SPECTRAL METHODS FOR BIVARIATE MARKOV PROCESSES

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla

Hong Kong, May 30, 2013

OUTLINE

- MARKOV PROCESSES
 - Preliminaries
 - Spectral methods
- DIVARIATE MARKOV PROCESSES
 - Preliminaries
 - Spectral methods
- 3 An example
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

OUTLINE

- MARKOV PROCESSES
 - Preliminaries
 - Spectral methods
- 2 Bivariate Markov processes
 - Preliminaries
 - Spectral methods
- 3 AN EXAMPLE
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

1-D Markov Processes

A *Markov process* with state space $\mathcal{S} \subset \mathbb{R}$ is a collection of random variables $\{X_t \in \mathcal{S} : t \in \mathcal{T}\}$ indexed by time \mathcal{T} (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

\mathcal{S} discrete (Markov Chains)

The transition probabilities come in terms of a matrix

$$P = \begin{pmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \quad P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i)$$

\mathcal{S} continuous (Markov processes

The probabilities are described in terms of a density

$$p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \le y | X_0 = x), \quad x, y \in S$$

1-D Markov Processes

A *Markov process* with state space $S \subset \mathbb{R}$ is a collection of random variables $\{X_t \in S : t \in \mathcal{T}\}$ indexed by time \mathcal{T} (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

\mathcal{S} discrete (Markov <u>Chains</u>)

The transition probabilities come in terms of a matrix

$$P = egin{pmatrix}
ho_{11} &
ho_{12} & \cdots \
ho_{21} &
ho_{22} & \cdots \ dots & dots & dots \end{pmatrix}, \quad P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i)$$

\mathcal{S} continuous (Markov processes

The probabilities are described in terms of a density

$$p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \le y | X_0 = x), \quad x, y \in S$$

1-D Markov processes

A *Markov process* with state space $S \subset \mathbb{R}$ is a collection of random variables $\{X_t \in S : t \in \mathcal{T}\}$ indexed by time \mathcal{T} (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

\mathcal{S} discrete (Markov <u>Chains</u>)

The transition probabilities come in terms of a matrix

$$P = egin{pmatrix}
ho_{11} &
ho_{12} & \cdots \
ho_{21} &
ho_{22} & \cdots \ dots & dots & dots \end{pmatrix}, \quad P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i)$$

S continuous (Markov Processes)

The probabilities are described in terms of a density

$$p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \le y | X_0 = x), \quad x, y \in \mathcal{S}$$

1 Random walks: $S = \{0, 1, 2, ...\}, T = \{0, 1, 2, ...\}.$

② Birth-and-death processes: $S = \{0, 1, 2, ...\}$, $T = [0, \infty)$. $P'(t) = AP(t) \vee P'(t) = P(t)A$ where

$$\mathcal{A} = \begin{pmatrix} -\lambda_0 & \lambda_0 \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\ & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0$$

① Diffusion processes: $S = (a, b) \subseteq \mathbb{R}$, $T = [0, \infty)$. $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}p(t; x, y)$ y $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}^* p(t; x, y)$ dondo

$$A = \frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}{dx} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}$$

1 Random walks: $S = \{0, 1, 2, ...\}, T = \{0, 1, 2, ...\}.$

2 Birth-and-death processes: $S = \{0, 1, 2, ...\}, T = [0, \infty)$. $P'(t) = AP(t) \ y \ P'(t) = P(t)A \ where$

$$\mathcal{A} = \begin{pmatrix} -\lambda_0 & \lambda_0 \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\ & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0$$

$$A = \frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{$$

THREE IMPORTANT CASES

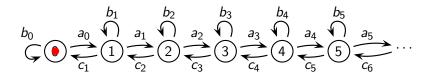
1 Random walks: $S = \{0, 1, 2, ...\}$, $T = \{0, 1, 2, ...\}$.

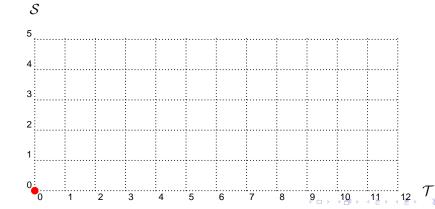
Birth-and-death processes: $S = \{0, 1, 2, ...\}$, $T = [0, \infty)$. $P'(t) = AP(t) \vee P'(t) = P(t)A$ where

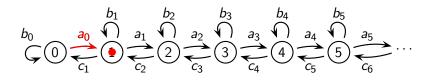
$$\mathcal{A} = \begin{pmatrix} -\lambda_0 & \lambda_0 & & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & & \\ & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0$$

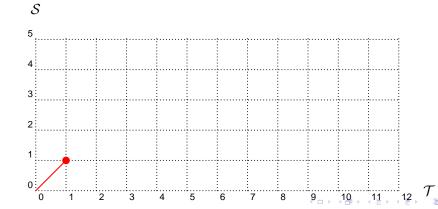
3 Diffusion processes: $S = (a, b) \subseteq \mathbb{R}$, $T = [0, \infty)$. $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}p(t; x, y)$ y $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}^* p(t; x, y)$ donde

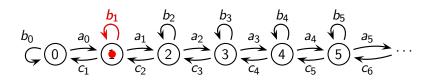
$$A = \frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} + \tau(x)\frac{d}{dx}$$

