3D realization of two triangulations of a convex polygon.
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Abstract

We study the problem of construction of a convex 3-polytope whose (i) shadow boundary has n vertices and (ii)
two hulls, upper and lower, are isomorphic to two given triangulations of a convex n-gon. Barnette [1] proved the
existence of a convex 3-polytope in general case. We show that, in our case, a polytope can be constructed using

an operation of edge creation.
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1. Introduction

Let P be a convex polygon in the zy-plane with
n vertices. Two triangulations of P are called dis-
tinct if the only edges they share are the edges of
P. Let 11 and T5 be two distinct triangulations of
P. At the First Canadian Conference on Compu-
tational Geometry Leo Guibas conjectured that it
is always possible to perturb the vertices of P ver-
tically out (i.e., by displacements parallel to the
z-axis) so that the polygon P becomes a spatial
polygon P’ such that the convex hull of P’ is a
convex polyhedron consisting ot two triangulated
cups glued along P’, and the triangulation of the
upper cup (i.e., those faces oriented toward +z) is
that specified as 77, and the triangulation of the
lower cup is that specified as T5 [4].

Boris Bekster [2] disproved Guibas’ conjecture
by showing a counterexample, a convex hexagon
with two triangulations. Marlin and Toussaint [3]
considered the computational problem of deciding
whether a triple (P, Ty, T3) admits a realization in
R3. They reduced the problem to a linear program-
ming problem with O(n?) inequality constraints
and n variables. The variables are z-coordinates of
lifted vertices of P and the constraints correpond
to vertex-face relations: the vertices must be be-
low/above the planes passing through faces of the
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upper/lower cup of P’. The number of constraints
can be dropped to 2n—6 = |T1 |+ |T2| by consider-
ing dihedral angles corresponding to diagonals of
the triangulations [7].

Guibas conjecture is related to Steinitz’s theo-
rem [5].
Steinitz’s Theorem: A graph G is isomorphic
to the edge graph of a convex 3-polytope if and
only if G 1s 3-connected and planar.
By Steinitz’s theorem the graph (P, 71 U T5) is the
edge graph of a convex 3-polytope [3]. According
to Barnette’s theorem [1], every 3-polytope with a
Hamiltonian circuit has realization such that the
Hamiltonian circuit is a shadow boundary. This
implies that Guibas’ conjecture 1s true up to a com-
binatorial deformation [2]. Formally this can be
stated as follows.
Theorem 1 For any two distinct triangulations
T, and Ty of a convexr polygon Ps in B? with n
vertices, there is a convex polytope Ps in R with n
vertices such that (1) the zy-shadow S of Ps contains
all its vertices, and (ii) there is a isomorphism T :
Py — S that maps the edges of Ty (resp. Ty) to the
edges of the upper hull of Ps (resp. the lower hull).

Barnette’s proof deals with general faces (not
just triangles) due to its generality. In this paper
we give a different proof of Theorem 1 that uses
only triangular faces of polytopes which can be
turned into a more robust algorithm for finding a
combinatorial realization of (P, Ty, T5) in R,

Realization questions have been studied in com-
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puter graphics and scene analysis as well. Sugihara
[6] established necessary and sufficient conditions
whether a line drawing in the plane can be realized
in R3 by lifting.

We call a triple (P, T1,T%) a configuration. We
call a map 7 satisfying the conditions of Theorem
1 a realization.

2. Edge contraction
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Fig. 1. (a) Edge contraction of a triangulation. (b) Edge
contraction of two triangulations. The diagonals of one tri-
angulation are solid and the diagonals of the other trian-
gulation are dashed.

