# SPECTRAL METHODS FOR BIVARIATE MARKOV PROCESSES

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla

Hong Kong, May 30, 2013

# OUTLINE

- MARKOV PROCESSES
  - Preliminaries
  - Spectral methods
- DIVARIATE MARKOV PROCESSES
  - Preliminaries
  - Spectral methods
- 3 An example
  - A quasi-birth-and-death process
  - A variant of the Wright-Fisher model

# OUTLINE

- MARKOV PROCESSES
  - Preliminaries
  - Spectral methods
- 2 Bivariate Markov processes
  - Preliminaries
  - Spectral methods
- 3 AN EXAMPLE
  - A quasi-birth-and-death process
  - A variant of the Wright-Fisher model

### 1-D Markov Processes

A *Markov process* with state space  $\mathcal{S} \subset \mathbb{R}$  is a collection of random variables  $\{X_t \in \mathcal{S} : t \in \mathcal{T}\}$  indexed by time  $\mathcal{T}$  (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

#### $\mathcal{S}$ discrete (Markov Chains)

The transition probabilities come in terms of a matrix

$$P = \begin{pmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \quad P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i)$$

#### $\mathcal{S}$ continuous (Markov processes

The probabilities are described in terms of a density

$$p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \le y | X_0 = x), \quad x, y \in S$$

#### 1-D Markov Processes

A *Markov process* with state space  $S \subset \mathbb{R}$  is a collection of random variables  $\{X_t \in S : t \in \mathcal{T}\}$  indexed by time  $\mathcal{T}$  (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

#### $\mathcal{S}$ discrete (Markov <u>Chains</u>)

The transition probabilities come in terms of a matrix

$$P = egin{pmatrix} 
ho_{11} & 
ho_{12} & \cdots \ 
ho_{21} & 
ho_{22} & \cdots \ dots & dots & dots \end{pmatrix}, \quad P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i)$$

#### $\mathcal{S}$ continuous (Markov processes

The probabilities are described in terms of a density

$$p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \le y | X_0 = x), \quad x, y \in S$$

#### 1-D Markov processes

A *Markov process* with state space  $S \subset \mathbb{R}$  is a collection of random variables  $\{X_t \in S : t \in \mathcal{T}\}$  indexed by time  $\mathcal{T}$  (discrete or continuous) such that they have the Markov property: the future event only depends on the present, not on the past (no memory).

#### $\mathcal{S}$ discrete (Markov <u>Chains</u>)

The transition probabilities come in terms of a matrix

$$P = egin{pmatrix} 
ho_{11} & 
ho_{12} & \cdots \ 
ho_{21} & 
ho_{22} & \cdots \ dots & dots & dots \end{pmatrix}, \quad P_{ij}(t) \equiv \Pr(X_t = j | X_0 = i)$$

#### S continuous (Markov Processes)

The probabilities are described in terms of a density

$$p(t; x, y) \equiv \frac{\partial}{\partial y} \Pr(X_t \le y | X_0 = x), \quad x, y \in \mathcal{S}$$

**1** Random walks:  $S = \{0, 1, 2, ...\}, T = \{0, 1, 2, ...\}.$ 

② Birth-and-death processes:  $S = \{0, 1, 2, ...\}$ ,  $T = [0, \infty)$ .  $P'(t) = AP(t) \vee P'(t) = P(t)A$  where

$$\mathcal{A} = \begin{pmatrix} -\lambda_0 & \lambda_0 \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\ & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0$$

① Diffusion processes:  $S = (a, b) \subseteq \mathbb{R}$ ,  $T = [0, \infty)$ .  $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}p(t; x, y)$  y  $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}^* p(t; x, y)$  dondo

$$A = \frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}{dx} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{d}$$

**1** Random walks:  $S = \{0, 1, 2, ...\}, T = \{0, 1, 2, ...\}.$ 

**2** Birth-and-death processes:  $S = \{0, 1, 2, ...\}, T = [0, \infty)$ .  $P'(t) = AP(t) \ y \ P'(t) = P(t)A \ where$ 

$$\mathcal{A} = \begin{pmatrix} -\lambda_0 & \lambda_0 \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 \\ & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0$$

$$A = \frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} + \tau(x)\frac{d}{dx^4} + \tau(x)\frac{$$

#### THREE IMPORTANT CASES

**1** Random walks:  $S = \{0, 1, 2, ...\}$ ,  $T = \{0, 1, 2, ...\}$ .

Birth-and-death processes:  $S = \{0, 1, 2, ...\}$ ,  $T = [0, \infty)$ .  $P'(t) = AP(t) \vee P'(t) = P(t)A$  where

$$\mathcal{A} = \begin{pmatrix} -\lambda_0 & \lambda_0 & & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & & \\ & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad \lambda_i, \mu_i > 0$$

**3** Diffusion processes:  $S = (a, b) \subseteq \mathbb{R}$ ,  $T = [0, \infty)$ .  $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}p(t; x, y)$  y  $\frac{\partial}{\partial t} p(t; x, y) = \mathcal{A}^* p(t; x, y)$  donde

$$A = \frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} + \tau(x)\frac{d}{dx}$$





























































































## DIFFUSION PROCESSES

Ornstein-Uhlenbeck diffusion process:  $S = \mathbb{R}$  and  $\sigma^2(x) = 1$ ,  $\tau(x) = -x$  It describes the velocity of a massive Brownian particle under the influence of friction. It is the only nontrivial process which is stationary, Gaussian and Markovian.



#### SPECTRAL METHODS

Given a infinitesimal operator A, if we can find a measure  $\omega(x)$  associated with A, and a set of orthogonal eigenfunctions f(i,x) such that

$$\mathcal{A}f(i,x) = \lambda(i,x)f(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities  $P_{ij}(t)$  (discrete case) or densities p(t; x, y) (continuous case).
- Invariant measure or distribution  $m{\pi} = (\pi_j)$  (discrete case) with

$$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$

or  $\psi(y)$  (continuous case) with

$$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$

#### SPECTRAL METHODS

Given a infinitesimal operator  $\mathcal{A}$ , if we can find a measure  $\omega(x)$  associated with  $\mathcal{A}$ , and a set of orthogonal eigenfunctions f(i,x) such that

$$\mathcal{A}f(i,x) = \lambda(i,x)f(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities  $P_{ij}(t)$  (discrete case) or densities p(t; x, y) (continuous case).
- Invariant measure or distribution  $oldsymbol{\pi} = (\pi_j)$  (discrete case) with

$$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$

or  $\psi(y)$  (continuous case) with

$$\psi(y) = \lim_{t \to \infty} p(t; x, y)$$

#### SPECTRAL METHODS

Given a infinitesimal operator  $\mathcal{A}$ , if we can find a measure  $\omega(x)$  associated with  $\mathcal{A}$ , and a set of orthogonal eigenfunctions f(i,x) such that

$$\mathcal{A}f(i,x) = \lambda(i,x)f(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities  $P_{ij}(t)$  (discrete case) or densities p(t; x, y) (continuous case).
- ullet Invariant measure or distribution  $oldsymbol{\pi}=(\pi_j)$  (discrete case) with

$$\pi_j = \lim_{t \to \infty} P_{ij}(t)$$

or  $\psi(y)$  (continuous case) with

$$\psi(y) = \lim_{t \to \infty} p(t; x, y).$$

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure  $\omega$  associated with P which orthogonal polynomials  $(q_n)_n$  satisfy

$$Pq = egin{pmatrix} b_0 & a_0 & & & \ c_1 & b_1 & a_1 & & \ & \ddots & \ddots & \ddots \end{pmatrix} egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix} = x egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix}, \quad x \in [-1,1]$$