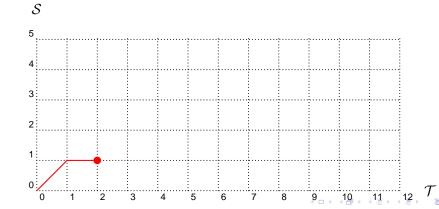


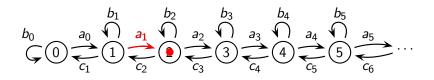


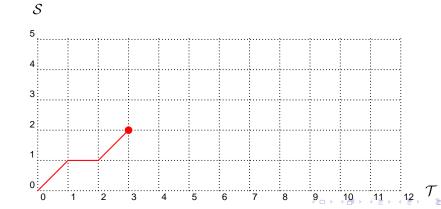


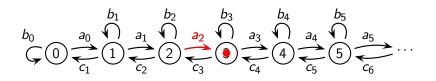


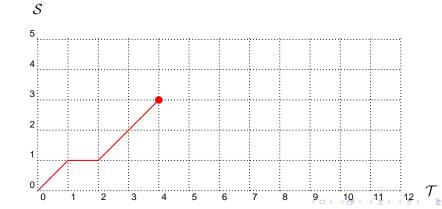


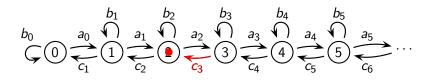


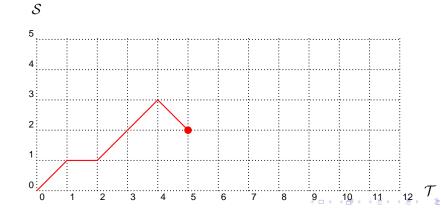


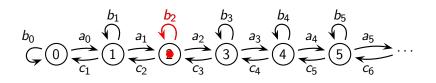


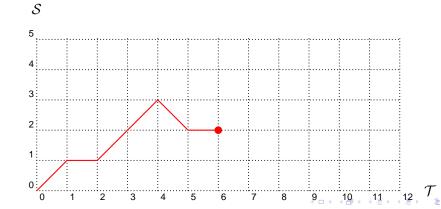


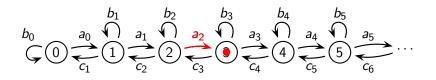


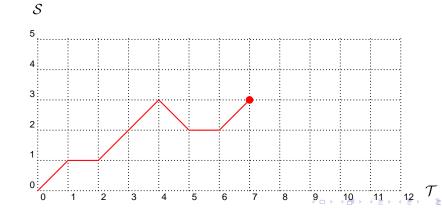


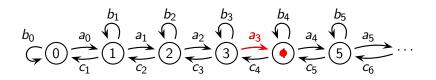




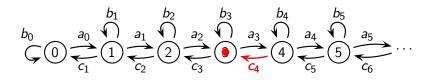


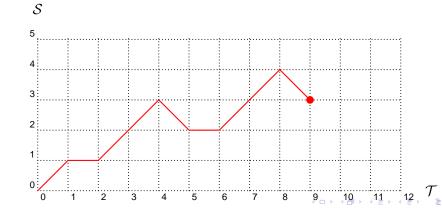


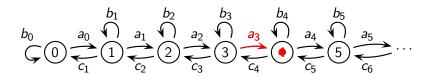




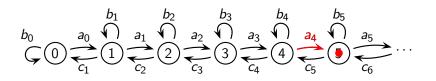


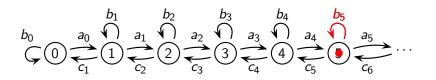


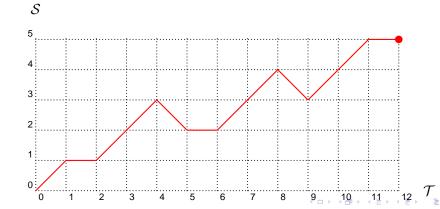


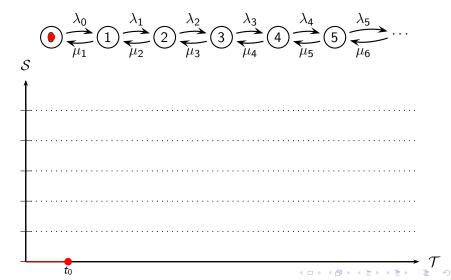


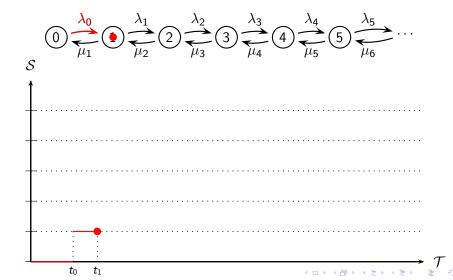


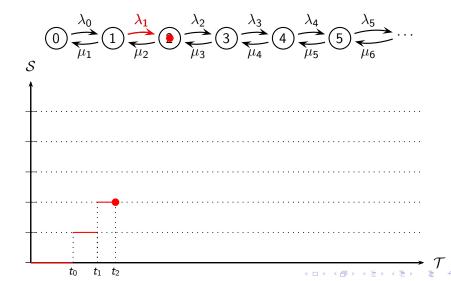


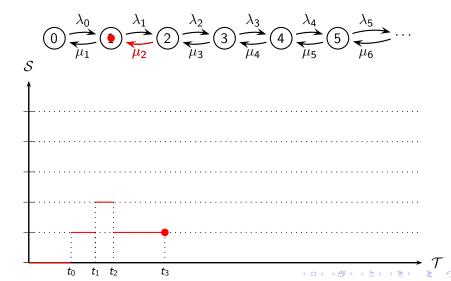


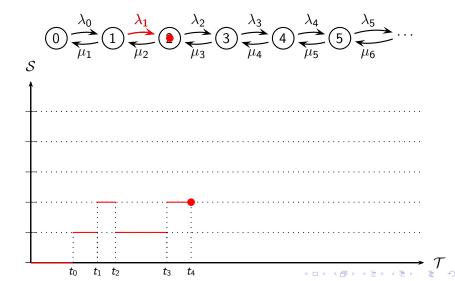


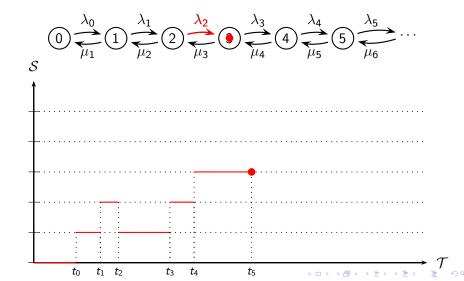


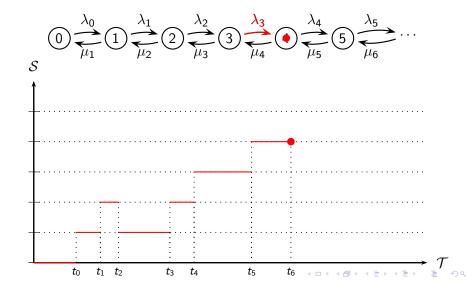


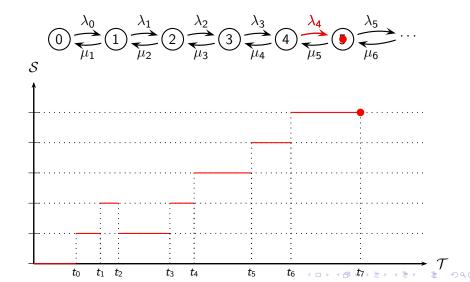


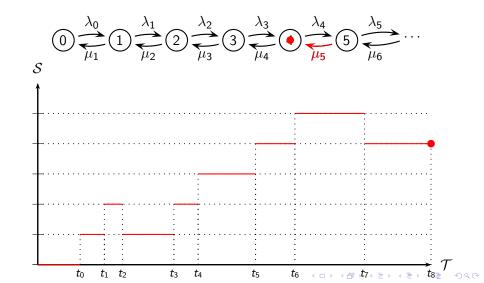






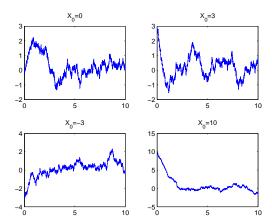






DIFFUSION PROCESSES

Ornstein-Uhlenbeck diffusion process: $S = \mathbb{R}$ and $\sigma^2(x) = 1$, $\tau(x) = -x$ It describes the velocity of a massive Brownian particle under the influence of friction. It is the only nontrivial process which is stationary, Gaussian and Markovian.



SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure $\omega(x)$ associated with A, and a set of orthogonal eigenfunctions f(i,x) such that

$$\mathcal{A}f(i,x) = \lambda(i,x)f(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities $P_{ij}(t)$ (discrete case) or densities p(t; x, y) (continuous case).
- Invariant measure or distribution $m{\pi} = (\pi_j)$ (discrete case) with

$$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$

or $\psi(y)$ (continuous case) with

$$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$

SPECTRAL METHODS

Given a infinitesimal operator \mathcal{A} , if we can find a measure $\omega(x)$ associated with \mathcal{A} , and a set of orthogonal eigenfunctions f(i,x) such that

$$\mathcal{A}f(i,x) = \lambda(i,x)f(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities $P_{ij}(t)$ (discrete case) or densities p(t; x, y) (continuous case).
- Invariant measure or distribution $oldsymbol{\pi} = (\pi_j)$ (discrete case) with

$$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$

or $\psi(y)$ (continuous case) with

$$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$

SPECTRAL METHODS

Given a infinitesimal operator \mathcal{A} , if we can find a measure $\omega(x)$ associated with \mathcal{A} , and a set of orthogonal eigenfunctions f(i,x) such that

$$\mathcal{A}f(i,x) = \lambda(i,x)f(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities $P_{ij}(t)$ (discrete case) or densities p(t; x, y) (continuous case).
- ullet Invariant measure or distribution $oldsymbol{\pi}=(\pi_j)$ (discrete case) with

$$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$

or $\psi(y)$ (continuous case) with

$$\psi(y) = \lim_{t \to \infty} p(t; x, y).$$

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure ω associated with P which orthogonal polynomials $(q_n)_n$ satisfy

$$Pq = egin{pmatrix} b_0 & a_0 & & & \ c_1 & b_1 & a_1 & & \ & \ddots & \ddots & \ddots \end{pmatrix} egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix} = x egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix}, \quad x \in [-1,1]$$

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

$$\pi P = \pi$$
 $\Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|a_i\|}$

RANDOM WALKS

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure ω associated with P which orthogonal polynomials $(q_n)_n$ satisfy

$$extit{Pq} = egin{pmatrix} b_0 & a_0 & & & \ c_1 & b_1 & a_1 & & \ & \ddots & \ddots & \ddots \end{pmatrix} egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix} = x egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix}, \quad x \in [-1,1]$$

Transition probabilities

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$ such that

$$\pi P = \pi \quad \Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|g_i\|^2}$$

RANDOM WALKS

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure ω associated with P which orthogonal polynomials $(q_n)_n$ satisfy

$$Pq=egin{pmatrix} b_0&a_0&&&&\ c_1&b_1&a_1&&&\ &\ddots&\ddots&\ddots&\ddots \end{pmatrix} egin{pmatrix} q_0(x)\ q_1(x)\ dots \end{pmatrix}=xegin{pmatrix} q_0(x)\ q_1(x)\ dots \end{pmatrix},\quad x\in[-1,1]$$