As in Barnette’s proof we use the operation of
edge removal. The difference is that we will not
apply it for diagonals of P. This prevents the ap-
pearence of faces with more than three vertices.
The edge contraction in a configuration is defined
by idetifying the edge enpoints. If applied to one
triangulation of P, it produces a triangulation, see

Fig. 1 (a) for example where the edge pipa is con-
tracted. When applied for two triangulations, we
want the reduced triangulations to be distinct. An
edge e of a configuration (P, 71, T%) is contractible
if the new triangulations T} and T4 are distinct.
In general, not all edges are contractible. For ex-
ample, the edge p1ps in the Fig. 2 (a) is not con-
tractible since two edges p1ps and papg from differ-
ent triangulations coincide after the contraction of
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Fig. 2. (a) The edge (p1,p2) is not contractible. (b) The
edge contraction for n = 4.

Lemma 2 Let C be a configuration with n > 4
vertices. There 1s a contractible edge of C among
the edges of the convex polygon.

PROOF. If n = 4 then every edge of the convex
polygon is contractible, see Fig. 2 (b). We prove
the lemmafor n > 5. Suppose to the contrary that
there is a configuration (P,T1,73) such that all
edges of P are not contractible. Let p1,...,p, be
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the vertices of P in clockwise order. The edge p1ps
is not contractible. Then there is a vertex pg, 4 <
k < n—1such that pypy is an edge of one triangu-
lation, say 77, and papy 1s an edge of T5, see Fig. 3
(a).

Consider an edge p;pi+1,2 < ¢ < k — 1. Since
pipi+1 1s not contractible, there is a vertex pc)
such that p;p.(;) is a diagonal of T;,j = 1,2 and
Pit1Pe(sy is a diagonal of T3_;, see Fig. 3 (a). We
call p.(;y a witness since it indicates that p;p;11 is
not contractible. At least one vertex of {p;, p;i+1},
say pi, is different from p; and pg. Then the edge
Pipe(i) does not cross one of the edges p1pg or papy.
Therefore ¢(¢) is an index in the range 1,... k.
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Fig. 3. Lemma 2.

We call p.(;y a left witnessif (i) < i. We call p;)
a right witnessif ¢(¢) > ¢+ 1. Each witness is either
left or right since c(i) # 4,7 + 1. Note that p(s) is
a right witness and p.(x_1) is a left witness. Thus
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there is an index ¢,2 <4 < k — 2 such that p.(; is
the right index and p.(; 41 is the left index, see Fig.
3 (b). Then p;p. (i), a diagonal of a triangulation 7},
intersects both diagonals e; = (pig1, pei41)) and
€2 = (Pit2, Pe(i41))- Either e or ey is a diagonal of
T;. Contradiction.

3. Edge creation

We define an operation of edge creation as the
reverse operation of the edge contraction. The fol-
lowing lemma chracterizes the change of the con-
figuration when an edge is created. We denote the
sequence of indices from ¢ to j in clockwise order
by {i,i+1,...,5}.

Lemma 3 (Edge creation) Let C = (P,T1,T%)

be a configuration with n > 3 vertices where P =

{p1,...,pn}. Suppose that an edge ¢ = (q1,q2)

is created in place of a verter p; € P. Let ' =

(P!, T],T3) be the configuration obtained by replac-

ing a vertex p; by an edge e = (q1,q2) in clockwise

order. Then there are two edges (p;,p;) € Th and

(ps, p) € T such that

- an edge (pi,p;) € T, e i+ 1,i+2,...
replaced by the edge (p;, q1) € T1, and

- an edge (p1,pi) € i, € {4, j+1,...,i—1} is
replaced by the edge (p, q2) € T1, and

- an edge (pr,p;) €To,l € {i+1,i+2,...
replaced by the edge (p;, 1) € T4, and

- an edge (pr,p;) € To,l € {kk+1,...,i—1} s

replaced by the edge (pr, q2) € T.

We show that an edge can be always created.
Theorem 4 LetC = (P, T1,T5) be a configuration
with n > 3 vertices and let p : P — R3 be its re-
alization in R3. Let C' = (P',T],Ty) be the con-
figuration obtained by an edge creation. There is a
realization of C' if there is a realization of C.

Theorem 1 follows from Theorem 4.
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