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1-D MARKOV PROCESSES

A Markov process with state space S C R is a collection of random
variables {X; € S : t € T} indexed by time T (discrete or continuous)
such that they have the Markov property: the future event only depends
on the present, not on the past (no memory).
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1-D MARKOV PROCESSES

A Markov process with state space S C R is a collection of random
variables {X; € S : t € T} indexed by time T (discrete or continuous)
such that they have the Markov property: the future event only depends
on the present, not on the past (no memory).

S DISCRETE (MARKOV CHAINS)
The transition probabilities come in terms of a matrix

P11 P12
P=|Pa1 P2 | P,-j(t)EPr(Xt:j|Xo:i)
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1-D MARKOV PROCESSES

A Markov process with state space S C R is a collection of random
variables {X; € S : t € T} indexed by time T (discrete or continuous)
such that they have the Markov property: the future event only depends
on the present, not on the past (no memory).

S DISCRETE (MARKOV CHAINS)
The transition probabilities come in terms of a matrix

P11 P12
P=|Pa1 P2 | P,-j(t) = Pr(Xt :j|Xo = i)

S CONTINUOUS (MARKOV PROCESSES)
The probabilities are described in terms of a density

d
p(tix,y) = a—yPr(Xt <ylXo=x), x,yeS$




THREE IMPORTANT CASES

@ Random walks: § ={0,1,2,...}, T ={0,1,2,...}.
bo

a
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THREE IMPORTANT CASES

@ Random walks: § ={0,1,2,...}, T ={0,1,2,...}.

bo ao
a b a
P = ¢ b a» ’ b; > O; aj, G > O; ai+bi+c =1

© Birth-and-death processes: § = {0,1,2,...}, T = [0,00).
P'(t) = AP(t) y P'(t) = P(t).A where
—Ao Ao

pr —(A+ ) A1
A= H2 (A4 p2) A2 > A i >0
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THREE IMPORTANT CASES

@ Random walks: § ={0,1,2,...}, T ={0,1,2,...}.

bo ao
a b a
P = ¢ b a» ’ b; > O; aj, G > O; ai+bi+c =1

© Birth-and-death processes: § = {0,1,2,...}, T = [0,00).
P'(t) = AP(t) y P'(t) = P(t).A where

—Xo Ao
pr —(A1+ 1) A1
A p—

H2 (A4 p2) A2 > A i >0

@ Diffusion processes: S = (a,b) C R, T = [0, 00).
Fp(t;x,y) = Ap(t; x y) y ep(tix,y) = A*p(t; x, y) donde

d
A= 50 2(x) = e
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Ornstein-Uhlenbeck diffusion process: S = R and 0%(x) =1, 7(x) = —x
It describes the velocity of a massive Brownian particle under the
influence of friction. It is the only nontrivial process which is stationary,

Gaussian and Markovian.

X0:—3
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SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure w(x)
associated with A, and a set of orthogonal eigenfunctions (i, x)
such that

Af(i,x) = i, x)f(i, x),

then it is possible to find spectral representations of
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SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure w(x)
associated with A, and a set of orthogonal eigenfunctions (i, x)
such that

Af(i,x) = i, x)f(i, x),
then it is possible to find spectral representations of

@ Transition probabilities Pj(t) (discrete case)
or densities p(t; x,y) (continuous case).
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SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure w(x)
associated with A, and a set of orthogonal eigenfunctions (i, x)
such that

Af(i,x) = i, x)f(i, x),
then it is possible to find spectral representations of

@ Transition probabilities Pj(t) (discrete case)
or densities p(t; x,y) (continuous case).