Transition probabilities

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$ such that

$$\pi P = \pi$$
 $\Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|^2}$

RANDOM WALKS

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure ω associated with P which orthogonal polynomials $(q_n)_n$ satisfy

$$Pq = egin{pmatrix} b_0 & a_0 & & & \ c_1 & b_1 & a_1 & & \ & \ddots & \ddots & \ddots \end{pmatrix} egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix} = x egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix}, \quad x \in [-1,1]$$

Transition probabilities

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$ such that

$$\pi P = \pi$$
 $\Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|^2}$

Examples: Jacobi polynomials (Legendre, Gegenbauer)

$$S = \{0, 1, 2, \ldots\}, \ \mathcal{T} = [0, \infty).$$

Spectral theorem: there exists a measure ω associated with \mathcal{A} which orthogonal polynomials $(q_n)_n$ satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) > 0$ such tha

$$\pi A = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|a_i\|}$$

Examples: Laguerre, Hahn, Krawtchouk, Charlier, polynomials, , , , , ,

$$S = \{0, 1, 2, \ldots\}, \ \mathcal{T} = [0, \infty).$$

Spectral theorem: there exists a measure ω associated with $\mathcal A$ which orthogonal polynomials $(q_n)_n$ satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

$$\pi \mathcal{A} = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|g_i\|^2}$$

$$S = \{0, 1, 2, \ldots\}, T = [0, \infty).$$

Spectral theorem: there exists a measure ω associated with \mathcal{A} which orthogonal polynomials $(q_n)_n$ satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$ such that

$$\pi \mathcal{A} = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|^2}$$

$$S = \{0, 1, 2, \ldots\}, T = [0, \infty).$$

Spectral theorem: there exists a measure ω associated with \mathcal{A} which orthogonal polynomials $(q_n)_n$ satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

Invariant measure

Non-null vector $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$ such that

$$\pi \mathcal{A} = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|^2}$$

Examples: Laguerre, Hahn, Krawtchouk, Charlier polynomials

$$S = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure ω symmetric with respect to \mathcal{A} and the corresponding family of orthogonal functions $(\phi_n)_n$ satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

$$\psi(y)$$
 tal que $\mathcal{A}^*\psi(y) = 0 \Rightarrow \psi(y) = \frac{1}{\int_{\mathcal{S}} \omega(x) dx} \omega(y)$

$$\mathcal{S} = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure ω symmetric with respect to \mathcal{A} and the corresponding family of orthogonal functions $(\phi_n)_n$ satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

Transition probability density

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

Invariant measure

$$\psi(y)$$
 tal que $\mathcal{A}^*\psi(y)=0 \Rightarrow \psi(y)=rac{1}{\int_S \omega(x) dx}\omega(y)$

$$\mathcal{S} = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure ω symmetric with respect to \mathcal{A} and the corresponding family of orthogonal functions $(\phi_n)_n$ satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

Transition probability density

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

Invariant measure

$$\psi(y)$$
 tal que $\mathcal{A}^*\psi(y)=0\Rightarrow \psi(y)=rac{1}{\int_S\omega(x)dx}\omega(y)$

$$S = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure ω symmetric with respect to \mathcal{A} and the corresponding family of orthogonal functions $(\phi_n)_n$ satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

Transition probability density

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

Invariant measure

$$\psi(y)$$
 tal que $\mathcal{A}^*\psi(y)=0 \Rightarrow \psi(y)=rac{1}{\int_S \omega(x) dx}\omega(y)$

OUTLINE

- MARKOV PROCESSES
 - Preliminaries
 - Spectral methods
- 2 Bivariate Markov processes
 - Preliminaries
 - Spectral methods
- 3 AN EXAMPLE
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

Now we have a bivariate or 2-component Markov process of the form $\{(X_t,Y_t):t\in\mathcal{T}\}$ indexed by a parameter set \mathcal{T} (time) and with state space $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$, where $\mathcal{S}\subset\mathbb{R}$. The first component is the level while the second component is the phase.

Now the transition probabilities can be written in terms of a matrix-valued function $\mathbf{P}(t;x,A)$, defined for every $t\in\mathcal{T},x\in\mathcal{S}$, and any Borel set A of \mathcal{S} , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator ${\cal A}$ is now matrix-valued

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's

Now we have a bivariate or 2-component Markov process of the form $\{(X_t,Y_t):t\in\mathcal{T}\}$ indexed by a parameter set \mathcal{T} (time) and with state space $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$, where $\mathcal{S}\subset\mathbb{R}$. The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function $\mathbf{P}(t;x,A)$, defined for every $t\in\mathcal{T},x\in\mathcal{S}$, and any Borel set A of \mathcal{S} , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator ${\cal A}$ is now matrix-valued

Ideas behind: random evolutions (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's

Now we have a bivariate or 2-component Markov process of the form $\{(X_t,Y_t):t\in\mathcal{T}\}$ indexed by a parameter set \mathcal{T} (time) and with state space $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$, where $\mathcal{S}\subset\mathbb{R}$. The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function $\mathbf{P}(t;x,A)$, defined for every $t\in\mathcal{T},x\in\mathcal{S}$, and any Borel set A of \mathcal{S} , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator ${\mathcal A}$ is now ${\sf matrix\text{-}valued}.$

Ideas behind: random evolutions

Now we have a bivariate or 2-component Markov process of the form $\{(X_t,Y_t):t\in\mathcal{T}\}$ indexed by a parameter set \mathcal{T} (time) and with state space $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$, where $\mathcal{S}\subset\mathbb{R}$. The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function $\mathbf{P}(t;x,A)$, defined for every $t\in\mathcal{T},x\in\mathcal{S}$, and any Borel set A of \mathcal{S} , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's)

Now we have a bivariate or 2-component Markov process of the form $\{(X_t,Y_t):t\in\mathcal{T}\}$ indexed by a parameter set \mathcal{T} (time) and with state space $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$, where $\mathcal{S}\subset\mathbb{R}$. The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function $\mathbf{P}(t;x,A)$, defined for every $t\in\mathcal{T},x\in\mathcal{S}$, and any Borel set A of \mathcal{S} , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).

DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

Now we have
$$\mathcal{C} = \{0,1,2,\ldots\} \times \{1,2,\ldots,N\}$$
, $\mathcal{T} = \{0,1,2,\ldots\}$ and
$$(\mathbf{P}_{ii'})_{jj'} = \Pr(X_{n+1} = i,Y_{n+1} = j|X_n = i',Y_n = j') = 0 \quad \text{for} \quad |i-i'| > 1$$

i.e. a $N \times N$ block tridiagonal transition probability matrix

Similar for continuous time quasi-birth-and-death processes but now we have $\mathcal{C}=\{0,1,2,\ldots\}\times\{1,2,\ldots,N\},\ \mathcal{T}=[0,+\infty)$ and the transition probability matrix \mathcal{A} satisfies

$$(A_n)_{ij}, (B_n)_{ij}, i \neq j, (C_n)_{ij} \geq 0, (B_n)_{ii} \leq 0$$

 $\sum_i (A_n)_{ij} + (B_n)_{ij} + (C_n)_{ij} = 0, i = 1, \dots, I$

DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

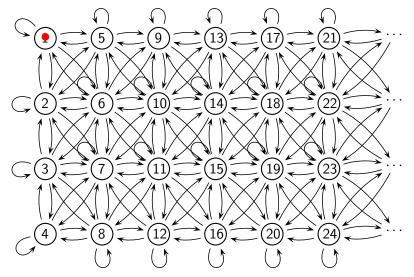
Now we have
$$\mathcal{C} = \{0,1,2,\ldots\} \times \{1,2,\ldots,N\}, \ \mathcal{T} = \{0,1,2,\ldots\}$$
 and
$$(\mathbf{P}_{ii'})_{jj'} = \Pr(X_{n+1}=i,Y_{n+1}=j|X_n=i',Y_n=j') = 0 \quad \text{for} \quad |i-i'|>1$$

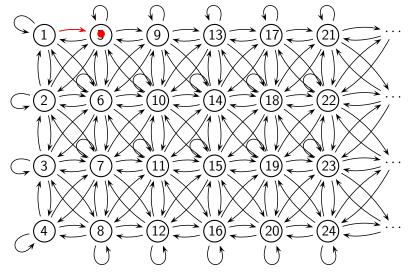
i.e. a $N \times N$ block tridiagonal transition probability matrix