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

$$\pi P = \pi$$
  $\Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|a_i\|}$ 



# RANDOM WALKS

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure  $\omega$  associated with P which orthogonal polynomials  $(q_n)_n$  satisfy

$$extit{Pq} = egin{pmatrix} b_0 & a_0 & & & \ c_1 & b_1 & a_1 & & \ & \ddots & \ddots & \ddots \end{pmatrix} egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix} = x egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix}, \quad x \in [-1,1]$$

#### Transition probabilities

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

#### Invariant measure

Non-null vector  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$  such that

$$\pi P = \pi \quad \Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|g_i\|^2}$$

### RANDOM WALKS

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure  $\omega$  associated with P which orthogonal polynomials  $(q_n)_n$  satisfy

$$Pq=egin{pmatrix} b_0&a_0&&&&\ c_1&b_1&a_1&&&\ &\ddots&\ddots&\ddots&\ddots \end{pmatrix} egin{pmatrix} q_0(x)\ q_1(x)\ dots \end{pmatrix}=xegin{pmatrix} q_0(x)\ q_1(x)\ dots \end{pmatrix},\quad x\in[-1,1]$$

#### Transition probabilities

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

#### Invariant measure

Non-null vector  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$  such that

$$\pi P = \pi$$
  $\Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|^2}$ 

### RANDOM WALKS

$$S = T = \{0, 1, 2, \ldots\}.$$

Spectral theorem: there exists a measure  $\omega$  associated with P which orthogonal polynomials  $(q_n)_n$  satisfy

$$Pq = egin{pmatrix} b_0 & a_0 & & & \ c_1 & b_1 & a_1 & & \ & \ddots & \ddots & \ddots \end{pmatrix} egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix} = x egin{pmatrix} q_0(x) \ q_1(x) \ dots \end{pmatrix}, \quad x \in [-1,1]$$

#### Transition probabilities

$$\Pr(X_n = j | X_0 = i) = P_{ij}^n = \frac{1}{\|q_i\|^2} \int_{-1}^1 x^n q_i(x) q_j(x) d\omega(x)$$

#### Invariant measure

Non-null vector  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$  such that

$$\pi P = \pi$$
  $\Rightarrow \pi_i = \frac{a_0 a_1 \cdots a_{i-1}}{c_1 c_2 \cdots c_i} = \frac{1}{\|q_i\|^2}$ 

Examples: Jacobi polynomials (Legendre, Gegenbauer)





$$S = \{0, 1, 2, \ldots\}, \ \mathcal{T} = [0, \infty).$$

Spectral theorem: there exists a measure  $\omega$  associated with  $\mathcal{A}$  which orthogonal polynomials  $(q_n)_n$  satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

### Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

#### Invariant measure

Non-null vector  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) > 0$  such tha

$$\pi A = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|a_i\|}$$

Examples: Laguerre, Hahn, Krawtchouk, Charlier, polynomials, , , , , ,



$$S = \{0, 1, 2, \ldots\}, \ \mathcal{T} = [0, \infty).$$

Spectral theorem: there exists a measure  $\omega$  associated with  $\mathcal A$  which orthogonal polynomials  $(q_n)_n$  satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

#### Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

$$\pi \mathcal{A} = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|g_i\|^2}$$



$$S = \{0, 1, 2, \ldots\}, T = [0, \infty).$$

Spectral theorem: there exists a measure  $\omega$  associated with  $\mathcal{A}$  which orthogonal polynomials  $(q_n)_n$  satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

#### Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

#### Invariant measure

Non-null vector  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$  such that

$$\pi \mathcal{A} = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|^2}$$

$$S = \{0, 1, 2, \ldots\}, T = [0, \infty).$$

Spectral theorem: there exists a measure  $\omega$  associated with  $\mathcal{A}$  which orthogonal polynomials  $(q_n)_n$  satisfy

$$\mathcal{A}q = \begin{pmatrix} -\lambda_0 & \lambda_0 & & \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix} = -x \begin{pmatrix} q_0(x) \\ q_1(x) \\ \vdots \end{pmatrix}$$

### Transition probabilities

$$\Pr(X_t = j | X_0 = i) = P_{ij}(t) = \frac{1}{\|q_i\|^2} \int_0^\infty e^{-xt} q_i(x) q_j(x) d\omega(x)$$

#### Invariant measure

Non-null vector  $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots) \geq 0$  such that

$$\pi \mathcal{A} = 0 \quad \Rightarrow \pi_i = \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} = \frac{1}{\|q_i\|^2}$$

Examples: Laguerre, Hahn, Krawtchouk, Charlier polynomials



$$S = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure  $\omega$  symmetric with respect to  $\mathcal{A}$ and the corresponding family of orthogonal functions  $(\phi_n)_n$  satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

$$\psi(y)$$
 tal que  $\mathcal{A}^*\psi(y) = 0 \Rightarrow \psi(y) = \frac{1}{\int_{\mathcal{S}} \omega(x) dx} \omega(y)$ 



$$\mathcal{S} = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure  $\omega$  symmetric with respect to  $\mathcal{A}$  and the corresponding family of orthogonal functions  $(\phi_n)_n$  satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

### Transition probability density

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

### Invariant measure

$$\psi(y)$$
 tal que  $\mathcal{A}^*\psi(y)=0 \Rightarrow \psi(y)=rac{1}{\int_S \omega(x) dx}\omega(y)$ 



$$\mathcal{S} = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure  $\omega$  symmetric with respect to  $\mathcal{A}$ and the corresponding family of orthogonal functions  $(\phi_n)_n$  satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

### Transition probability density

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

#### Invariant measure

$$\psi(y)$$
 tal que  $\mathcal{A}^*\psi(y)=0\Rightarrow \psi(y)=rac{1}{\int_S\omega(x)dx}\omega(y)$ 



$$S = (a, b) \subseteq \mathbb{R}, \ \mathcal{T} = [0, \infty)$$

If there exists a positive measure  $\omega$  symmetric with respect to  $\mathcal{A}$  and the corresponding family of orthogonal functions  $(\phi_n)_n$  satisfy

$$\mathcal{A}\phi_n(x) = \frac{1}{2}\sigma^2(x)\phi_n''(x) + \tau(x)\phi_n'(x) = \alpha_n\phi_n(x)$$

#### Transition probability density

$$p(t;x,y) = \sum_{n=0}^{\infty} e^{\alpha_n t} \phi_n(x) \phi_n(y) \omega(y)$$

### Invariant measure

$$\psi(y)$$
 tal que  $\mathcal{A}^*\psi(y)=0 \Rightarrow \psi(y)=rac{1}{\int_S \omega(x) dx}\omega(y)$ 





# OUTLINE

- MARKOV PROCESSES
  - Preliminaries
  - Spectral methods
- 2 Bivariate Markov processes
  - Preliminaries
  - Spectral methods
- 3 AN EXAMPLE
  - A quasi-birth-and-death process
  - A variant of the Wright-Fisher model

Now we have a bivariate or 2-component Markov process of the form  $\{(X_t,Y_t):t\in\mathcal{T}\}$  indexed by a parameter set  $\mathcal{T}$  (time) and with state space  $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$ , where  $\mathcal{S}\subset\mathbb{R}$ . The first component is the level while the second component is the phase.