@ Invariant measure or distribution 7= = (7;) (discrete case) with
mj = lim Py(t)
or ¥(y) (continuous case) with

d(y) = Jim p(t;x,y)-
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S=T={0,1,2,...}.
Spectral theorem: there exists a measure w associated with P which
orthogonal polynomials (gn), satisfy

bo ao qo(x) qo(x)
Pg=|ca b a q(x) | = x [ () x € [-1,1]
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RANDOM WALKS

S=T={0,1,2,...}.
Spectral theorem: there exists a measure w associated with P which
orthogonal polynomials (gn), satisfy

bo ao qo(x) qo(x)
Pg=|ca b a q(x) | = x [ () x € [-1,1]

)

TRANSITION PROBABILITIES

1

. , n 1 n
Pr(X, =jlXo = i) =P} = W /1X qi(x)qj(x)dw(x)
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RANDOM WALKS

S=T={0,1,2,...}.
Spectral theorem: there exists a measure w associated with P which
orthogonal polynomials (gn), satisfy

bo ao qo(x) qo(x)
Pg=|ca b a q(x) | = x [ () x € [-1,1]

TRANSITION PROBABILITIES

Pr(X, =j|Xo=1i) = P; = 1 / x"qi(x)gj(x)dw(x)

el S

V.
INVARIANT MEASURE

Non-null vector 7 = (7o, 71, ...) > 0 such that

apady - adj—1 1
TnP=n =m = :

ac—a 4l
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S=T={0,1,2,...}.
Spectral theorem: there exists a measure w associated with P which
orthogonal polynomials (gn), satisfy

bo ao qo(x) qo(x)
Pg=|ca b a q(x) | = x [ () x € [-1,1]

TRANSITION PROBABILITIES

Pr(X, =j|Xo=1i) = P; = 1 / x"qi(x)gj(x)dw(x)

el S

V.
INVARIANT MEASURE

Non-null vector 7 = (7o, 71, ...) > 0 such that

apady - adj—1 1
TnP=n =m = :

ac—a 4l

Examples: Jacobi polynomials (Legendre, Gegenbauer)
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§={0,1,2,...}, T =[0,00).
Spectral theorem: there exists a measure w associated with A which
orthogonal polynomials (gn), satisfy

—Ao Ao qo(x) qo(x)
Ag=| m —(a+m) M @) | = —x | @)

TRANSITION PROBABILITIES

1
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§={0,1,2,...}, T =[0,00).
Spectral theorem: there exists a measure w associated with A which
orthogonal polynomials (gn), satisfy

—Ao Ao qo(x) qo(x)
Ag=| m —(a+m) M @) | = —x | @)

TRANSITION PROBABILITIES

Pr(X, = j|Xo = i) = P;(t) = W /0 " et gy(x) g (x)dw(x)

INVARIANT MEASURE

Non-null vector 7 = (7o, 71, ...) > 0 such that

MoAt - A 1
TA=0 =m="r L

H1pe2 - - i - ||q,-||2
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§={0,1,2,...}, T =[0,00).
Spectral theorem: there exists a measure w associated with A which
orthogonal polynomials (gn), satisfy

—Ao Ao qo(x) qo(x)
Ag=| m —(a+m) M @) | = —x | @)

TRANSITION PROBABILITIES

Pr(X, = j|Xo = i) = P;(t) = W /0 " et gy(x) g (x)dw(x)

INVARIANT MEASURE

Non-null vector 7 = (7o, 71, ...) > 0 such that

MoAt - A 1
TA=0 =m="r L

H1pe2 - - i - ||q,-||2

\

Examples: Laguerre, Hahn, Krawtchouk, Charlier polynomials
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S=(a,b) CR, T =10,00)
If there exists a positive measure w symmetric with respect to A
and the corresponding family of orthogonal functions (¢,), satisfy

Agn(x) = 5P ()GH0x) + 700 (x) = tntn(x)
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DIFFUSION PROCESSES

S=(a,b)CR, T=1]0,00)
If there exists a positive measure w symmetric with respect to A
and the corresponding family of orthogonal functions (¢,), satisfy

Agn(x) = 5P ()GH0x) + 700 (x) = tntn(x)

TRANSITION PROBABILITY DENSITY

p(tix,y) = Zewn(x)qbn( o)
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S=(a,b)CR, T=1]0,00)
If there exists a positive measure w symmetric with respect to A
and the corresponding family of orthogonal functions (¢,), satisfy