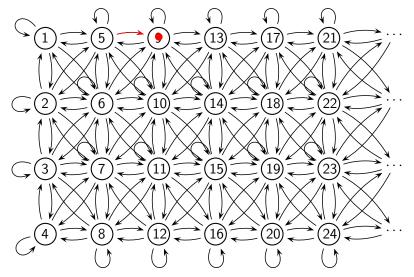
Similar for continuous time quasi-birth-and-death processes but now we have $\mathcal{C}=\{0,1,2,\ldots\} \times \{1,2,\ldots,N\}, \ \mathcal{T}=[0,+\infty)$ and the transition probability matrix \mathcal{A} satisfies

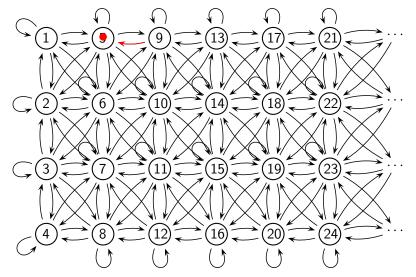
$$(A_n)_{ij}, (B_n)_{ij}, i \neq j, (C_n)_{ij} \geq 0, (B_n)_{ii} \leq 0$$

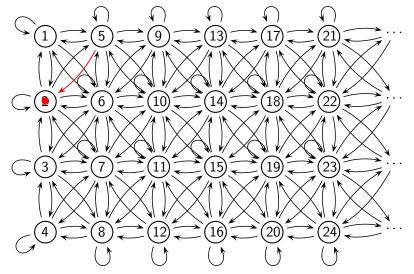
 $\sum_j (A_n)_{ij} + (B_n)_{ij} + (C_n)_{ij} = 0, i = 1, ..., N$

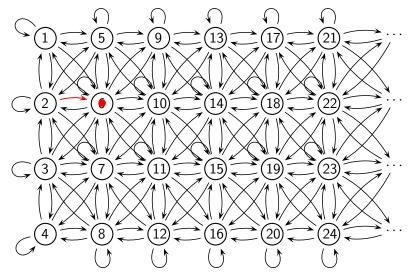


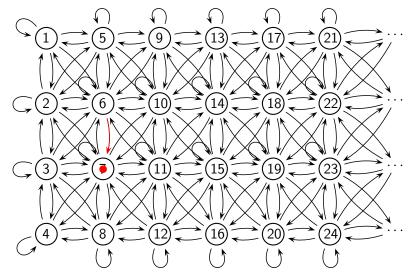


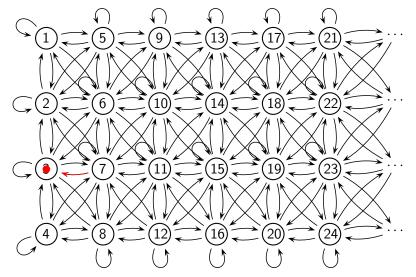


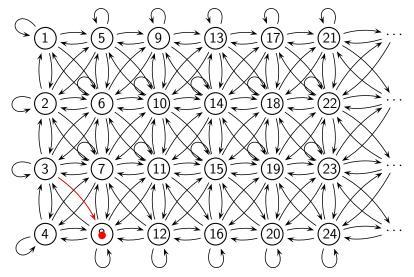


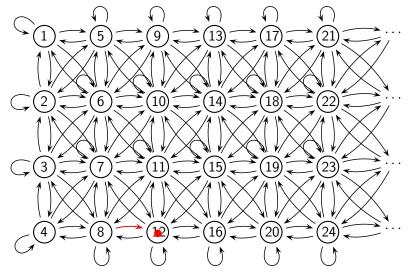












SWITCHING DIFFUSION PROCESSES

We have $C = (a, b) \times \{1, 2, ..., N\}$, $T = [0, \infty)$. The transition probability density is now a matrix which entry (i, j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr(X_t \in A, Y_t = j | X_0 = x, Y_0 = i)$$

for any t > 0, $x \in (a, b)$ and A any Borel set.

The infinitesimal operator ${\mathcal A}$ is now a matrix-valued differential operator (Berman, 1994)

$$A = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d^1}{dx^1} + \mathbf{Q}(x)\frac{d^0}{dx^0}$$

We have that $\mathbf{A}(x)$ and $\mathbf{B}(x)$ are diagonal matrices and $\mathbf{Q}(x)$ is the infinitesimal operator of a continuous time Markov chain, i.e.

$$\mathbf{Q}_{ii}(x) \leq 0$$
, $\mathbf{Q}_{ij}(x) \geq 0$, $i \neq j$, $\mathbf{Q}(x)\mathbf{e}_N = \mathbf{0}$

SWITCHING DIFFUSION PROCESSES

We have $C = (a, b) \times \{1, 2, ..., N\}$, $T = [0, \infty)$. The transition probability density is now a matrix which entry (i, j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr(X_t \in A, Y_t = j | X_0 = x, Y_0 = i)$$

for any t > 0, $x \in (a, b)$ and A any Borel set.

The infinitesimal operator ${\cal A}$ is now a matrix-valued differential operator (Berman, 1994)

$$\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d^1}{dx^1} + \mathbf{Q}(x)\frac{d^0}{dx^0}$$

We have that $\mathbf{A}(x)$ and $\mathbf{B}(x)$ are diagonal matrices and $\mathbf{Q}(x)$ is the infinitesimal operator of a continuous time Markov chain, i.e

$$\mathbf{Q}_{ii}(x) \leq 0$$
, $\mathbf{Q}_{ij}(x) \geq 0$, $i \neq j$, $\mathbf{Q}(x)\mathbf{e}_N = \mathbf{0}$

SWITCHING DIFFUSION PROCESSES

We have $C = (a, b) \times \{1, 2, ..., N\}$, $T = [0, \infty)$. The transition probability density is now a matrix which entry (i, j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr(X_t \in A, Y_t = j | X_0 = x, Y_0 = i)$$

for any t > 0, $x \in (a, b)$ and A any Borel set.

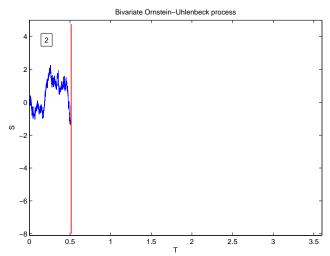
The infinitesimal operator ${\cal A}$ is now a matrix-valued differential operator (Berman, 1994)

$$\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d^1}{dx^1} + \mathbf{Q}(x)\frac{d^0}{dx^0}$$

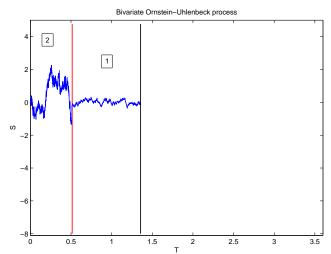
We have that $\mathbf{A}(x)$ and $\mathbf{B}(x)$ are diagonal matrices and $\mathbf{Q}(x)$ is the infinitesimal operator of a continuous time Markov chain, i.e.

$$\mathbf{Q}_{ii}(x) \leq 0$$
, $\mathbf{Q}_{ij}(x) \geq 0$, $i \neq j$, $\mathbf{Q}(x)\mathbf{e}_N = \mathbf{0}$

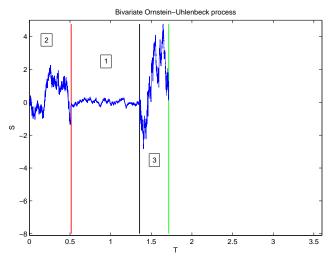
$$\mathbf{A}_{ii}(x) = i^2$$
, $\mathbf{B}_{ii}(x) = -ix$, $i = 1, 2, 3$.



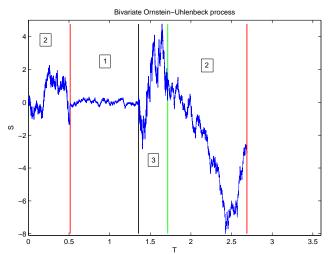
$$\mathbf{A}_{ii}(x) = i^2$$
, $\mathbf{B}_{ii}(x) = -ix$, $i = 1, 2, 3$.



$$\mathbf{A}_{ii}(x) = i^2$$
, $\mathbf{B}_{ii}(x) = -ix$, $i = 1, 2, 3$.



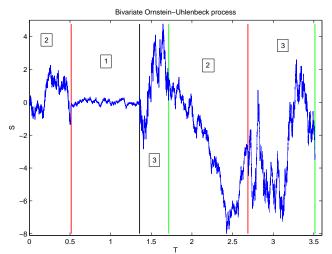
$$\mathbf{A}_{ii}(x) = i^2$$
, $\mathbf{B}_{ii}(x) = -ix$, $i = 1, 2, 3$.



