all p


(i)

a left witness if 
(i) < i. We 
all p


(i)

a right witness if 
(i) > i+1. Ea
h witness is either

left or right sin
e 
(i) 6= i; i + 1. Note that p


(2)

is

a right witness and p


(k�1)

is a left witness. Thus

there is an index i; 2 � i � k � 2 su
h that p


(i)

is

the right index and p


(i+1)

is the left index, see Fig.

3 (b). Then p

i

p


(i)

, a diagonal of a triangulationT

j

,

interse
ts both diagonals e

1

= (p

i+1

; p


(i+1)

) and

e

2

= (p

i+2

; p


(i+1)

). Either e

1

or e

2

is a diagonal of

T

j

. Contradi
tion.

3. Edge 
reation

We de�ne an operation of edge 
reation as the

reverse operation of the edge 
ontra
tion. The fol-

lowing lemma 
hra
terizes the 
hange of the 
on-

�guration when an edge is 
reated. We denote the

sequen
e of indi
es from i to j in 
lo
kwise order

by fi; i+ 1; : : : ; jg.

Lemma 3 (Edge 
reation) Let C = (P; T

1

; T

2

)

be a 
on�guration with n � 3 verti
es where P =

fp

1

; : : : ; p

n

g. Suppose that an edge e = (q

1

; q

2

)

is 
reated in pla
e of a vertex p

i

2 P . Let C

0

=

(P

0

; T

0

1

; T

0

2

) be the 
on�guration obtained by repla
-

ing a vertex p

i

by an edge e = (q

1

; q

2

) in 
lo
kwise

order. Then there are two edges (p

i

; p

j

) 2 T

1

and

(p

i

; p

k

) 2 T

2

su
h that

{ an edge (p

l

; p

i

) 2 T

1

; l 2 fi + 1; i + 2; : : : ; jg is

repla
ed by the edge (p

l

; q

1

) 2 T

0

1

, and

{ an edge (p

l

; p

i

) 2 T

1

; l 2 fj; j + 1; : : : ; i � 1g is

repla
ed by the edge (p

l

; q

2

) 2 T

0

1

, and

{ an edge (p

l

; p

i

) 2 T

2

; l 2 fi+ 1; i+ 2; : : : ; p

k

g is

repla
ed by the edge (p

l

; q

1

) 2 T

0

2

, and

{ an edge (p

l

; p

i

) 2 T

2

; l 2 fk; k + 1; : : : ; i � 1g is

repla
ed by the edge (p

l

; q

2

) 2 T

0

2

.

We show that an edge 
an be always 
reated.

Theorem 4 Let C = (P; T

1

; T

2

) be a 
on�guration

with n � 3 verti
es and let � : P ! R

3

be its re-

alization in R

3

. Let C

0

= (P

0

; T

0

1

; T

0

2

) be the 
on-

�guration obtained by an edge 
reation. There is a

realization of C

0

if there is a realization of C.

Theorem 1 follows from Theorem 4.
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