Agn(x) = 5P ()GH0x) + 700 (x) = tntn(x)

TRANSITION PROBABILITY DENSITY

p(tix,y) = Zewn(x)qbn( o)

INVARIANT MEASURE

Y(y) tal que A*Y(y) =0=(y) =

1
Il w(x)dxw(y)
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DIFFUSION PROCESSES

S=(a,b)CR, T=1]0,00)
If there exists a positive measure w symmetric with respect to A
and the corresponding family of orthogonal functions (¢,), satisfy

Agn(x) = 5P ()GH0x) + 700 (x) = tntn(x)

TRANSITION PROBABILITY DENSITY

p(tix,y) = Zewn(x)qbn( o)

INVARIANT MEASURE

Y(y) tal que A*Y(y) =0=(y) =

1
Il w(x)dxw(y)

Examples: Hermite, Laguerre, Jacobi polynomials.
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(Xt, Y:) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(Xt, Y:) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (7, ) gives

Pi(t:ix, A) =Pr{X; € A, Y: = j|Xo = x, Yo = i}.
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(Xt, Y:) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (7, ) gives

Pi(t:ix, A) =Pr{X; € A, Y: = j|Xo = x, Yo = i}.

Every entry must be nonnegative and

P(t;x,A)ey <ey, ey=(1,1,...,1)7
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(Xt, Y:) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (7, ) gives

Pi(t;x,A) =Pr{X; € A, Y: = j|Xo = x, Yo = i}.
Every entry must be nonnegative and
P(t;x,A)ey <ey, ey=(1,1,...,1)7

The infinitesimal operator A is now matrix-valued.
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2-D MARKOV PROCESSES

Now we have a bivariate or 2-component Markov process of the
form {(Xt, Y:) : t € T} indexed by a parameter set 7 (time) and
with state space C =S x {1,2,..., N}, where S C R. The first
component is the level while the second component is the phase.
Now the transition probabilities can be written in terms of a
matrix-valued function P(t; x, A), defined for every t € T,x € S,
and any Borel set A of S, whose entry (7, ) gives

Pi(t;x,A) =Pr{X; € A, Y: = j|Xo = x, Yo = i}.
Every entry must be nonnegative and
P(t;x,A)ey <ey, ey=(1,1,...,1)7
The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).
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DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

Now we have C ={0,1,2,...} x {1,2,...,N}, T ={0,1,2,...} and
(Pir)jr =Pr(Xos1 =i, Yor1 =j|Xo =i, Ya=j)=0 for |i—i|>1

i.e. @ N x N block tridiagonal transition probability matrix

By Ao
G B A
P= G B A

(A )U?(Bﬂ)fj’(c )ij >0, det(An),det(Cn)
Z(Au (B)i+(Ci=1,i=1,....N
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DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

Now we have C ={0,1,2,...} x {1,2,...,N}, T ={0,1,2,...} and
(Pir)jr =Pr(Xos1 =i, Yor1 =j|Xo =i, Ya=j)=0 for |i—i|>1

i.e. @ N x N block tridiagonal transition probability matrix

By Ao
G B A
P= G B A

(A )U?(Bﬂ)fj’(c )ij >0, det(An),det(Cn)
Z(Au (B)i+(Ci=1,i=1,....N

Similar for continuous time quasi-birth-and-death processes but now we have
Cc={0,1,2,...} x{1,2,...,N}, T =[0,400) and the transition probability
matrix A satisfies

(A")U7 (B")ij7 i 75./7 (Cn)l'j > 0: (Bn)ii <0
> (An)i+ (Bo)i +(C)j =0, i=1,...,N

J
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SWITCHING DIFFUSION PROCESSES

We have C = (a,b) x {1,2,..., N}, T =[0,00). The transition
probability density is now a matrix which entry (7, ) gives