AN ILLUSTRATIVE EXAMPLE

$$N=3$$
 phases and $\mathcal{S}=\mathbb{R}$ with

$$\mathbf{A}_{ii}(x) = i^2$$
, $\mathbf{B}_{ii}(x) = -ix$, $i = 1, 2, 3$.



SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator \mathcal{A} , if we can find a weight matrix $\mathbf{W}(x)$ associated with \mathcal{A} , and a set of orthogonal matrix eigenfunctions $\mathbf{F}(i,x)$ such that

$$AF(i,x) = \Lambda(i,x)F(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities P(t; x, y).
- Invariant measure or distribution $\pi = (\pi_j)$ (discrete case) with

$$\pi_j = \lim_{t \to \infty} \mathbf{P}_{\cdot j}(t) \in \mathbb{R}^N$$

or
$$\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))$$
 (continuous case) with $\psi_j(y)=\lim_{t\to\infty}\mathbf{P}_{\cdot j}(t;x,y)$

SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator \mathcal{A} , if we can find a weight matrix $\mathbf{W}(x)$ associated with \mathcal{A} , and a set of orthogonal matrix eigenfunctions $\mathbf{F}(i,x)$ such that

$$AF(i,x) = \Lambda(i,x)F(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities P(t; x, y).
- Invariant measure or distribution $\pi = (\pi_j)$ (discrete case) with

$$\pi_j = \lim_{t \to \infty} \mathbf{P}_{\cdot j}(t) \in \mathbb{R}^N$$

or
$$\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))$$
 (continuous case) with
$$\psi_j(y)=\lim_{t\to\infty}\mathbf{P}_{\cdot j}(t;x,y)$$

SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator \mathcal{A} , if we can find a weight matrix $\mathbf{W}(x)$ associated with \mathcal{A} , and a set of orthogonal matrix eigenfunctions $\mathbf{F}(i,x)$ such that

$$AF(i,x) = \Lambda(i,x)F(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities P(t; x, y).
- Invariant measure or distribution $\pi = (\pi_j)$ (discrete case) with

$$oldsymbol{\pi}_j = \lim_{t o \infty} \mathbf{P}_{\cdot j}(t) \in \mathbb{R}^N$$

or
$$\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))$$
 (continuous case) with
$$\psi_j(y)=\lim_{t\to\infty}\mathbf{P}_{\cdot j}(t;x,y)$$

DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

$$C = \{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, T = \{0, 1, 2, \ldots\}$$

(Grünbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix \mathbf{W} associate with \mathbf{P} which matrix-valued orthogonal polynomials $(\Phi_n)_n$ satisfy

$$\mathbf{P}\mathbf{\Phi} = \begin{pmatrix} B_0 & A_0 & & \\ C_1 & B_1 & A_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]$$

Γ ransition probabilities

$$\mathbf{P}_{ij}^{n} = \left(\int_{-1}^{1} x^{n} \mathbf{\Phi}_{i}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right) \left(\int_{-1}^{1} \mathbf{\Phi}_{j}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right)^{-1}$$

Invariant measure (MdI. 2011)

 $m{\pi}=ig(\pi_0;\pi_1;\cdotsig)\equivig(\Pi_0\mathbf{e}_N;\Pi_1\mathbf{e}_N;\cdotsig)$ tal que $m{\pi}\mathbf{P}=m{\pi}$ where $\mathbf{e}_N=(1,\ldots,1)^T$ and

$$\Pi_{n} = (C_{1}^{T} \cdots C_{n}^{T})^{-1} \Pi_{0}(A_{0} \cdots A_{n-1}) = \left(\int_{-1}^{1} \Phi_{n}(x) dW(x) \Phi_{n}^{*}(x)\right)^{-1}$$

DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

$$C = \{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, T = \{0, 1, 2, \ldots\}$$

(Grünbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix \mathbf{W} associate with \mathbf{P} which matrix-valued orthogonal polynomials $(\Phi_n)_n$ satisfy

$$\mathbf{P}\mathbf{\Phi} = \begin{pmatrix} B_0 & A_0 & & \\ C_1 & B_1 & A_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]$$

Transition probabilities

$$\mathbf{P}_{ij}^{n} = \left(\int_{-1}^{1} x^{n} \mathbf{\Phi}_{i}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right) \left(\int_{-1}^{1} \mathbf{\Phi}_{j}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right)^{-1}$$

Invariant measure (Mdl. 2011)

$$m{\pi} = (m{\pi}_0; m{\pi}_1; \cdots) \equiv (\Pi_0 \mathbf{e}_N; \Pi_1 \mathbf{e}_N; \cdots)$$
 tal que $m{\pi} \mathbf{P} = m{\pi}$ where $\mathbf{e}_N = (1, \dots, 1)^T$ and

$$\Pi_{n} = (C_{1}^{T} \cdots C_{n}^{T})^{-1} \Pi_{0}(A_{0} \cdots A_{n-1}) = \left(\int_{-1}^{1} \Phi_{n}(x) d\mathbf{W}(x) \Phi_{n}^{*}(x) \right)^{-1}$$

DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

$$C = \{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, T = \{0, 1, 2, \ldots\}$$

(Grünbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix \mathbf{W} associate with \mathbf{P} which matrix-valued orthogonal polynomials $(\Phi_n)_n$ satisfy

$$\mathbf{P}\mathbf{\Phi} = \begin{pmatrix} B_0 & A_0 & & \\ C_1 & B_1 & A_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]$$

Transition probabilities

$$\mathbf{P}_{ij}^{n} = \left(\int_{-1}^{1} x^{n} \mathbf{\Phi}_{i}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right) \left(\int_{-1}^{1} \mathbf{\Phi}_{j}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right)^{-1}$$

Invariant measure (MdI, 2011)

$$m{\pi} = (m{\pi}_0; m{\pi}_1; \cdots) \equiv (\Pi_0 \mathbf{e}_N; \Pi_1 \mathbf{e}_N; \cdots)$$
 tal que $m{\pi} \mathbf{P} = m{\pi}$ where $\mathbf{e}_N = (1, \dots, 1)^T$ and

$$\Pi_n = (C_1^T \cdots C_n^T)^{-1} \Pi_0 (A_0 \cdots A_{n-1}) = \left(\int_{-1}^1 \Phi_n(x) d\mathbf{W}(x) \Phi_n^*(x) \right)^{-1}$$

SWITCHING DIFFUSION MODELS

$$\mathcal{C} = (a,b) \times \{1,2,\ldots,N\}, \ \mathcal{T} = [0,\infty)$$

If there exists a weight matrix \mathbf{W} symmetric w.r.t. \mathcal{A} which matrix-valued orthogonal functions $(\Phi_n)_n$ satisfies

$$\mathcal{A}\Phi_n(x) = \frac{1}{2}\mathbf{A}(x)\Phi_n''(x) + \mathbf{B}(x)\Phi_n'(x) + \mathbf{Q}(x)\Phi_n(x) = \Phi_n(x)\Gamma_n$$

Transition probability density matrix (MdI, 2012)

$$\mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \mathbf{\Phi}_n(x) e^{\mathbf{\Gamma}_n t} \mathbf{\Phi}_n^*(y) \mathbf{W}(y)$$

Invariant distribution (MdI, 2012)

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$
 such that $\mathcal{A}^*\psi(y) = \mathbf{0}$

$$\Rightarrow \psi(y) = \left(\int_{a}^{b} \mathbf{e}_{N}^{T} \mathbf{W}(x) \mathbf{e}_{N} dx\right)^{-1} \mathbf{e}_{N}^{T} \mathbf{W}(y)$$

SWITCHING DIFFUSION MODELS

$$\mathcal{C} = (a, b) \times \{1, 2, \dots, N\}, \ \mathcal{T} = [0, \infty)$$

If there exists a weight matrix **W** symmetric w.r.t. \mathcal{A} which matrix-valued orthogonal functions $(\Phi_n)_n$ satisfies

$$\mathcal{A}\Phi_n(x) = \frac{1}{2}\mathbf{A}(x)\Phi_n''(x) + \mathbf{B}(x)\Phi_n'(x) + \mathbf{Q}(x)\Phi_n(x) = \Phi_n(x)\Gamma_n$$

Transition probability density matrix (MdI, 2012)

$$\mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \mathbf{\Phi}_n(x) e^{\mathbf{\Gamma}_n t} \mathbf{\Phi}_n^*(y) \mathbf{W}(y)$$

