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Abstrat

We study the problem of onstrution of a onvex 3-polytope whose (i) shadow boundary has n verties and (ii)

two hulls, upper and lower, are isomorphi to two given triangulations of a onvex n-gon. Barnette [1℄ proved the

existene of a onvex 3-polytope in general ase. We show that, in our ase, a polytope an be onstruted using

an operation of edge reation.
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1. Introdution

Let P be a onvex polygon in the xy-plane with

n verties. Two triangulations of P are alled dis-

tint if the only edges they share are the edges of

P . Let T

1

and T

2

be two distint triangulations of

P . At the First Canadian Conferene on Compu-

tational Geometry Leo Guibas onjetured that it

is always possible to perturb the verties of P ver-

tially out (i.e., by displaements parallel to the

z-axis) so that the polygon P beomes a spatial

polygon P

0

suh that the onvex hull of P

0

is a

onvex polyhedron onsisting ot two triangulated

ups glued along P

0

, and the triangulation of the

upper up (i.e., those faes oriented toward +z) is

that spei�ed as T

1

, and the triangulation of the

lower up is that spei�ed as T

2

[4℄.

Boris Bekster [2℄ disproved Guibas' onjeture

by showing a ounterexample, a onvex hexagon

with two triangulations. Marlin and Toussaint [3℄

onsidered the omputational problem of deiding

whether a triple (P; T

1

; T

2

) admits a realization in

R

3

. They redued the problem to a linear program-

ming problem with O(n

2

) inequality onstraints

and n variables. The variables are z-oordinates of

lifted verties of P and the onstraints orrepond

to vertex-fae relations: the verties must be be-

low/above the planes passing through faes of the
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upper/lower up of P

0

. The number of onstraints

an be dropped to 2n�6 = jT

1

j+ jT

2

j by onsider-

ing dihedral angles orresponding to diagonals of

the triangulations [7℄.

Guibas onjeture is related to Steinitz's theo-

rem [5℄.

Steinitz's Theorem: A graph G is isomorphi

to the edge graph of a onvex 3-polytope if and

only if G is 3-onneted and planar.

By Steinitz's theorem the graph (P; T

1

[T

2

) is the

edge graph of a onvex 3-polytope [3℄. Aording

to Barnette's theorem [1℄, every 3-polytope with a

Hamiltonian iruit has realization suh that the

Hamiltonian iruit is a shadow boundary. This

implies that Guibas' onjeture is true up to a om-

binatorial deformation [2℄. Formally this an be

stated as follows.

Theorem 1 For any two distint triangulations

T

1

and T

2

of a onvex polygon P

2

in R

2

with n

verties, there is a onvex polytope P

3

in R

3

with n

verties suh that (i) thexy-shadow S ofP

3

ontains

all its verties, and (ii) there is a isomorphism � :

P

2

! S that maps the edges of T

1

(resp. T

2

) to the

edges of the upper hull of P

3

(resp. the lower hull).

Barnette's proof deals with general faes (not

just triangles) due to its generality. In this paper

we give a di�erent proof of Theorem 1 that uses

only triangular faes of polytopes whih an be

turned into a more robust algorithm for �nding a

ombinatorial realization of (P; T

1

; T

3

) in R

3

.

Realization questions have been studied in om-
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puter graphis and sene analysis as well. Sugihara

[6℄ established neessary and suÆient onditions

whether a line drawing in the plane an be realized

in R

3

by lifting.

We all a triple (P; T

1

; T

2

) a on�guration. We

all a map � satisfying the onditions of Theorem

1 a realization.

2. Edge ontration

(a)

(b)

p1

p2

p3

p1

p2

p3

Fig. 1. (a) Edge ontration of a triangulation. (b) Edge

ontration of two triangulations. The diagonals of one tri-

angulation are solid and the diagonals of the other trian-

gulation are dashed.

As in Barnette's proof we use the operation of

edge removal. The di�erene is that we will not

apply it for diagonals of P . This prevents the ap-

pearene of faes with more than three verties.

The edge ontration in a on�guration is de�ned

by idetifying the edge enpoints. If applied to one

triangulation of P , it produes a triangulation, see

Fig. 1 (a) for example where the edge p

1

p

2

is on-

trated. When applied for two triangulations, we

want the redued triangulations to be distint. An

edge e of a on�guration (P; T

1

; T

2

) is ontratible

if the new triangulations T

0

1

and T

00

2

are distint.

In general, not all edges are ontratible. For ex-

ample, the edge p

1

p

2

in the Fig. 2 (a) is not on-

tratible sine two edges p

1

p

6

and p

2

p

6

from di�er-

ent triangulations oinide after the ontration of

p

1

p

2

.
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p1 = p4

p2

p3

(a)

(b)

Fig. 2. (a) The edge (p

1

; p

2

) is not ontratible. (b) The

edge ontration for n = 4.