Pj(tix, A) = Pr(X; € A, Yy = jIXo = x, Yo = i)

for any t > 0, x € (a,b) and A any Borel set.
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SWITCHING DIFFUSION PROCESSES

We have C = (a,b) x {1,2,..., N}, T =[0,00). The transition
probability density is now a matrix which entry (7, ) gives

Pii(t:x,A) = Pr(X: € A, Y, = j|Xo = x, Yo = i)

for any t > 0, x € (a,b) and A any Borel set.
The infinitesimal operator A is now a matrix-valued differential
operator (Berman, 1994)

1 - " d°
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SWITCHING DIFFUSION PROCESSES
We have C = (a,b) x {1,2,..., N}, T =[0,00). The transition
probability density is now a matrix which entry (7, ) gives
Pi(t:x,A) =Pr(X; € A, Y =j|Xo =x, Yo =)

for any t > 0, x € (a,b) and A any Borel set.
The infinitesimal operator A is now a matrix-valued differential
operator (Berman, 1994)

1 - " d°

We have that A(x) and B(x) are diagonal matrices and Q(x) is
the infinitesimal operator of a continuous time Markov chain, i.e.

Qii(x) <0, Qji(x)>0,i#j, Q(x)ey=0
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and S = R with
A,‘,'(X) = f2, B,‘,'(X) = —fX,

=123

Bivariate Ornstein—Uhlenbeck process

An example
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N = 3 phases and S = R with
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An example
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and S = R with
Ai(x)=i% Bj(x)=—-ix, i=1,23.

Bivariate Ornstein—Uhlenbeck process
T T T T
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T
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AN ILLUSTRATIVE EXAMPLE

N = 3 phases and S = R with
Ai(x)=i% Bj(x)=—-ix, i=1,23.

Bivariate Ornstein—Uhlenbeck process

e

N
T

o

-8k




Markov processes Bivariate Markov processes An example
000000000 00000000 000000000C

AN ILLUSTRATIVE EXAMPLE

N = 3 phases and S = R with
Ai(x)=i% Bj(x)=—-ix, i=1,23.

Bivariate Ornstein—Uhlenbeck process
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N
T
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SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator A, if we can find
a weight matrix W(x) associated with A, and a set of orthogonal
matrix eigenfunctions F(i, x) such that

AF (i, x) = A(i, x)F(i, x),

then it is possible to find spectral representations of
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SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator A, if we can find
a weight matrix W(x) associated with A, and a set of orthogonal
matrix eigenfunctions F(i, x) such that

AF (i, x) = A(i, x)F(i, x),

then it is possible to find spectral representations of

@ Transition probabilities P(t; x, y).
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SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator A, if we can find
a weight matrix W(x) associated with A, and a set of orthogonal
matrix eigenfunctions F(i, x) such that

AF (i, x) = A(i, x)F(i, x),

then it is possible to find spectral representations of
@ Transition probabilities P(t; x, y).

@ Invariant measure or distribution 7 = (7r;) (discrete case)

with
m; = lim P;(t) e RV

t—o0

or ¥(y) = (V1(y), ¥2(y),---,¥n(y)) (continuous case) with
¥j(y) = Jlim Pj(t;x,y)
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DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

C=1{0,1,2,..} x {1,2,...,N}, T ={0,1,2,.. .}

(Griinbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix W associate with P which
matrix-valued orthogonal polynomials (®,), satisfy

By Ao (I)O(X) (I)O(X)
pp— |G B A P1(x) | = x | ®1(x) , x€[-1,1]
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DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

C=1{0,1,2,..} x {1,2,...,N}, T ={0,1,2,.. .}

(Griinbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix W associate with P which
matrix-valued orthogonal polynomials (®,), satisfy

By Ao (I)O(X) (I)O(X)
pp— |G B A P1(x) | = x | ®1(x) , x€[-1,1]

TRANSITION PROBABILITIES

Py — (/1 X”(I),-(x)dW(X)‘I’}k(X)> (/1 ‘I>j(X)dW(X)‘I>f(X)) -1

=1 =1
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DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