Invariant distribution (MdI, 2012)

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$
 such that $\mathcal{A}^*\psi(y) = \mathbf{0}$

$$\Rightarrow \psi(y) = \left(\int_{a}^{b} \mathbf{e}_{N}^{T} \mathbf{W}(x) \mathbf{e}_{N} dx\right)^{-1} \mathbf{e}_{N}^{T} \mathbf{W}(y)$$

SWITCHING DIFFUSION MODELS

$$C = (a, b) \times \{1, 2, \dots, N\}, \ T = [0, \infty)$$

If there exists a weight matrix \mathbf{W} symmetric w.r.t. \mathcal{A} which matrix-valued orthogonal functions $(\Phi_n)_n$ satisfies

$$\mathcal{A}\Phi_n(x) = \frac{1}{2}\mathbf{A}(x)\Phi_n''(x) + \mathbf{B}(x)\Phi_n'(x) + \mathbf{Q}(x)\Phi_n(x) = \Phi_n(x)\Gamma_n$$

Transition probability density matrix (MdI, 2012)

$$\mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \mathbf{\Phi}_n(x) e^{\mathbf{\Gamma}_n t} \mathbf{\Phi}_n^*(y) \mathbf{W}(y)$$

Invariant distribution (MdI, 2012)

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$
 such that $\mathcal{A}^*\psi(y) = \mathbf{0}$

$$\Rightarrow \psi(y) = \left(\int_{0}^{b} \mathbf{e}_{N}^{T} \mathbf{W}(x) \mathbf{e}_{N} dx\right)^{-1} \mathbf{e}_{N}^{T} \mathbf{W}(y)$$

OUTLINE

- MARKOV PROCESSES
 - Preliminaries
 - Spectral methods
- 2 Bivariate Markov processes
 - Preliminaries
 - Spectral methods
- 3 AN EXAMPLE
 - A quasi-birth-and-death process
 - A variant of the Wright-Fisher model

An example coming from group representation

Let $N \in \{1, 2, ...\}$, $\alpha, \beta > -1$, $0 < k < \beta + 1$ and \mathbf{E}_{ii} will denote the matrix with 1 at entry (i, j) and 0 otherwise.

For $x \in (0,1)$, we have a symmetric pair $\{\mathbf{W}, \mathcal{A}\}$ (Grünbaum-Pacharoni-Tirao, 2002) where

$$\mathbf{W}(x) = x^{\alpha} (1 - x)^{\beta} \sum_{i=1}^{N} {\beta - k + i - 1 \choose i - 1} {N + k - i - 1 \choose N - i} x^{N - i} \mathbf{E}_{ii}$$
$$\mathcal{A} = \frac{1}{2} \mathbf{A}(x) \frac{d^2}{dx^2} + \mathbf{B}(x) \frac{d}{dx} + \mathbf{Q}(x) \frac{d^0}{dx^0}$$

$$\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]\mathbf{E}_{ii}$$

$$\mathbf{Q}(x) = \sum_{i=2}^{N} \mu_i(x) \mathbf{E}_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) \mathbf{E}_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) \mathbf{E}_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x}(i-1)(N-i+k).$$

AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let $N \in \{1, 2, ...\}$, $\alpha, \beta > -1$, $0 < k < \beta + 1$ and \mathbf{E}_{ij} will denote the matrix with 1 at entry (i, j) and 0 otherwise.

For $x \in (0,1)$, we have a symmetric pair $\{\mathbf{W}, \mathcal{A}\}$ (Grünbaum-Pacharoni-Tirao, 2002) where

$$\mathbf{W}(x) = x^{\alpha} (1 - x)^{\beta} \sum_{i=1}^{N} {\beta - k + i - 1 \choose i - 1} {N + k - i - 1 \choose N - i} x^{N - i} \mathbf{E}_{ii}$$
$$\mathcal{A} = \frac{1}{2} \mathbf{A}(x) \frac{d^2}{dx^2} + \mathbf{B}(x) \frac{d}{dx} + \mathbf{Q}(x) \frac{d^0}{dx^0}$$

$$\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]\mathbf{E}_{ii}$$

$$\mathbf{Q}(x) = \sum_{i=2}^{N} \mu_i(x) \mathbf{E}_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) \mathbf{E}_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) \mathbf{E}_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x}(i-1)(N-i+k).$$

An example coming from group representation

Let $N \in \{1, 2, \ldots\}$, $\alpha, \beta > -1$, $0 < k < \beta + 1$ and \mathbf{E}_{ij} will denote the matrix with 1 at entry (i, j) and 0 otherwise.

For $x \in (0,1)$, we have a symmetric pair $\{\mathbf{W}, \mathcal{A}\}$ (Grünbaum-Pacharoni-Tirao, 2002) where

$$\mathbf{W}(x) = x^{\alpha} (1 - x)^{\beta} \sum_{i=1}^{N} {\beta - k + i - 1 \choose i - 1} {N + k - i - 1 \choose N - i} x^{N - i} \mathbf{E}_{ii}$$
$$\mathcal{A} = \frac{1}{2} \mathbf{A}(x) \frac{d^2}{dx^2} + \mathbf{B}(x) \frac{d}{dx} + \mathbf{Q}(x) \frac{d^0}{dx^0}$$

$$\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]\mathbf{E}_{ii}$$

$$\mathbf{Q}(x) = \sum_{i=2}^{N} \mu_i(x) \mathbf{E}_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) \mathbf{E}_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) \mathbf{E}_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x}(i-1)(N-i+k).$$

- The orthogonal eigenfunctions Φ_i(x) of A are called matrix-valued spherical functions associated with the complex projective space. There are many structural formulas available studied in the last years (Grünbaum-Pacharoni-Tirao-Román-MdI).
- ullet Bispectrality: $\Phi_i(x)$ satisfy a three-term recurrence relation

$$x\Phi_{i}(x) = A_{i}\Phi_{i+1}(x) + B_{i}\Phi_{i}(x) + C_{i}\Phi_{i-1}(x), \quad i = 0, 1, ...$$

whose Jacobi matrix describes a discrete-time quasi-birth-and-death process (Grünbaum-Mdl, 2008). It was recently connected with urn and Young diagram models (Grünbaum-Pacharoni-Tirao, 2011).

• The infinitesimal operator \mathcal{A} describes a nontrivial switching diffusion process from which we can give a description of the matrix-valued probability density $\mathbf{P}(t;x,y)$ and invariant distribution $\psi(y)$ in terms of the eigenfunctions $\Phi_i(x)$, among other properties (Mdl. 2012).

- The orthogonal eigenfunctions Φ_i(x) of A are called matrix-valued spherical functions associated with the complex projective space. There are many structural formulas available studied in the last years (Grünbaum-Pacharoni-Tirao-Román-MdI).
- ullet Bispectrality: $\Phi_i(x)$ satisfy a three-term recurrence relation

$$x\Phi_{i}(x) = A_{i}\Phi_{i+1}(x) + B_{i}\Phi_{i}(x) + C_{i}\Phi_{i-1}(x), \quad i = 0, 1, ...$$

- whose Jacobi matrix describes a discrete-time quasi-birth-and-death process (Grünbaum-MdI, 2008). It was recently connected with urn and Young diagram models (Grünbaum-Pacharoni-Tirao, 2011).
- The infinitesimal operator \mathcal{A} describes a nontrivial switching diffusion process from which we can give a description of the matrix-valued probability density $\mathbf{P}(t;x,y)$ and invariant distribution $\psi(y)$ in terms of the eigenfunctions $\Phi_i(x)$, among other properties (Mdl. 2012).

- The orthogonal eigenfunctions Φ_i(x) of A are called matrix-valued spherical functions associated with the complex projective space. There are many structural formulas available studied in the last years (Grünbaum-Pacharoni-Tirao-Román-MdI).
- ullet Bispectrality: $\Phi_i(x)$ satisfy a three-term recurrence relation

$$x\Phi_i(x) = A_i\Phi_{i+1}(x) + B_i\Phi_i(x) + C_i\Phi_{i-1}(x), \quad i = 0, 1, \dots$$

whose Jacobi matrix describes a discrete-time quasi-birth-and-death process (Grünbaum-MdI, 2008). It was recently connected with urn and Young diagram models (Grünbaum-Pacharoni-Tirao, 2011).

• The infinitesimal operator \mathcal{A} describes a nontrivial switching diffusion process from which we can give a description of the matrix-valued probability density $\mathbf{P}(t;x,y)$ and invariant distribution $\psi(y)$ in terms of the eigenfunctions $\Phi_i(x)$, among other properties (MdI, 2012).