Now the transition probabilities can be written in terms of a matrix-valued function  $\mathbf{P}(t;x,A)$ , defined for every  $t\in\mathcal{T},x\in\mathcal{S}$ , and any Borel set A of  $\mathcal{S}$ , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator  ${\cal A}$  is now matrix-valued

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's

Now we have a bivariate or 2-component Markov process of the form  $\{(X_t,Y_t):t\in\mathcal{T}\}$  indexed by a parameter set  $\mathcal{T}$  (time) and with state space  $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$ , where  $\mathcal{S}\subset\mathbb{R}$ . The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function  $\mathbf{P}(t;x,A)$ , defined for every  $t\in\mathcal{T},x\in\mathcal{S}$ , and any Borel set A of  $\mathcal{S}$ , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator  ${\cal A}$  is now matrix-valued

Ideas behind: random evolutions (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's

Now we have a bivariate or 2-component Markov process of the form  $\{(X_t,Y_t):t\in\mathcal{T}\}$  indexed by a parameter set  $\mathcal{T}$  (time) and with state space  $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$ , where  $\mathcal{S}\subset\mathbb{R}$ . The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function  $\mathbf{P}(t;x,A)$ , defined for every  $t\in\mathcal{T},x\in\mathcal{S}$ , and any Borel set A of  $\mathcal{S}$ , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator  ${\mathcal A}$  is now  ${\sf matrix\text{-}valued}.$ 

Ideas behind: random evolutions



Now we have a bivariate or 2-component Markov process of the form  $\{(X_t,Y_t):t\in\mathcal{T}\}$  indexed by a parameter set  $\mathcal{T}$  (time) and with state space  $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$ , where  $\mathcal{S}\subset\mathbb{R}$ . The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function  $\mathbf{P}(t;x,A)$ , defined for every  $t\in\mathcal{T},x\in\mathcal{S}$ , and any Borel set A of  $\mathcal{S}$ , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's)



Now we have a bivariate or 2-component Markov process of the form  $\{(X_t,Y_t):t\in\mathcal{T}\}$  indexed by a parameter set  $\mathcal{T}$  (time) and with state space  $\mathcal{C}=\mathcal{S}\times\{1,2,\ldots,N\}$ , where  $\mathcal{S}\subset\mathbb{R}$ . The first component is the level while the second component is the phase. Now the transition probabilities can be written in terms of a matrix-valued function  $\mathbf{P}(t;x,A)$ , defined for every  $t\in\mathcal{T},x\in\mathcal{S}$ , and any Borel set A of  $\mathcal{S}$ , whose entry (i,j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr\{X_t \in A, Y_t = j | X_0 = x, Y_0 = i\}.$$

Every entry must be nonnegative and

$$P(t; x, A)e_N \le e_N, e_N = (1, 1, ..., 1)^T$$

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions (Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).

# DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

Now we have 
$$\mathcal{C} = \{0,1,2,\ldots\} \times \{1,2,\ldots,N\}$$
,  $\mathcal{T} = \{0,1,2,\ldots\}$  and 
$$(\mathbf{P}_{ii'})_{jj'} = \Pr(X_{n+1} = i,Y_{n+1} = j|X_n = i',Y_n = j') = 0 \quad \text{for} \quad |i-i'| > 1$$

i.e. a  $N \times N$  block tridiagonal transition probability matrix

Similar for continuous time quasi-birth-and-death processes but now we have  $\mathcal{C}=\{0,1,2,\ldots\}\times\{1,2,\ldots,N\},\ \mathcal{T}=[0,+\infty)$  and the transition probability matrix  $\mathcal{A}$  satisfies

$$(A_n)_{ij}, (B_n)_{ij}, i \neq j, (C_n)_{ij} \geq 0, (B_n)_{ii} \leq 0$$
  
 $\sum_i (A_n)_{ij} + (B_n)_{ij} + (C_n)_{ij} = 0, i = 1, \dots, I$ 

# DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

Now we have 
$$\mathcal{C} = \{0,1,2,\ldots\} \times \{1,2,\ldots,N\}, \ \mathcal{T} = \{0,1,2,\ldots\}$$
 and 
$$(\mathbf{P}_{ii'})_{jj'} = \Pr(X_{n+1}=i,Y_{n+1}=j|X_n=i',Y_n=j') = 0 \quad \text{for} \quad |i-i'|>1$$

i.e. a  $N \times N$  block tridiagonal transition probability matrix

Similar for continuous time quasi-birth-and-death processes but now we have  $\mathcal{C}=\{0,1,2,\ldots\} \times \{1,2,\ldots,N\}, \ \mathcal{T}=[0,+\infty)$  and the transition probability matrix  $\mathcal{A}$  satisfies

$$(A_n)_{ij}, (B_n)_{ij}, i \neq j, (C_n)_{ij} \geq 0, (B_n)_{ii} \leq 0$$
  
 $\sum_j (A_n)_{ij} + (B_n)_{ij} + (C_n)_{ij} = 0, i = 1, ..., N$ 





















# SWITCHING DIFFUSION PROCESSES

We have  $C = (a, b) \times \{1, 2, ..., N\}$ ,  $T = [0, \infty)$ . The transition probability density is now a matrix which entry (i, j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr(X_t \in A, Y_t = j | X_0 = x, Y_0 = i)$$

for any t > 0,  $x \in (a, b)$  and A any Borel set.

The infinitesimal operator  ${\mathcal A}$  is now a matrix-valued differential operator (Berman, 1994)

$$A = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d^1}{dx^1} + \mathbf{Q}(x)\frac{d^0}{dx^0}$$

We have that  $\mathbf{A}(x)$  and  $\mathbf{B}(x)$  are diagonal matrices and  $\mathbf{Q}(x)$  is the infinitesimal operator of a continuous time Markov chain, i.e.

$$\mathbf{Q}_{ii}(x) \leq 0$$
,  $\mathbf{Q}_{ij}(x) \geq 0$ ,  $i \neq j$ ,  $\mathbf{Q}(x)\mathbf{e}_N = \mathbf{0}$ 

### SWITCHING DIFFUSION PROCESSES

We have  $C = (a, b) \times \{1, 2, ..., N\}$ ,  $T = [0, \infty)$ . The transition probability density is now a matrix which entry (i, j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr(X_t \in A, Y_t = j | X_0 = x, Y_0 = i)$$

for any t > 0,  $x \in (a, b)$  and A any Borel set.

The infinitesimal operator  ${\cal A}$  is now a matrix-valued differential operator (Berman, 1994)

$$\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d^1}{dx^1} + \mathbf{Q}(x)\frac{d^0}{dx^0}$$

We have that  $\mathbf{A}(x)$  and  $\mathbf{B}(x)$  are diagonal matrices and  $\mathbf{Q}(x)$  is the infinitesimal operator of a continuous time Markov chain, i.e

$$\mathbf{Q}_{ii}(x) \leq 0$$
,  $\mathbf{Q}_{ij}(x) \geq 0$ ,  $i \neq j$ ,  $\mathbf{Q}(x)\mathbf{e}_N = \mathbf{0}$ 

# SWITCHING DIFFUSION PROCESSES

We have  $C = (a, b) \times \{1, 2, ..., N\}$ ,  $T = [0, \infty)$ . The transition probability density is now a matrix which entry (i, j) gives

$$\mathbf{P}_{ij}(t; x, A) = \Pr(X_t \in A, Y_t = j | X_0 = x, Y_0 = i)$$

for any t > 0,  $x \in (a, b)$  and A any Borel set.