Lemma 2 Let C be a on�guration with n � 4

verties. There is a ontratible edge of C among

the edges of the onvex polygon.

PROOF. If n = 4 then every edge of the onvex

polygon is ontratible, see Fig. 2 (b). We prove

the lemma for n � 5. Suppose to the ontrary that

there is a on�guration (P; T

1

; T

2

) suh that all

edges of P are not ontratible. Let p

1

; : : : ; p

n

be
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the verties of P in lokwise order. The edge p

1

p

2

is not ontratible. Then there is a vertex p

k

; 4 �

k � n�1 suh that p

1

p

k

is an edge of one triangu-

lation, say T

1

, and p

2

p

k

is an edge of T

2

, see Fig. 3

(a).

Consider an edge p

i

p

i+1

; 2 � i � k � 1. Sine

p

i

p

i+1

is not ontratible, there is a vertex p

(i)

suh that p

i

p

(i)

is a diagonal of T

j

; j = 1; 2 and

p

i+1

p

(i)

is a diagonal of T

3�j

, see Fig. 3 (a). We

all p

(i)

a witness sine it indiates that p

i

p

i+1

is

not ontratible. At least one vertex of fp

i

; p

i+1

g,

say p

l

, is di�erent from p

2

and p

k

. Then the edge

p

l

p

(i)

does not ross one of the edges p

1

p

k

or p

2

p

k

.

Therefore (i) is an index in the range 1; : : : ; k.

p1

p2

pk

P

pi

pi+1

pc(i)

pi

pi+1
pi+2

pc(i+1) pc(i)

p1 pk

(a)

(b)

e1

e2

Fig. 3. Lemma 2.

We all p

(i)

a left witness if (i) < i. We all p

(i)

a right witness if (i) > i+1. Eah witness is either

left or right sine (i) 6= i; i + 1. Note that p

(2)

is

a right witness and p

(k�1)

is a left witness. Thus

there is an index i; 2 � i � k � 2 suh that p

(i)

is

the right index and p

(i+1)

is the left index, see Fig.

3 (b). Then p

i

p

(i)

, a diagonal of a triangulationT

j

,

intersets both diagonals e

1

= (p

i+1

; p

(i+1)

) and

e

2

= (p

i+2

; p

(i+1)

). Either e

1

or e

2

is a diagonal of

T

j

. Contradition.

3. Edge reation

We de�ne an operation of edge reation as the

reverse operation of the edge ontration. The fol-

lowing lemma hraterizes the hange of the on-

�guration when an edge is reated. We denote the

sequene of indies from i to j in lokwise order

by fi; i+ 1; : : : ; jg.

Lemma 3 (Edge reation) Let C = (P; T

1

; T

2

)

be a on�guration with n � 3 verties where P =

fp

1

; : : : ; p

n

g. Suppose that an edge e = (q

1

; q

2

)

is reated in plae of a vertex p

i

2 P . Let C

0

=

(P

0

; T

0

1

; T

0

2

) be the on�guration obtained by repla-

ing a vertex p

i

by an edge e = (q

1

; q

2

) in lokwise

order. Then there are two edges (p

i

; p

j

) 2 T

1

and

(p

i

; p

k

) 2 T

2

suh that

{ an edge (p

l

; p

i

) 2 T

1

; l 2 fi + 1; i + 2; : : : ; jg is

replaed by the edge (p

l

; q

1

) 2 T

0

1

, and

{ an edge (p

l

; p

i

) 2 T

1

; l 2 fj; j + 1; : : : ; i � 1g is

replaed by the edge (p

l

; q

2

) 2 T

0

1

, and

{ an edge (p

l

; p

i

) 2 T

2

; l 2 fi+ 1; i+ 2; : : : ; p

k

g is

replaed by the edge (p

l

; q

1

) 2 T

0

2

, and

{ an edge (p

l

; p

i

) 2 T

2

; l 2 fk; k + 1; : : : ; i � 1g is

replaed by the edge (p

l

; q

2

) 2 T

0

2

.

We show that an edge an be always reated.

Theorem 4 Let C = (P; T

1

; T

2

) be a on�guration

with n � 3 verties and let � : P ! R

3

be its re-

alization in R

3

. Let C

0

= (P

0

; T

0

1

; T

0

2

) be the on-

�guration obtained by an edge reation. There is a

realization of C

0

if there is a realization of C.

Theorem 1 follows from Theorem 4.
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Fig. 4. Edge reation.
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