A QUASI-BIRTH-AND-DEATH PROCESS (N = 2)

Conjugation

$$\widetilde{\mathbf{W}}(x) = \mathbf{T}^*(x)\mathbf{W}(x)\mathbf{T}(x)$$

where

$$\mathbf{T}(x) = \begin{pmatrix} 1 - x & 1 - x \\ 1 - x & -x - \frac{\alpha + 1}{\beta - k + 1} \end{pmatrix}$$

Grünbaum-MdI (2008) and consider a family of matrix-valued orthogonal polynomials $(\mathbf{Q}_n(x))_n$ with respect to $\widetilde{\mathbf{W}}(x)$. This transformation allows us to have a second-order differential operator of *Sturm-Liouville* type

We choose the family of OMP $(\mathbf{Q}_n(x))_n$ such that

Three term recurrence relation

$$x\mathbf{Q}_n(x) = A_n\mathbf{Q}_{n+1}(x) + B_n\mathbf{Q}_n(x) + C_n\mathbf{Q}_{n-1}(x), \quad n = 0, 1, \dots$$

where the Jacobi matrix is stochastic

• Choosing $\mathbf{Q}_0(x) = \mathbf{I}$ the leading coefficient of \mathbf{Q}_n is

$$\frac{\Gamma(\beta+2)\Gamma(\alpha+\beta+2n+2)}{\Gamma(\alpha+\beta+n+2)\Gamma(\beta+n+2)}\begin{pmatrix} \frac{k+n}{k} & -\frac{n(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\ 0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \end{pmatrix}$$

• Moreover, the corresponding norms are diagonal matrices:

$$\|\mathbf{Q}_{n}\|_{W}^{2} = \frac{\Gamma(n+\alpha+1)\Gamma(n+1)\Gamma(\beta+2)^{2}(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2)\Gamma(n+\beta+2)} \times \begin{pmatrix} \frac{n+k}{k(2n+\alpha+\beta+2)} & 0\\ 0 & \frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2n+\alpha+\beta+3)(n+\alpha+\beta+2)} \end{pmatrix}$$

We choose the family of OMP $(\mathbf{Q}_n(x))_n$ such that

Three term recurrence relation

$$x\mathbf{Q}_n(x) = A_n\mathbf{Q}_{n+1}(x) + B_n\mathbf{Q}_n(x) + C_n\mathbf{Q}_{n-1}(x), \quad n = 0, 1, \dots$$

where the Jacobi matrix is stochastic

• Choosing $\mathbf{Q}_0(x) = \mathbf{I}$ the leading coefficient of \mathbf{Q}_n is

$$\frac{\Gamma(\beta+2)\Gamma(\alpha+\beta+2n+2)}{\Gamma(\alpha+\beta+n+2)\Gamma(\beta+n+2)}\begin{pmatrix} \frac{k+n}{k} & -\frac{n(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\ 0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta-k+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \end{pmatrix}$$

Moreover, the corresponding norms are diagonal matrices:

$$\|\mathbf{Q}_{n}\|_{W}^{2} = \frac{\Gamma(n+\alpha+1)\Gamma(n+1)\Gamma(\beta+2)^{2}(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2)\Gamma(n+\beta+2)} \times \left(\frac{\frac{n+k}{k(2n+\alpha+\beta+2)}}{0} \frac{0}{\frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2n+\alpha+\beta+3)(n+\alpha+\beta+2)}}\right)$$

We choose the family of OMP $(\mathbf{Q}_n(x))_n$ such that

Three term recurrence relation

$$x\mathbf{Q}_n(x) = A_n\mathbf{Q}_{n+1}(x) + B_n\mathbf{Q}_n(x) + C_n\mathbf{Q}_{n-1}(x), \quad n = 0, 1, \dots$$

where the Jacobi matrix is stochastic

• Choosing $\mathbf{Q}_0(x) = \mathbf{I}$ the leading coefficient of \mathbf{Q}_n is

$$\frac{\Gamma(\beta+2)\Gamma(\alpha+\beta+2n+2)}{\Gamma(\alpha+\beta+n+2)\Gamma(\beta+n+2)}\begin{pmatrix} \frac{k+n}{k} & -\frac{n(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\ 0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta-k+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \end{pmatrix}$$

Moreover, the corresponding norms are diagonal matrices:

$$\|\mathbf{Q}_n\|_W^2 = \frac{\Gamma(n+\alpha+1)\Gamma(n+1)\Gamma(\beta+2)^2(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2)\Gamma(n+\beta+2)} \times \left(\frac{\frac{n+k}{k(2n+\alpha+\beta+2)}}{0} \frac{0}{\frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2n+\alpha+\beta+3)(n+\alpha+\beta+2)}}\right)$$

• The choice of the leading coefficient is motivated by the fact that

$$\mathbf{Q}_n(1)\mathbf{e}_N=\mathbf{e}_N$$

where
$$\mathbf{e}_{N} = (1, 1, \cdots, 1)^{T}$$
.

• Consequently, the Jacobi matrix is stochastic:

$$1 \cdot \mathbf{Q}_{n}(1)\mathbf{e}_{N} = A_{n}\mathbf{Q}_{n+1}(1)\mathbf{e}_{N} + B_{n}\mathbf{Q}_{n}(1)\mathbf{e}_{N} + C_{n}\mathbf{Q}_{n-1}(1)\mathbf{e}_{N}$$

$$\mathbf{e}_{N} = (A_{n} + B_{n} + C_{n})\mathbf{e}_{N}$$

 The choice of the leading coefficient is motivated by the fact that

$$\mathbf{Q}_n(1)\mathbf{e}_N=\mathbf{e}_N$$

where $\mathbf{e}_{N} = (1, 1, \cdots, 1)^{T}$.

• Consequently, the Jacobi matrix is stochastic:

$$1 \cdot \mathbf{Q}_{n}(1)\mathbf{e}_{N} = A_{n}\mathbf{Q}_{n+1}(1)\mathbf{e}_{N} + B_{n}\mathbf{Q}_{n}(1)\mathbf{e}_{N} + C_{n}\mathbf{Q}_{n-1}(1)\mathbf{e}_{N}$$

$$\mathbf{e}_{N} = (A_{n} + B_{n} + C_{n})\mathbf{e}_{N}$$

Particular case $\alpha = \beta = 0$, k = 1/2

$$A_n = \begin{pmatrix} \frac{(2n+1)(n+2)^2}{2(2n+3)^2(n+1)} & 0\\ \frac{2(n+2)}{(2n+5)(2n+3)^2} & \frac{n+3}{2(2n+5)} \end{pmatrix}$$

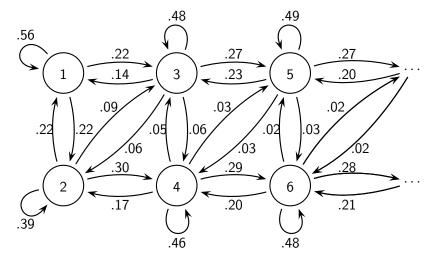
$$B_n = \begin{pmatrix} \frac{1}{2} - \frac{4n^2 + 8n - 1}{2(2n+1)^2(2n+3)^2} & \frac{n+2}{(2n+3)^2(n+1)}\\ \frac{2(n+1)}{(2n+1)(2n+3)^2} & \frac{1}{2} - \frac{1}{(2n+3)^2} \end{pmatrix}$$

$$C_n = \begin{pmatrix} \frac{n^2(2n+3)}{2(2n+1)^2(n+1)} & \frac{n}{(n+1)(2n+1)^2}\\ 0 & \frac{n}{2(2n+1)} \end{pmatrix}$$

Particular case $\alpha = \beta = 0$, k = 1/2

Pentadiagonal Jacobi matrix:

Associated Network



THE INVARIANT MEASURE

Invariant measure

The row vector

$$\pi=(\pi^0;\pi^1;\cdots)$$

$$\boldsymbol{\pi}^{n} = \left(\frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{1,1}}, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{2,2}}, \cdots, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{N,N}}\right), \quad n \geq 0$$

is an invariant measure of P

Particular case N=2, $\alpha=\beta=0$, k=1/2:

$$\pi^n = \left(\frac{2(n+1)^3}{(2n+3)(2n+1)}, \frac{(n+1)(n+2)}{2n+3}\right), \quad n \ge 0$$

$$\boldsymbol{\pi} = \left(\frac{2}{3}, \frac{2}{3}; \frac{16}{15}, \frac{6}{5}; \frac{54}{35}, \frac{12}{7}; \frac{128}{63}, \frac{20}{9}; \frac{250}{99}, \frac{30}{11}; \frac{432}{143}, \frac{42}{13}; \frac{686}{195}, \frac{56}{15}; \cdots\right)$$