C=1{0,1,2,..} x {1,2,...,N}, T ={0,1,2,.. .}

(Griinbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix W associate with P which
matrix-valued orthogonal polynomials (®,), satisfy

By Ao (I)O(X) (I)O(X)
pp— |G B A P1(x) | = x | ®1(x) , x€[-1,1]

TRANSITION PROBABILITIES

Py — (/1 X”(I),-(x)dW(X)‘I’f(X)> (/1 ‘I>j(X)dW(X)‘I>f(X)) -1

=1 =1

INVARIANT MEASURE (MDI, 2011)

7w = (mwo; 71; -+ ) = (Moew; MNiey; - - - ) tal que wP = 7 where
ev=1(1,...,1)7 and

Mo = (] +++ )Mol Apr) = ( [ 1 ()W) ) i

-1
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SWITCHING DIFFUSION MODELS

C=(a,b)x{1,2,...,N}, T =[0,00)
If there exists a weight matrix W symmetric w.r.t. A which
matrix-valued orthogonal functions (®,), satisfies

A (x) = 2 AGIEL() + BHIZ,() + Qu)Pa(x) = Bo(x)T
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SWITCHING DIFFUSION MODELS

C=1(ab)x{1,2,...,N}, T =[0,00)
If there exists a weight matrix W symmetric w.r.t. A which
matrix-valued orthogonal functions (®,), satisfies

A (x) = 2 AGIEL() + BHIZ,() + Qu)Pa(x) = Bo(x)T

TRANSITION PROBABILITY DENSITY MATRIX (MDI, 2012)

P(tix,y) =Y ®,(x)e"" @5 (y)W(y)
n=0
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SWITCHING DIFFUSION MODELS

C=1(ab)x{1,2,...,N}, T =[0,00)
If there exists a weight matrix W symmetric w.r.t. A which
matrix-valued orthogonal functions (®,), satisfies

A (x) = 2 AGIEL() + BHIZ,() + Qu)Pa(x) = Bo(x)T

TRANSITION PROBABILITY DENSITY MATRIX (MDI, 2012)

P(tix,y) =Y ®,(x)e"" @5 (y)W(y)
n=0

INVARIANT DISTRIBUTION (MDI, 2012)

P(y) = (Y1(y), ¥a(y), - - -, ¥n(y)) such that A*¢(y) = 0

-1

= i) = ( | beLW(x)eNdx> el W(y)
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AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let Ne{1,2,...}, o, > —1,0< k < 8 +1 and Ej will denote the
matrix with 1 at entry (/,;) and O otherwise.

For x € (0,1), we have a symmetric pair {W, A}
(Griinbaum-Pacharoni-Tirao, 2002) where

N . .
W(X)_Xa(l_x),@Z(B_I{(j‘ll—].) <N+/C:Il,_1)XNiEii

i=1

1 d? d d°
A= SA() 25 + B2 + Q)75
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AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let Ne{1,2,...}, o, > —1,0< k < 8 +1 and Ej will denote the
matrix with 1 at entry (/,;) and O otherwise.

For x € (0,1), we have a symmetric pair {W, A}
(Griinbaum-Pacharoni-Tirao, 2002) where

N . .
W(X)_Xa(l_x),@Z(B_I{(j‘ll—].) <N+/C:Il,_1)XNiEii

i=1

1 d? d d°
A= SA() 25 + B2 + Q)75
N

A(x) =2x(1=x)I, B(x) =Y [a+1+N—i—x(a+pB+2+N-i)E;
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AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let Ne{1,2,...}, o, > —1,0< k < 8 +1 and Ej will denote the
matrix with 1 at entry (/,;) and O otherwise.