The infinitesimal operator  ${\cal A}$  is now a matrix-valued differential operator (Berman, 1994)

$$\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d^1}{dx^1} + \mathbf{Q}(x)\frac{d^0}{dx^0}$$

We have that  $\mathbf{A}(x)$  and  $\mathbf{B}(x)$  are diagonal matrices and  $\mathbf{Q}(x)$  is the infinitesimal operator of a continuous time Markov chain, i.e.

$$\mathbf{Q}_{ii}(x) \leq 0$$
,  $\mathbf{Q}_{ij}(x) \geq 0$ ,  $i \neq j$ ,  $\mathbf{Q}(x)\mathbf{e}_N = \mathbf{0}$ 

$$\mathbf{A}_{ii}(x) = i^2$$
,  $\mathbf{B}_{ii}(x) = -ix$ ,  $i = 1, 2, 3$ .



$$\mathbf{A}_{ii}(x) = i^2$$
,  $\mathbf{B}_{ii}(x) = -ix$ ,  $i = 1, 2, 3$ .



$$\mathbf{A}_{ii}(x) = i^2$$
,  $\mathbf{B}_{ii}(x) = -ix$ ,  $i = 1, 2, 3$ .



$$\mathbf{A}_{ii}(x) = i^2$$
,  $\mathbf{B}_{ii}(x) = -ix$ ,  $i = 1, 2, 3$ .



### AN ILLUSTRATIVE EXAMPLE

$$N=3$$
 phases and  $\mathcal{S}=\mathbb{R}$  with

$$\mathbf{A}_{ii}(x) = i^2$$
,  $\mathbf{B}_{ii}(x) = -ix$ ,  $i = 1, 2, 3$ .



### SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator  $\mathcal{A}$ , if we can find a weight matrix  $\mathbf{W}(x)$  associated with  $\mathcal{A}$ , and a set of orthogonal matrix eigenfunctions  $\mathbf{F}(i,x)$  such that

$$AF(i,x) = \Lambda(i,x)F(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities P(t; x, y).
- Invariant measure or distribution  $\pi = (\pi_j)$  (discrete case) with

$$\pi_j = \lim_{t \to \infty} \mathbf{P}_{\cdot j}(t) \in \mathbb{R}^N$$

or 
$$\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))$$
 (continuous case) with  $\psi_j(y)=\lim_{t\to\infty}\mathbf{P}_{\cdot j}(t;x,y)$ 

### SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator  $\mathcal{A}$ , if we can find a weight matrix  $\mathbf{W}(x)$  associated with  $\mathcal{A}$ , and a set of orthogonal matrix eigenfunctions  $\mathbf{F}(i,x)$  such that

$$AF(i,x) = \Lambda(i,x)F(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities P(t; x, y).
- Invariant measure or distribution  $\pi = (\pi_j)$  (discrete case) with

$$\pi_j = \lim_{t \to \infty} \mathbf{P}_{\cdot j}(t) \in \mathbb{R}^N$$

or 
$$\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))$$
 (continuous case) with 
$$\psi_j(y)=\lim_{t\to\infty}\mathbf{P}_{\cdot j}(t;x,y)$$

#### SPECTRAL METHODS

Now, given a matrix-valued infinitesimal operator  $\mathcal{A}$ , if we can find a weight matrix  $\mathbf{W}(x)$  associated with  $\mathcal{A}$ , and a set of orthogonal matrix eigenfunctions  $\mathbf{F}(i,x)$  such that

$$AF(i,x) = \Lambda(i,x)F(i,x),$$

then it is possible to find spectral representations of

- Transition probabilities P(t; x, y).
- Invariant measure or distribution  $\pi = (\pi_j)$  (discrete case) with

$$oldsymbol{\pi}_j = \lim_{t o \infty} \mathbf{P}_{\cdot j}(t) \in \mathbb{R}^N$$

or 
$$\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))$$
 (continuous case) with 
$$\psi_j(y)=\lim_{t\to\infty}\mathbf{P}_{\cdot j}(t;x,y)$$

## DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

$$C = \{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, T = \{0, 1, 2, \ldots\}$$

(Grünbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix  $\mathbf{W}$  associate with  $\mathbf{P}$  which matrix-valued orthogonal polynomials  $(\Phi_n)_n$  satisfy

$$\mathbf{P}\mathbf{\Phi} = \begin{pmatrix} B_0 & A_0 & & \\ C_1 & B_1 & A_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]$$

#### $\Gamma$ ransition probabilities

$$\mathbf{P}_{ij}^{n} = \left(\int_{-1}^{1} x^{n} \mathbf{\Phi}_{i}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right) \left(\int_{-1}^{1} \mathbf{\Phi}_{j}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right)^{-1}$$

#### Invariant measure (MdI. 2011)

 $m{\pi}=ig(\pi_0;\pi_1;\cdotsig)\equivig(\Pi_0\mathbf{e}_N;\Pi_1\mathbf{e}_N;\cdotsig)$  tal que  $m{\pi}\mathbf{P}=m{\pi}$  where  $\mathbf{e}_N=(1,\ldots,1)^T$  and

$$\Pi_{n} = (C_{1}^{T} \cdots C_{n}^{T})^{-1} \Pi_{0}(A_{0} \cdots A_{n-1}) = \left(\int_{-1}^{1} \Phi_{n}(x) dW(x) \Phi_{n}^{*}(x)\right)^{-1}$$

# DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

$$C = \{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, T = \{0, 1, 2, \ldots\}$$

(Grünbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix  $\mathbf{W}$  associate with  $\mathbf{P}$  which matrix-valued orthogonal polynomials  $(\Phi_n)_n$  satisfy

$$\mathbf{P}\mathbf{\Phi} = \begin{pmatrix} B_0 & A_0 & & \\ C_1 & B_1 & A_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]$$

#### Transition probabilities

$$\mathbf{P}_{ij}^{n} = \left(\int_{-1}^{1} x^{n} \mathbf{\Phi}_{i}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right) \left(\int_{-1}^{1} \mathbf{\Phi}_{j}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right)^{-1}$$

#### Invariant measure (Mdl. 2011)

$$m{\pi} = (m{\pi}_0; m{\pi}_1; \cdots) \equiv (\Pi_0 \mathbf{e}_N; \Pi_1 \mathbf{e}_N; \cdots)$$
 tal que  $m{\pi} \mathbf{P} = m{\pi}$  where  $\mathbf{e}_N = (1, \dots, 1)^T$  and

$$\Pi_{n} = (C_{1}^{T} \cdots C_{n}^{T})^{-1} \Pi_{0}(A_{0} \cdots A_{n-1}) = \left( \int_{-1}^{1} \Phi_{n}(x) d\mathbf{W}(x) \Phi_{n}^{*}(x) \right)^{-1}$$

### DISCRETE TIME QUASI-BIRTH-AND-DEATH PROCESSES

$$C = \{0, 1, 2, \ldots\} \times \{1, 2, \ldots, N\}, T = \{0, 1, 2, \ldots\}$$

(Grünbaum y Dette-Reuther-Studden-Zygmunt, 2007)

Spectral theorem: there exists a weight matrix  $\mathbf{W}$  associate with  $\mathbf{P}$  which matrix-valued orthogonal polynomials  $(\Phi_n)_n$  satisfy

$$\mathbf{P}\mathbf{\Phi} = \begin{pmatrix} B_0 & A_0 & & \\ C_1 & B_1 & A_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix} = x \begin{pmatrix} \mathbf{\Phi}_0(x) \\ \mathbf{\Phi}_1(x) \\ \vdots \end{pmatrix}, \quad x \in [-1, 1]$$

#### Transition probabilities

$$\mathbf{P}_{ij}^{n} = \left(\int_{-1}^{1} x^{n} \mathbf{\Phi}_{i}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right) \left(\int_{-1}^{1} \mathbf{\Phi}_{j}(x) d\mathbf{W}(x) \mathbf{\Phi}_{j}^{*}(x)\right)^{-1}$$