THE INVARIANT MEASURE

Invariant measure

The row vector

$$\pi=(\pi^0;\pi^1;\cdots)$$

$$\pi^{n} = \left(\frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{1,1}}, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{2,2}}, \cdots, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{N,N}}\right), \quad n \geq 0$$

is an invariant measure of P

Particular case N=2, $\alpha=\beta=0$, k=1/2:

$$\pi^n = \left(\frac{2(n+1)^3}{(2n+3)(2n+1)}, \frac{(n+1)(n+2)}{2n+3}\right), \quad n \ge 0$$

$$\boldsymbol{\pi} = \left(\frac{2}{3}, \frac{2}{3}; \frac{16}{15}, \frac{6}{5}; \frac{54}{35}, \frac{12}{7}; \frac{128}{63}, \frac{20}{9}; \frac{250}{99}, \frac{30}{11}; \frac{432}{143}, \frac{42}{13}; \frac{686}{195}, \frac{56}{15}; \cdots\right)$$

A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M composed of two types A and B.

$$A \xrightarrow{\frac{1+\beta}{2}} B$$
, $B \xrightarrow{\frac{1+\alpha}{2}} A$, $\alpha, \beta > -1$

As $M \to \infty$, this model can be described by a diffusion process whose state space is S = [0,1] with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1 - x), \quad \alpha, \beta > -1$$

The *N* phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$\mathbf{B}_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \mathbf{A}_{ii}(x) = 2x(1 - x)$$

Now there is an extra parameter $k \in (0, \beta + 1)$ in $\mathbf{Q}(x)$, which measures how the process moves through all the phases, $\mathbf{Q}(x)$

A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M composed of two types A and B.

$$A \xrightarrow{\frac{1+\beta}{2}} B$$
, $B \xrightarrow{\frac{1+\alpha}{2}} A$, $\alpha, \beta > -1$

As $M \to \infty$, this model can be described by a diffusion process whose state space is S = [0,1] with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1-x), \quad \alpha, \beta > -1$$

The *N* phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$\mathbf{B}_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \mathbf{A}_{ii}(x) = 2x(1 - x)$$

Now there is an extra parameter $k \in (0, \beta + 1)$ in $\mathbf{Q}(x)$, which measures how the process moves through all the phases, $\mathbf{Q}(x)$

A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M composed of two types A and B.

$$A \xrightarrow{\frac{1+\beta}{2}} B$$
, $B \xrightarrow{\frac{1+\alpha}{2}} A$, $\alpha, \beta > -1$

As $M \to \infty$, this model can be described by a diffusion process whose state space is S = [0,1] with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^{2}(x) = 2x(1 - x), \quad \alpha, \beta > -1$$

The *N* phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$\mathbf{B}_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \mathbf{A}_{ii}(x) = 2x(1 - x)$$

Now there is an extra parameter $k \in (0, \beta + 1)$ in $\mathbf{Q}(x)$, which measures how the process moves through all the phases.

WAITING TIMES AND TENDENCY

Waiting times

We have to take a look to the diagonal entries of $\mathbf{Q}(x)$:

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[(N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If $x \to 1^- \Rightarrow$ all phases are instantaneous.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

- If $k \rightarrow \beta + 1 \Rightarrow Backward tendency$
 - Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If $k \to 0^+ \Rightarrow$ Forward tendency
 - Meaning: Both populations A and B 'fight' in the same conditions

Waiting times

We have to take a look to the diagonal entries of $\mathbf{Q}(x)$:

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[(N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If $x \to 1^- \Rightarrow$ all phases are instantaneous.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

- If $k \rightarrow \beta + 1 \Rightarrow Backward tendency$
 - Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If $k \to 0^+ \Rightarrow$ Forward tendency
 - Meaning: Both populations A and B 'fight' in the same conditions

WAITING TIMES

We have to take a look to the diagonal entries of $\mathbf{Q}(x)$:

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[(N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If $x \to 1^- \Rightarrow \text{all}$ phases are instantaneous.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

- If $k \rightarrow \beta + 1 \Rightarrow Backward tendency$
- Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If $k \to 0^+ \Rightarrow$ Forward tendency
 - Meaning: Both populations A and B 'fight' in the same conditions

WAITING TIMES

We have to take a look to the diagonal entries of $\mathbf{Q}(x)$:

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[(N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If $x \to 1^- \Rightarrow \text{all}$ phases are instantaneous.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

- If $k \rightarrow \beta + 1 \Rightarrow$ Backward tendency
 - Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If $k \to 0^+ \Rightarrow$ Forward tendency
 - Meaning: Both populations A and B 'fight' in the same conditions.

Waiting times

We have to take a look to the diagonal entries of $\mathbf{Q}(x)$:

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[(N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If $x \to 1^- \Rightarrow$ all phases are instantaneous.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

TENDENCY

• If $k \rightarrow \beta + 1 \Rightarrow$ Backward tendency

Meaning: The parameter k helps the population of A's to survive against the population of B's.

- If $k \to 0^+ \Rightarrow$ Forward tendency
 - Meaning: Both populations A and B 'fight' in the same conditions

WAITING TIMES AND TENDENCY

Waiting times

We have to take a look to the diagonal entries of $\mathbf{Q}(x)$:

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[(N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

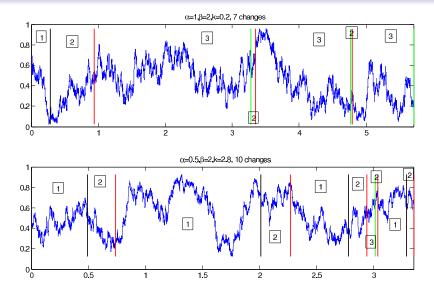
- If $x \to 1^- \Rightarrow$ all phases are instantaneous.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

TENDENCY

- If $k \to \beta + 1 \Rightarrow Backward$ tendency

 Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If $k \to 0^+ \Rightarrow$ Forward tendency Meaning: Both populations A and B 'fight' in the same conditions.

EXAMPLE OF TENDENCY



INVARIANT DISTRIBUTION

The invariant distribution $\psi(y)$ $(\alpha, \beta \ge 0)$ comes from the study of

$$\lim_{t\to\infty} \mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi_n^*(y) \mathbf{W}(y)$$

This should be independent of the initial state and phase. Therefore we should expect a row vector invariant distribution

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$

with $0 \le \psi_j(y) \le 1$ and

$$\sum_{i=1}^N \int_0^1 \psi_j(y) dy = 1$$

EXPLICIT FORMULA (Mpl. 2012)

$$\Rightarrow \psi(y) = \left(\int_0^1 \mathbf{e}_N^T \mathbf{W}(x) \mathbf{e}_N dx\right)^{-1} \mathbf{e}_N^T \mathbf{W}(y)$$

where $\mathbf{e}^T = (1, 1, \dots, 1)$. In particular

$$\psi_j(y) = y^{\alpha+N-j} (1-y)^{\beta} \binom{N-1}{j-1} \binom{\alpha+\beta+N}{\alpha} \frac{(\beta+N)(k)_{N-j} (\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}$$

INVARIANT DISTRIBUTION

The invariant distribution $\psi(y)$ ($\alpha, \beta \geq 0$) comes from the study of

$$\lim_{t\to\infty} \mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi_n^*(y) \mathbf{W}(y)$$

This should be independent of the initial state and phase.

Therefore we should expect a row vector invariant distribution

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$

with $0 \le \psi_j(y) \le 1$ and

$$\sum_{j=1}^N \int_0^1 \psi_j(y) dy = 1$$

Explicit formula (MdI, 2012)

$$\Rightarrow \psi(y) = \left(\int_0^1 \mathbf{e}_N^T \mathbf{W}(x) \mathbf{e}_N dx\right)^{-1} \mathbf{e}_N^T \mathbf{W}(y)$$

where $\mathbf{e}^T = (1, 1, \dots, 1)$. In particular

$$\psi_{j}(y) = y^{\alpha+N-j} (1-y)^{\beta} {N-1 \choose j-1} {\alpha+\beta+N \choose \alpha} \frac{(\beta+N)(k)_{N-j} (\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}$$

STUDY OF THE INVARIANT DISTRIBUTION