For x € (0,1), we have a symmetric pair {W, A}
(Griinbaum-Pacharoni-Tirao, 2002) where

N . .
W(X)_Xa(l_x),BZ(B_fj‘ll—].) <N+/C:Il,_1)XNiEii

i=1

1 d? d d°
A= SA() 25 + B2 + Q)75
N

A(x) =2x(1=x)I, B(x) =Y [a+1+N—i—x(a+pB+2+N-i)E;
i=1
N N N—-1

Q) = 3 (B o1 — S (0 + wil))Es + 3 A(Es o,

i=2 i=1 i=1

NG) = 7 (N =)+ 8= k), i) = 1 fx(i —1)(N — i + k).
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@ The orthogonal eigenfunctions ®;(x) of A are called
matrix-valued spherical functions associated with the complex
projective space. There are many structural formulas available
studied in the last years
(Griinbaum-Pacharoni-Tirao-Roman-Mdl).
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@ The orthogonal eigenfunctions ®;(x) of A are called
matrix-valued spherical functions associated with the complex
projective space. There are many structural formulas available
studied in the last years
(Griinbaum-Pacharoni-Tirao-Roman-Mdl).

@ Bispectrality: ®;(x) satisfy a three-term recurrence relation
X'I’,'(X) = A,-'I>,-+1(x) + B,'(I>,'(X) + C,'q),'_l(X), i=0,1,...

whose Jacobi matrix describes a discrete-time
quasi-birth-and-death process (Griinbaum-Mdl, 2008).

It was recently connected with urn and Young diagram models
(Griinbaum-Pacharoni-Tirao, 2011).
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@ The orthogonal eigenfunctions ®;(x) of A are called
matrix-valued spherical functions associated with the complex
projective space. There are many structural formulas available
studied in the last years
(Griinbaum-Pacharoni-Tirao-Roman-Mdl).

@ Bispectrality: ®;(x) satisfy a three-term recurrence relation
X'I’,'(X) = A,-'I>,-+1(x) + B,'(I>,'(X) + C,'q),'_l(X), i=0,1,...

whose Jacobi matrix describes a discrete-time
quasi-birth-and-death process (Griinbaum-Mdl, 2008).

It was recently connected with urn and Young diagram models
(Griinbaum-Pacharoni-Tirao, 2011).

@ The infinitesimal operator A describes a nontrivial switching
diffusion process from which we can give a description of the
matrix-valued probability density P(t;x, y) and invariant
distribution 1)(y) in terms of the eigenfunctions ®;(x) ,
among other properties (Mdl, 2012).
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A QUASI-BIRTH-AND-DEATH PROCESS (N = 2)

CONJUGATION

? |

W(x) = T*(x)W(x)T(x)

where
1—x 1—x
1—x —x——— "=
X —X B ki1
Griinbaum-Mdl (2008) and consider a family of matrix-valued
orthogonal polynomials (Q(x)), with respect to W(x).

This transformation allows us to have a second-order differential
operator of Sturm-Liouville type

An example
©00000000C
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We choose the family of OMP (Qn(x))n such that
@ Three term recurrence relation
xQn(x) = AnQpi1(x) + BoQn(x)+ C,Qn-1(x), n=0,1,...

where the Jacobi matrix is stochastic
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We choose the family of OMP (Qn(x))n such that
@ Three term recurrence relation
xQn(x) = AnQpi1(x) + BoQn(x)+ C,Qn-1(x), n=0,1,...
where the Jacobi matrix is stochastic

@ Choosing Qo(x) = I the leading coefficient of Qj, is

k+n atB+2n+2
F(B+2)M(a+ B +2n+2) <% - (a+/3,zi(-n+2;gai,3—)k+2) ) J

(n+a+B—k+2)(a+B+2n+2)
Ma+f+n+2M(B+n+2) \ 0 Srmers—r
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We choose the family of OMP (Qn(x))n such that
@ Three term recurrence relation
xQn(x) = AnQpi1(x) + BoQn(x)+ C,Qn-1(x), n=0,1,...
where the Jacobi matrix is stochastic