### Invariant measure (MdI, 2011)

$$m{\pi} = (m{\pi}_0; m{\pi}_1; \cdots) \equiv (\Pi_0 \mathbf{e}_N; \Pi_1 \mathbf{e}_N; \cdots)$$
 tal que  $m{\pi} \mathbf{P} = m{\pi}$  where  $\mathbf{e}_N = (1, \dots, 1)^T$  and

$$\Pi_n = (C_1^T \cdots C_n^T)^{-1} \Pi_0 (A_0 \cdots A_{n-1}) = \left( \int_{-1}^1 \Phi_n(x) d\mathbf{W}(x) \Phi_n^*(x) \right)^{-1}$$

### SWITCHING DIFFUSION MODELS

$$\mathcal{C} = (a,b) \times \{1,2,\ldots,N\}, \ \mathcal{T} = [0,\infty)$$

If there exists a weight matrix  $\mathbf{W}$  symmetric w.r.t.  $\mathcal{A}$  which matrix-valued orthogonal functions  $(\Phi_n)_n$  satisfies

$$\mathcal{A}\Phi_n(x) = \frac{1}{2}\mathbf{A}(x)\Phi_n''(x) + \mathbf{B}(x)\Phi_n'(x) + \mathbf{Q}(x)\Phi_n(x) = \Phi_n(x)\Gamma_n$$

### Transition probability density matrix (MdI, 2012)

$$\mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \mathbf{\Phi}_n(x) e^{\mathbf{\Gamma}_n t} \mathbf{\Phi}_n^*(y) \mathbf{W}(y)$$

#### Invariant distribution (MdI, 2012)

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$
 such that  $\mathcal{A}^*\psi(y) = \mathbf{0}$ 

$$\Rightarrow \psi(y) = \left(\int_{a}^{b} \mathbf{e}_{N}^{T} \mathbf{W}(x) \mathbf{e}_{N} dx\right)^{-1} \mathbf{e}_{N}^{T} \mathbf{W}(y)$$

### SWITCHING DIFFUSION MODELS

$$\mathcal{C} = (a, b) \times \{1, 2, \dots, N\}, \ \mathcal{T} = [0, \infty)$$

If there exists a weight matrix **W** symmetric w.r.t.  $\mathcal{A}$  which matrix-valued orthogonal functions  $(\Phi_n)_n$  satisfies

$$\mathcal{A}\Phi_n(x) = \frac{1}{2}\mathbf{A}(x)\Phi_n''(x) + \mathbf{B}(x)\Phi_n'(x) + \mathbf{Q}(x)\Phi_n(x) = \Phi_n(x)\Gamma_n$$

# Transition probability density matrix (MdI, 2012)

$$\mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \mathbf{\Phi}_n(x) e^{\mathbf{\Gamma}_n t} \mathbf{\Phi}_n^*(y) \mathbf{W}(y)$$

#### Invariant distribution (MdI, 2012)

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$
 such that  $\mathcal{A}^*\psi(y) = \mathbf{0}$ 

$$\Rightarrow \psi(y) = \left(\int_{a}^{b} \mathbf{e}_{N}^{T} \mathbf{W}(x) \mathbf{e}_{N} dx\right)^{-1} \mathbf{e}_{N}^{T} \mathbf{W}(y)$$

### SWITCHING DIFFUSION MODELS

$$C = (a, b) \times \{1, 2, \dots, N\}, \ T = [0, \infty)$$

If there exists a weight matrix  $\mathbf{W}$  symmetric w.r.t.  $\mathcal{A}$  which matrix-valued orthogonal functions  $(\Phi_n)_n$  satisfies

$$\mathcal{A}\Phi_n(x) = \frac{1}{2}\mathbf{A}(x)\Phi_n''(x) + \mathbf{B}(x)\Phi_n'(x) + \mathbf{Q}(x)\Phi_n(x) = \Phi_n(x)\Gamma_n$$

### Transition probability density matrix (MdI, 2012)

$$\mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \mathbf{\Phi}_n(x) e^{\mathbf{\Gamma}_n t} \mathbf{\Phi}_n^*(y) \mathbf{W}(y)$$

### Invariant distribution (MdI, 2012)

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$
 such that  $\mathcal{A}^*\psi(y) = \mathbf{0}$ 

$$\Rightarrow \psi(y) = \left(\int_{0}^{b} \mathbf{e}_{N}^{T} \mathbf{W}(x) \mathbf{e}_{N} dx\right)^{-1} \mathbf{e}_{N}^{T} \mathbf{W}(y)$$

### OUTLINE

- MARKOV PROCESSES
  - Preliminaries
  - Spectral methods
- 2 Bivariate Markov processes
  - Preliminaries
  - Spectral methods
- 3 AN EXAMPLE
  - A quasi-birth-and-death process
  - A variant of the Wright-Fisher model

# An example coming from group representation

Let  $N \in \{1, 2, ...\}$ ,  $\alpha, \beta > -1$ ,  $0 < k < \beta + 1$  and  $\mathbf{E}_{ii}$  will denote the matrix with 1 at entry (i, j) and 0 otherwise.

For  $x \in (0,1)$ , we have a symmetric pair  $\{\mathbf{W}, \mathcal{A}\}$ (Grünbaum-Pacharoni-Tirao, 2002) where

$$\mathbf{W}(x) = x^{\alpha} (1 - x)^{\beta} \sum_{i=1}^{N} {\beta - k + i - 1 \choose i - 1} {N + k - i - 1 \choose N - i} x^{N - i} \mathbf{E}_{ii}$$
$$\mathcal{A} = \frac{1}{2} \mathbf{A}(x) \frac{d^2}{dx^2} + \mathbf{B}(x) \frac{d}{dx} + \mathbf{Q}(x) \frac{d^0}{dx^0}$$

$$\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]\mathbf{E}_{ii}$$

$$\mathbf{Q}(x) = \sum_{i=2}^{N} \mu_i(x) \mathbf{E}_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) \mathbf{E}_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) \mathbf{E}_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x}(i-1)(N-i+k).$$

# AN EXAMPLE COMING FROM GROUP REPRESENTATION

Let  $N \in \{1, 2, ...\}$ ,  $\alpha, \beta > -1$ ,  $0 < k < \beta + 1$  and  $\mathbf{E}_{ij}$  will denote the matrix with 1 at entry (i, j) and 0 otherwise.

For  $x \in (0,1)$ , we have a symmetric pair  $\{\mathbf{W}, \mathcal{A}\}$  (Grünbaum-Pacharoni-Tirao, 2002) where

$$\mathbf{W}(x) = x^{\alpha} (1 - x)^{\beta} \sum_{i=1}^{N} {\beta - k + i - 1 \choose i - 1} {N + k - i - 1 \choose N - i} x^{N - i} \mathbf{E}_{ii}$$
$$\mathcal{A} = \frac{1}{2} \mathbf{A}(x) \frac{d^2}{dx^2} + \mathbf{B}(x) \frac{d}{dx} + \mathbf{Q}(x) \frac{d^0}{dx^0}$$

$$\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]\mathbf{E}_{ii}$$

$$\mathbf{Q}(x) = \sum_{i=2}^{N} \mu_i(x) \mathbf{E}_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) \mathbf{E}_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) \mathbf{E}_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x}(i-1)(N-i+k).$$

# An example coming from group representation

Let  $N \in \{1, 2, \ldots\}$ ,  $\alpha, \beta > -1$ ,  $0 < k < \beta + 1$  and  $\mathbf{E}_{ij}$  will denote the matrix with 1 at entry (i, j) and 0 otherwise.

For  $x \in (0,1)$ , we have a symmetric pair  $\{\mathbf{W}, \mathcal{A}\}$  (Grünbaum-Pacharoni-Tirao, 2002) where

$$\mathbf{W}(x) = x^{\alpha} (1 - x)^{\beta} \sum_{i=1}^{N} {\beta - k + i - 1 \choose i - 1} {N + k - i - 1 \choose N - i} x^{N - i} \mathbf{E}_{ii}$$
$$\mathcal{A} = \frac{1}{2} \mathbf{A}(x) \frac{d^2}{dx^2} + \mathbf{B}(x) \frac{d}{dx} + \mathbf{Q}(x) \frac{d^0}{dx^0}$$

$$\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}(x) = \sum_{i=1}^{N} [\alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i)]\mathbf{E}_{ii}$$

$$\mathbf{Q}(x) = \sum_{i=2}^{N} \mu_i(x) \mathbf{E}_{i,i-1} - \sum_{i=1}^{N} (\lambda_i(x) + \mu_i(x)) \mathbf{E}_{ii} + \sum_{i=1}^{N-1} \lambda_i(x) \mathbf{E}_{i,i+1},$$

$$\lambda_i(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mu_i(x) = \frac{x}{1-x}(i-1)(N-i+k).$$

- The orthogonal eigenfunctions Φ<sub>i</sub>(x) of A are called matrix-valued spherical functions associated with the complex projective space. There are many structural formulas available studied in the last years (Grünbaum-Pacharoni-Tirao-Román-MdI).
- ullet Bispectrality:  $\Phi_i(x)$  satisfy a three-term recurrence relation

$$x\Phi_{i}(x) = A_{i}\Phi_{i+1}(x) + B_{i}\Phi_{i}(x) + C_{i}\Phi_{i-1}(x), \quad i = 0, 1, ...$$

whose Jacobi matrix describes a discrete-time quasi-birth-and-death process (Grünbaum-Mdl, 2008). It was recently connected with urn and Young diagram models (Grünbaum-Pacharoni-Tirao, 2011).

• The infinitesimal operator  $\mathcal{A}$  describes a nontrivial switching diffusion process from which we can give a description of the matrix-valued probability density  $\mathbf{P}(t;x,y)$  and invariant distribution  $\psi(y)$  in terms of the eigenfunctions  $\Phi_i(x)$ , among other properties (Mdl. 2012).

- The orthogonal eigenfunctions Φ<sub>i</sub>(x) of A are called matrix-valued spherical functions associated with the complex projective space. There are many structural formulas available studied in the last years (Grünbaum-Pacharoni-Tirao-Román-MdI).
- ullet Bispectrality:  $\Phi_i(x)$  satisfy a three-term recurrence relation

$$x\Phi_{i}(x) = A_{i}\Phi_{i+1}(x) + B_{i}\Phi_{i}(x) + C_{i}\Phi_{i-1}(x), \quad i = 0, 1, ...$$

- whose Jacobi matrix describes a discrete-time quasi-birth-and-death process (Grünbaum-MdI, 2008). It was recently connected with urn and Young diagram models (Grünbaum-Pacharoni-Tirao, 2011).
- The infinitesimal operator  $\mathcal{A}$  describes a nontrivial switching diffusion process from which we can give a description of the matrix-valued probability density  $\mathbf{P}(t;x,y)$  and invariant distribution  $\psi(y)$  in terms of the eigenfunctions  $\Phi_i(x)$ , among other properties (Mdl. 2012).

- The orthogonal eigenfunctions Φ<sub>i</sub>(x) of A are called matrix-valued spherical functions associated with the complex projective space. There are many structural formulas available studied in the last years (Grünbaum-Pacharoni-Tirao-Román-MdI).
- ullet Bispectrality:  $\Phi_i(x)$  satisfy a three-term recurrence relation

$$x\Phi_i(x) = A_i\Phi_{i+1}(x) + B_i\Phi_i(x) + C_i\Phi_{i-1}(x), \quad i = 0, 1, \dots$$

whose Jacobi matrix describes a discrete-time quasi-birth-and-death process (Grünbaum-MdI, 2008). It was recently connected with urn and Young diagram models (Grünbaum-Pacharoni-Tirao, 2011).

• The infinitesimal operator  $\mathcal{A}$  describes a nontrivial switching diffusion process from which we can give a description of the matrix-valued probability density  $\mathbf{P}(t;x,y)$  and invariant distribution  $\psi(y)$  in terms of the eigenfunctions  $\Phi_i(x)$ , among other properties (MdI, 2012).

# A QUASI-BIRTH-AND-DEATH PROCESS (N = 2)

#### Conjugation

$$\widetilde{\mathbf{W}}(x) = \mathbf{T}^*(x)\mathbf{W}(x)\mathbf{T}(x)$$

where

$$\mathbf{T}(x) = \begin{pmatrix} 1 - x & 1 - x \\ 1 - x & -x - \frac{\alpha + 1}{\beta - k + 1} \end{pmatrix}$$

Grünbaum-MdI (2008) and consider a family of matrix-valued orthogonal polynomials  $(\mathbf{Q}_n(x))_n$  with respect to  $\widetilde{\mathbf{W}}(x)$ . This transformation allows us to have a second-order differential operator of *Sturm-Liouville* type

### We choose the family of OMP $(\mathbf{Q}_n(x))_n$ such that

Three term recurrence relation

$$x\mathbf{Q}_n(x) = A_n\mathbf{Q}_{n+1}(x) + B_n\mathbf{Q}_n(x) + C_n\mathbf{Q}_{n-1}(x), \quad n = 0, 1, \dots$$
  
where the Jacobi matrix is stochastic

• Choosing  $\mathbf{Q}_0(x) = \mathbf{I}$  the leading coefficient of  $\mathbf{Q}_n$  is

$$\frac{\Gamma(\beta+2)\Gamma(\alpha+\beta+2n+2)}{\Gamma(\alpha+\beta+n+2)\Gamma(\beta+n+2)}\begin{pmatrix} \frac{k+n}{k} & -\frac{n(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\ 0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \end{pmatrix}$$

• Moreover, the corresponding norms are diagonal matrices:

$$\|\mathbf{Q}_{n}\|_{W}^{2} = \frac{\Gamma(n+\alpha+1)\Gamma(n+1)\Gamma(\beta+2)^{2}(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2)\Gamma(n+\beta+2)} \times \begin{pmatrix} \frac{n+k}{k(2n+\alpha+\beta+2)} & 0\\ 0 & \frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2n+\alpha+\beta+3)(n+\alpha+\beta+2)} \end{pmatrix}$$

We choose the family of OMP  $(\mathbf{Q}_n(x))_n$  such that

Three term recurrence relation

$$x\mathbf{Q}_n(x) = A_n\mathbf{Q}_{n+1}(x) + B_n\mathbf{Q}_n(x) + C_n\mathbf{Q}_{n-1}(x), \quad n = 0, 1, \dots$$
  
where the Jacobi matrix is stochastic

• Choosing  $\mathbf{Q}_0(x) = \mathbf{I}$  the leading coefficient of  $\mathbf{Q}_n$  is

$$\frac{\Gamma(\beta+2)\Gamma(\alpha+\beta+2n+2)}{\Gamma(\alpha+\beta+n+2)\Gamma(\beta+n+2)}\begin{pmatrix} \frac{k+n}{k} & -\frac{n(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\ 0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta-k+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \end{pmatrix}$$

Moreover, the corresponding norms are diagonal matrices:

$$\|\mathbf{Q}_{n}\|_{W}^{2} = \frac{\Gamma(n+\alpha+1)\Gamma(n+1)\Gamma(\beta+2)^{2}(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2)\Gamma(n+\beta+2)} \times \left(\frac{\frac{n+k}{k(2n+\alpha+\beta+2)}}{0} \frac{0}{\frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2n+\alpha+\beta+3)(n+\alpha+\beta+2)}}\right)$$