@ Choosing Qo(x) = I the leading coefficient of Q,, is

(n+a+B—k+2)(a+B+2n+2)
Ma+f+n+2M(B+n+2) \ 0 Srmers—r

k+n atB+2n+2
F(B+2)M(a+ B +2n+2) <% - (a+/3,1i(-n+2}gai/3—)k+2) ) |

@ Moreover, the corresponding norms are diagonal matrices:

(h+a+LF(n+1)F(B+2>%(n+a+B—k+2)
Mn+a+B8+2)[(n+5+2)

n+k 0
k(2n+a+5+2)
0 (n+a+1)(n+k+1)
(B—k+1)(2n+a+p+43)(n+a+5+2)

-
1Qnlliy =




@ The choice of the leading coefficient is motivated by the fact
that

Qn(l)ey =en
where ey = (1,1,---,1)7

DA
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@ The choice of the leading coefficient is motivated by the fact
that

Q,(1)ey =en J

where ey = (1,1,--- ,1)7.

@ Consequently, the Jacobi matrix is stochastic:

1. Qn(l)eN = AnQn+1(1)eN + BnQn(]-)eN + CnQn—l(l)eN
I I
ey = (An + Bn + Cn)eN
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PARTICULAR CASE a = =0, k=1/2

(2n 4+ 1)(n + 2)?
A, = 2(2n+3)?(n+1)

2(n+2) n+3
(2n+5)(2n+3)2  2(2n +5)
1 4n? +8n—1 n+2
B — |2 22n+1)2(2n+3)%> (2n+3)%(n+1)
n 2(n+1 11
(2n+1)(2n + 3)? 2 (2n+3)?
n?(2n + 3) n
C.— | 2@2n+1)2(n+1) (n+1)(2n+1)2
n n
0

2(2n +1)
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PARTICULAR CASE a = =0, k=1/2

Pentadiagonal Jacobi matrix:

5 2 2
9 9 9
2 7 4 3
9 18 45 10
5 1 103 21
36 18 225 50 100
1 4 28 6 2
p— 6 75 50 175 7
14 2 597 4 40
75 75 1225 147 147
1 6 4 8 5
5 245 98 441 18

8L 3 1% 5 175
392 196 3969 324 648
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ASSOCIATED NETWORK
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THE INVARIANT MEASURE

INVARIANT MEASURE

The row vector

1 1 1
" = ) oot o |l [T = 0
((uannev)l,l (.12, (||onu3~v)N,N>

is an invariant measure of P
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THE INVARIANT MEASURE

INVARIANT MEASURE

The row vector

0. 1;...)

1 1 1
" = ) oot o |l [T = 0
((uannev)l,l (.12, (||onu3~v)N,N>

is an invariant measure of P

Particular case N =2, a = =0, k=1/2:

n_ [ 2An+1P  (n+1)(n+2)
" _<(2”+3)(2n—|—1)’ on+3 > n>0

/2216 6 54 12 128 20 250 30 432 42 686 56
~\3'3'15'5'35" 7' 63’ 9' 99 11'143'13' 195 15’
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A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M composed of two
types A and B.

148 lia
A-23B, B25A af>-1
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A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M composed of two
types A and B.

148 lia
A-23B, B25A af>-1

As M — o0, this model can be described by a diffusion process
whose state space is S = [0, 1] with drift and diffusion coefficient

T(x)=a+1-x(a+B+2), o*(x)=2x(1-x), af>-1
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A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects
considers a big population of constant size M composed of two
types A and B.

148 lia
A-23B, B25A af>-1

As M — o0, this model can be described by a diffusion process
whose state space is S = [0, 1] with drift and diffusion coefficient

T(x)=a+1-x(a+B+2), o*(x)=2x(1-x), af>-1

The N phases of our bivariate Markov process are variations of the
Wright-Fisher model in the drift coefficients:

Bi(x)=a+1+N—i—x(a+8+2+N—i), Aj(x)=2x(1-x)

Now there is an extra parameter k € (0, 3 + 1) in Q(x), which
measures how the process moves through all the phases.
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WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the diagonal entries of Q(x):

Qulx) =~ [(N = )i+ 6 — k) + x( = (N = i+ k)]
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WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the diagonal entries of Q(x):
1 Vi . .
Qii(x) = == [N = )i + 8 = k) + x(i = 1)(N — i + k)]

@ If x — 1= = all phases are instantaneous.
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WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the diagonal entries of Q(x):
1 Vi . .
Qii(x) = == [N = )i + 8 = k) + x(i = 1)(N — i + k)]

@ If x — 1= = all phases are instantaneous.