We choose the family of OMP  $(\mathbf{Q}_n(x))_n$  such that

Three term recurrence relation

$$x\mathbf{Q}_n(x) = A_n\mathbf{Q}_{n+1}(x) + B_n\mathbf{Q}_n(x) + C_n\mathbf{Q}_{n-1}(x), \quad n = 0, 1, \dots$$
  
where the Jacobi matrix is stochastic

• Choosing  $\mathbf{Q}_0(x) = \mathbf{I}$  the leading coefficient of  $\mathbf{Q}_n$  is

$$\frac{\Gamma(\beta+2)\Gamma(\alpha+\beta+2n+2)}{\Gamma(\alpha+\beta+n+2)\Gamma(\beta+n+2)}\begin{pmatrix} \frac{k+n}{k} & -\frac{n(\alpha+\beta+2n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\ 0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta-k+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \end{pmatrix}$$

Moreover, the corresponding norms are diagonal matrices:

$$\|\mathbf{Q}_n\|_W^2 = \frac{\Gamma(n+\alpha+1)\Gamma(n+1)\Gamma(\beta+2)^2(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2)\Gamma(n+\beta+2)} \times \left(\frac{\frac{n+k}{k(2n+\alpha+\beta+2)}}{0} \frac{0}{\frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2n+\alpha+\beta+3)(n+\alpha+\beta+2)}}\right)$$

• The choice of the leading coefficient is motivated by the fact that

$$\mathbf{Q}_n(1)\mathbf{e}_N=\mathbf{e}_N$$

where 
$$\mathbf{e}_{N} = (1, 1, \cdots, 1)^{T}$$
.

• Consequently, the Jacobi matrix is stochastic:

$$1 \cdot \mathbf{Q}_{n}(1)\mathbf{e}_{N} = A_{n}\mathbf{Q}_{n+1}(1)\mathbf{e}_{N} + B_{n}\mathbf{Q}_{n}(1)\mathbf{e}_{N} + C_{n}\mathbf{Q}_{n-1}(1)\mathbf{e}_{N}$$

$$\mathbf{e}_{N} = (A_{n} + B_{n} + C_{n})\mathbf{e}_{N}$$

 The choice of the leading coefficient is motivated by the fact that

$$\mathbf{Q}_n(1)\mathbf{e}_N=\mathbf{e}_N$$

where  $\mathbf{e}_{N} = (1, 1, \cdots, 1)^{T}$ .

• Consequently, the Jacobi matrix is stochastic:

$$1 \cdot \mathbf{Q}_{n}(1)\mathbf{e}_{N} = A_{n}\mathbf{Q}_{n+1}(1)\mathbf{e}_{N} + B_{n}\mathbf{Q}_{n}(1)\mathbf{e}_{N} + C_{n}\mathbf{Q}_{n-1}(1)\mathbf{e}_{N}$$

$$\mathbf{e}_{N} = (A_{n} + B_{n} + C_{n})\mathbf{e}_{N}$$

# Particular case $\alpha = \beta = 0$ , k = 1/2

$$A_n = \begin{pmatrix} \frac{(2n+1)(n+2)^2}{2(2n+3)^2(n+1)} & 0\\ \frac{2(n+2)}{(2n+5)(2n+3)^2} & \frac{n+3}{2(2n+5)} \end{pmatrix}$$

$$B_n = \begin{pmatrix} \frac{1}{2} - \frac{4n^2 + 8n - 1}{2(2n+1)^2(2n+3)^2} & \frac{n+2}{(2n+3)^2(n+1)}\\ \frac{2(n+1)}{(2n+1)(2n+3)^2} & \frac{1}{2} - \frac{1}{(2n+3)^2} \end{pmatrix}$$

$$C_n = \begin{pmatrix} \frac{n^2(2n+3)}{2(2n+1)^2(n+1)} & \frac{n}{(n+1)(2n+1)^2}\\ 0 & \frac{n}{2(2n+1)} \end{pmatrix}$$

# Particular case $\alpha = \beta = 0$ , k = 1/2

Pentadiagonal Jacobi matrix:

### Associated Network



#### THE INVARIANT MEASURE

#### Invariant measure

The row vector

$$\pi=(\pi^0;\pi^1;\cdots)$$

$$\boldsymbol{\pi}^{n} = \left(\frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{1,1}}, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{2,2}}, \cdots, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{N,N}}\right), \quad n \geq 0$$

is an invariant measure of P

Particular case N=2,  $\alpha=\beta=0$ , k=1/2:

$$\pi^n = \left(\frac{2(n+1)^3}{(2n+3)(2n+1)}, \frac{(n+1)(n+2)}{2n+3}\right), \quad n \ge 0$$

$$\boldsymbol{\pi} = \left(\frac{2}{3}, \frac{2}{3}; \frac{16}{15}, \frac{6}{5}; \frac{54}{35}, \frac{12}{7}; \frac{128}{63}, \frac{20}{9}; \frac{250}{99}, \frac{30}{11}; \frac{432}{143}, \frac{42}{13}; \frac{686}{195}, \frac{56}{15}; \cdots\right)$$

### THE INVARIANT MEASURE

#### Invariant measure

The row vector

$$\pi=(\pi^0;\pi^1;\cdots)$$

$$\pi^{n} = \left(\frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{1,1}}, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{2,2}}, \cdots, \frac{1}{\left(\|\mathbf{Q}_{n}\|_{\widetilde{\mathbf{W}}}^{2}\right)_{N,N}}\right), \quad n \geq 0$$

is an invariant measure of P

Particular case N=2,  $\alpha=\beta=0$ , k=1/2:

$$\pi^n = \left(\frac{2(n+1)^3}{(2n+3)(2n+1)}, \frac{(n+1)(n+2)}{2n+3}\right), \quad n \ge 0$$

$$\boldsymbol{\pi} = \left(\frac{2}{3}, \frac{2}{3}; \frac{16}{15}, \frac{6}{5}; \frac{54}{35}, \frac{12}{7}; \frac{128}{63}, \frac{20}{9}; \frac{250}{99}, \frac{30}{11}; \frac{432}{143}, \frac{42}{13}; \frac{686}{195}, \frac{56}{15}; \cdots\right)$$

# A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M composed of two types A and B.

$$A \xrightarrow{\frac{1+\beta}{2}} B$$
,  $B \xrightarrow{\frac{1+\alpha}{2}} A$ ,  $\alpha, \beta > -1$ 

As  $M \to \infty$ , this model can be described by a diffusion process whose state space is S = [0,1] with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1 - x), \quad \alpha, \beta > -1$$

The *N* phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$\mathbf{B}_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \mathbf{A}_{ii}(x) = 2x(1 - x)$$

Now there is an extra parameter  $k \in (0, \beta + 1)$  in  $\mathbf{Q}(x)$ , which measures how the process moves through all the phases,  $\mathbf{Q}(x)$ 

# A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M composed of two types A and B.

$$A \xrightarrow{\frac{1+\beta}{2}} B$$
,  $B \xrightarrow{\frac{1+\alpha}{2}} A$ ,  $\alpha, \beta > -1$ 

As  $M \to \infty$ , this model can be described by a diffusion process whose state space is S = [0,1] with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^2(x) = 2x(1-x), \quad \alpha, \beta > -1$$

The *N* phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$\mathbf{B}_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \mathbf{A}_{ii}(x) = 2x(1 - x)$$

Now there is an extra parameter  $k \in (0, \beta + 1)$  in  $\mathbf{Q}(x)$ , which measures how the process moves through all the phases,  $\mathbf{Q}(x)$ 

# A VARIANT OF THE WRIGHT-FISHER MODEL

The Wright-Fisher diffusion model involving only mutation effects considers a big population of constant size M composed of two types A and B.

$$A \xrightarrow{\frac{1+\beta}{2}} B$$
,  $B \xrightarrow{\frac{1+\alpha}{2}} A$ ,  $\alpha, \beta > -1$ 

As  $M \to \infty$ , this model can be described by a diffusion process whose state space is S = [0,1] with drift and diffusion coefficient

$$\tau(x) = \alpha + 1 - x(\alpha + \beta + 2), \quad \sigma^{2}(x) = 2x(1 - x), \quad \alpha, \beta > -1$$

The *N* phases of our bivariate Markov process are variations of the Wright-Fisher model in the drift coefficients:

$$\mathbf{B}_{ii}(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \mathbf{A}_{ii}(x) = 2x(1 - x)$$

Now there is an extra parameter  $k \in (0, \beta + 1)$  in  $\mathbf{Q}(x)$ , which measures how the process moves through all the phases.