@ If x = 0" or k — 0" = phase N is absorbing.
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WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the diagonal entries of Q(x):
1 Vi . .
Qii(x) = == [N = )i + 8 = k) + x(i = 1)(N — i + k)]

@ If x — 1= = all phases are instantaneous.

@ If x = 0" or k — 0" = phase N is absorbing.

@ If k — 8+ 1 = phase 1 is absorbing.
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WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the diagonal entries of Q(x):
1 Vi . .
Qii(x) = == [N = )i + 8 = k) + x(i = 1)(N — i + k)]

@ If x — 1= = all phases are instantaneous.

@ If x = 0" or k — 0" = phase N is absorbing.

@ If k — 8+ 1 = phase 1 is absorbing.

TENDENCY

o If k — B+ 1= Backward tendency

Meaning: The parameter k helps the population of A’s to survive
against the population of B's.
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WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the diagonal entries of Q(x):
1 Vi . .
Qii(x) = == [N = )i + 8 = k) + x(i = 1)(N — i + k)]

@ If x — 1= = all phases are instantaneous.

@ If x = 0" or k — 0" = phase N is absorbing.

@ If k — 8+ 1 = phase 1 is absorbing.

-

TENDENCY

o If k — B+ 1= Backward tendency

Meaning: The parameter k helps the population of A’s to survive
against the population of B's.

o If k = 0" = Forward tendency

Meaning: Both populations A and B 'fight' in the same conditions.

o



Markov processes Bivariate Markov processes An example
000000000 00000000 O00000000e

EXAMPLE OF TENDENCY

o=1,8=2k=0.2, 7 changes
1 T

0.6
0.4
02
1 1 1
0

0

«=0.5,p=2,k=2.8, 10 changes
1 T T T

0.6
0.4

02r-
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INVARIANT DISTRIBUTION

The invariant distribution ¥(y) (e, 8 > 0) comes from the study of
lim P(t;x,y) = Y @a(x)e"" @, (y)W(y)
t—oo =0

This should be independent of the initial state and phase.
Therefore we should expect a row vector invariant distribution

P(y) = (La(y), Y2(y), - - s ¥n(y))
with 0 < ¢j(y) <1 and

> /0 Gi(y)dy = 1
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INVARIANT DISTRIBUTION

The invariant distribution ¥(y) (e, 8 > 0) comes from the study of
lim P(t;x,y) =Y ®a(x)e"" @5 (y)W(y)
t—oo =0

This should be independent of the initial state and phase.
Therefore we should expect a row vector invariant distribution

P(y) = (La(y), Y2(y), - - s ¥n(y))
with 0 < ¢j(y) <1 and

> /0 Gi(y)dy = 1

EXPLICIT FORMULA (MDI, 2012)

1 =l
= B(y) = ( / eEW(x)eNdx) elW(y)
0
where e’ = (1,1,...,1). In particular

_ LatN—j N—1\ (a+B+NY (B+N)(K)n_j(B—k+1);_
Uily) =y N =y () () e
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STUDY OF THE INVARIANT DISTRIBUTION

o=1,8=1k=1.25, N=2 o=1,8=1,k=1.25, N=3

06 1
/

05 —
0.6 J \
- 04 / ]
/
0.4 J 03 / ,
02 i
0.2 1
01 8
o . . . . o . . . .
0 0.2 0.4 06 08 1 0 02 04 06 08 1
0=1p=1 k=125, N=4 0=1p=1k=1.25, N=5
07 07
06 1 06 i
05
0.4
03
0.2
0.4
0
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