### WAITING TIMES AND TENDENCY

#### Waiting times

We have to take a look to the diagonal entries of  $\mathbf{Q}(x)$ :

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[ (N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If  $x \to 1^- \Rightarrow$  all phases are instantaneous.
- If  $x \to 0^+$  or  $k \to 0^+ \Rightarrow$  phase N is absorbing.
- If  $k \to \beta + 1 \Rightarrow$  phase 1 is absorbing.

- If  $k \rightarrow \beta + 1 \Rightarrow Backward tendency$ 
  - Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If  $k \to 0^+ \Rightarrow$  Forward tendency
  - Meaning: Both populations A and B 'fight' in the same conditions

#### Waiting times

We have to take a look to the diagonal entries of  $\mathbf{Q}(x)$ :

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[ (N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If  $x \to 1^- \Rightarrow$  all phases are instantaneous.
- If  $x \to 0^+$  or  $k \to 0^+ \Rightarrow$  phase N is absorbing.
- If  $k \to \beta + 1 \Rightarrow$  phase 1 is absorbing.

- If  $k \rightarrow \beta + 1 \Rightarrow Backward tendency$ 
  - Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If  $k \to 0^+ \Rightarrow$  Forward tendency
  - Meaning: Both populations A and B 'fight' in the same conditions

#### WAITING TIMES

We have to take a look to the diagonal entries of  $\mathbf{Q}(x)$ :

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[ (N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If  $x \to 1^- \Rightarrow \text{all}$  phases are instantaneous.
- If  $x \to 0^+$  or  $k \to 0^+ \Rightarrow$  phase N is absorbing.
- If  $k \to \beta + 1 \Rightarrow$  phase 1 is absorbing.

- If  $k \rightarrow \beta + 1 \Rightarrow Backward tendency$
- Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If  $k \to 0^+ \Rightarrow$  Forward tendency
  - Meaning: Both populations A and B 'fight' in the same conditions

#### WAITING TIMES

We have to take a look to the diagonal entries of  $\mathbf{Q}(x)$ :

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[ (N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If  $x \to 1^- \Rightarrow \text{all}$  phases are instantaneous.
- If  $x \to 0^+$  or  $k \to 0^+ \Rightarrow$  phase N is absorbing.
- If  $k \to \beta + 1 \Rightarrow$  phase 1 is absorbing.

- If  $k \rightarrow \beta + 1 \Rightarrow$  Backward tendency
  - Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If  $k \to 0^+ \Rightarrow$  Forward tendency
  - Meaning: Both populations A and B 'fight' in the same conditions.

#### Waiting times

We have to take a look to the diagonal entries of  $\mathbf{Q}(x)$ :

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[ (N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If  $x \to 1^- \Rightarrow$  all phases are instantaneous.
- If  $x \to 0^+$  or  $k \to 0^+ \Rightarrow$  phase N is absorbing.
- If  $k \to \beta + 1 \Rightarrow$  phase 1 is absorbing.

#### TENDENCY

• If  $k \rightarrow \beta + 1 \Rightarrow$  Backward tendency

Meaning: The parameter k helps the population of A's to survive against the population of B's.

- If  $k \to 0^+ \Rightarrow$  Forward tendency
  - Meaning: Both populations A and B 'fight' in the same conditions

### WAITING TIMES AND TENDENCY

#### Waiting times

We have to take a look to the diagonal entries of  $\mathbf{Q}(x)$ :

$$\mathbf{Q}_{ii}(x) = -\frac{1}{1-x} \left[ (N-i)(i+\beta-k) + x(i-1)(N-i+k) \right]$$

- If  $x \to 1^- \Rightarrow$  all phases are instantaneous.
- If  $x \to 0^+$  or  $k \to 0^+ \Rightarrow$  phase N is absorbing.
- If  $k \to \beta + 1 \Rightarrow$  phase 1 is absorbing.

#### TENDENCY

- If  $k \to \beta + 1 \Rightarrow Backward$  tendency

  Meaning: The parameter k helps the population of A's to survive against the population of B's.
- If  $k \to 0^+ \Rightarrow$  Forward tendency Meaning: Both populations A and B 'fight' in the same conditions.

# EXAMPLE OF TENDENCY



### INVARIANT DISTRIBUTION

The invariant distribution  $\psi(y)$   $(\alpha, \beta \ge 0)$  comes from the study of

$$\lim_{t\to\infty} \mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi_n^*(y) \mathbf{W}(y)$$

This should be independent of the initial state and phase. Therefore we should expect a row vector invariant distribution

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$

with  $0 \le \psi_j(y) \le 1$  and

$$\sum_{i=1}^N \int_0^1 \psi_j(y) dy = 1$$

#### EXPLICIT FORMULA (Mpl. 2012)

$$\Rightarrow \psi(y) = \left(\int_0^1 \mathbf{e}_N^T \mathbf{W}(x) \mathbf{e}_N dx\right)^{-1} \mathbf{e}_N^T \mathbf{W}(y)$$

where  $\mathbf{e}^T = (1, 1, \dots, 1)$ . In particular

$$\psi_j(y) = y^{\alpha+N-j} (1-y)^{\beta} \binom{N-1}{j-1} \binom{\alpha+\beta+N}{\alpha} \frac{(\beta+N)(k)_{N-j} (\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}$$

#### INVARIANT DISTRIBUTION

The invariant distribution  $\psi(y)$  ( $\alpha, \beta \geq 0$ ) comes from the study of

$$\lim_{t\to\infty} \mathbf{P}(t;x,y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi_n^*(y) \mathbf{W}(y)$$

This should be independent of the initial state and phase.

Therefore we should expect a row vector invariant distribution

$$\psi(y) = (\psi_1(y), \psi_2(y), \dots, \psi_N(y))$$

with  $0 \le \psi_j(y) \le 1$  and

$$\sum_{j=1}^N \int_0^1 \psi_j(y) dy = 1$$

#### Explicit formula (MdI, 2012)

$$\Rightarrow \psi(y) = \left(\int_0^1 \mathbf{e}_N^T \mathbf{W}(x) \mathbf{e}_N dx\right)^{-1} \mathbf{e}_N^T \mathbf{W}(y)$$

where  $\mathbf{e}^T = (1, 1, \dots, 1)$ . In particular

$$\psi_{j}(y) = y^{\alpha+N-j} (1-y)^{\beta} {N-1 \choose j-1} {\alpha+\beta+N \choose \alpha} \frac{(\beta+N)(k)_{N-j} (\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}$$

#### STUDY OF THE INVARIANT DISTRIBUTION

