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Abstract

An a-siphon is the locus of points in the plane that are at the same distance € from a polygonal chain consisting
of two half-lines emanating from a common point such that « is the interior angle of the half-lines. Given a set
S of n points in the plane and a fixed angle a, we want to compute an a-siphon of largest width € such that no
points of S lies in its interior. We present an efficient O(n?)-time algorithm for computing an orthogonal siphon.
The approach can be handled to solve the problem of the oriented a-siphon for which the orientation of a half-line
is known. We also propose an O(n® log n)-time algorithm for the arbitrarily oriented version.

1. Introduction

A corridor through a planar point set S is the
open region of the plane that is bounded by two
parallel lines intersecting the convex hull of 5,
CH(S). A corridor is empty if it does not con-
tain any point of S. The problem of computing
the widest empty corridor through a set S of n
points in the plane has been solved by Houle and
Maciel [3] in O(n?) time (Figure 1a).

One of the possible motivations of the widest
empty corridor problem is to find a collision-free
route to transport objects through a set of point
obstacles. However, even the widest empty corri-
dor may not be wide enough sometimes. This moti-
vates to consider allowing right-angle turns. Chen
in [1] studied this generalization considering an
L-shaped corridor, which is the concatenation of
two perpendicular links (a link is composed by two
parallel rays and one line segment forming an un-
bounded trapezoid).
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In this paper we consider a kind of corridor prob-
lem which we call the siphon problem. More pre-
cisely, we define a siphon as the locus of points in
the plane that are at the same distance € from a
polygonal chain P consisting of two half-lines ema-
nating from a common point (a 1-corner polygonal
chain). Let « be the interior angle of the half-lines.
An a-siphon is defined similarly but with the con-
straint that the interior angle of the two half-lines
emanating from a common point is a.

An a-siphon is determined by P and €, where ¢
is called the siphon width. Possible values for the
siphon angle o are 0° < a < 180°. The a-siphon
problem can be stated as follows.
a-Siphon problem. Given a set S of n points in
the plane and a fized angle o, compute the a-siphon
of largest width such that no pointsp € S lies in its
interior (Figure 1b).

The a-siphon has to intersect the convex hull
of S producing a non-trivial partition Sy, Sy of S
otherwise we will allow the a-siphon “to scratch
the exterior” of S without actually passing through
S and, therefore, the a-siphon can be arbitrarily
wide (Figure 1c).

Notice that a 180°-siphon is just a corridor [3]. A
0°-siphon is a silo emanating from a point (the end-
point of a half-line) (Figure 1d) and it has been par-
tially studied in [2] by giving an optimal ©(n log n)-
time algorithm in the case that the endpoint of the
half-line is anchored on a given point.
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Fig. 1. a) Widest corridor, b) a-siphon ¢) unbounded width
siphon, c) silo

Notice also that our a-siphon is a kind of corri-
dor which is a “better” solution than Cheng’s cor-
ridor in the following sense: suppose that we are
interesting in transporting a circular object in be-
tween a set of points, Cheng’s algorithm can gives
a negative answer while our algorithm produces an
affirmative answer; this is so because the width of
the widest a-siphon is always larger than or equal
to the width of the widest L-shaped corridor; in
fact a siphon is the area swept by a disk whose
center describes the route.

In this paper two variants for the a-siphon prob-
lem are consider: i) the oriented a-siphon problem,
where we know the angle a and the direction of one
of the half-lines of P; ii) the arbitrarily oriented -
siphon problem, where only the angle o is known.
Most proofs are omitted in this extended abstract.

Let S = {p1,p2,...,pn} be a planar point set.
The points are in general position, this assumption
is not essential for our algorithms to work, but han-
dling degeneracies would require the description of
many details and would hide the crucial ideas. We
denote the Euclidean distance between two points
p and ¢ by d(p, q). If p is a point and P is a closed
subset in the plane, the distance between p and P
is defined as d(p, P) = min{d(p,q) : ¢ € P}.

An a-siphon is bounded by an outer bound-
ary and an inner boundary; the outer boundary is
formed by a circular arc joined to two half-lines,
the exterior boundary legs; and the inner boundary
is formed by two half-lines, the interior boundary
legs. By orthogonal siphon we denote an oriented
90°-siphon such that its boundary legs are vertical
and horizontal.

2. Oriented a-siphon

In this section we study the problem of comput-
ing an oriented a-siphon. First we consider the or-
thogonal siphon and next we will consider the gen-

eral case. There are four possibilities for P in an
orthogonal siphon according to the north, south,
east and west directions. We only consider the case
S-E, other cases can be handle analogously.

First notice that for any 1-corner polygonal
chain P which does not contain points from S
and produces a non-trivial partition of S, always
exists a siphon defined by P. We call a siphon
non-expansive if its interior boundary contains
two points of S' (one per each leg or only one point
if this point is on the vertex of that boundary) and
its exterior boundary contains one point of S.
Lemma 1 For any fized vertical and horizontal
lines crossing the convex hull of S producing a non
trivial partition of S, there exists a non-expansive
siphon.

Next we describe the algorithm which solves the
S-E orthogonal siphon problem in O(n?) time. By
Lemma 1 we know that an orthogonal siphon is de-
fined by at most three points. First, the algorithm
sorts the points in S by decreasing y-coordinate
and by increasing z-coordinate in O(n logn) time.
Let O = {p1,...,pn} and A = {q1,...,qn} be
the respective lists of the sorted points. From a
vertical-horizontal grid we construct a S-E stair-
case E which is updated each time we insert a new
point, and in this case either the number of the
steps of F increase by one or it decrease because
the new point dominates some points of the cur-
rent F.

Let p; and ¢; be the points of S with maxi-
mum g-coordinate and minimum z-coordinate, re-
spectively. These two points determine the start-
ing point of the algorithm. The staircase F in the
initial stage is formed by the horizontal and ver-
tical half-lines of the grid passing through p; and
q1- The algorithm compute all the possible orthog-
onal siphons which horizontal boundary leg is sup-
ported by p; € O, for i = 2,...,n. If a point
pi = (Tpi, Yp;) is on the horizontal-interior bound-
ary leg of a siphon then, there only exist siphons
such that its “entries” are in-between points hav-
ing x-coordinates and y-coordinates smaller than
or equal to x,; and yp;, respectively; because the
rest of points either are dominated by either the
current staircase or the point p;. The dominance
relation between points of S is establish as in [4,5].
In [5] the maxima problem for a set of points is con-
sidered. The maxima problem consists of finding
all the maxima of .S under dominance and they can
be computed in §(nlogn) time. We are interested
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in the maxima problem with the following domi-
nance relation: p; < p; <= xp; < X and Yyp; >
Ypi- The corresponding set of maxima forms a four
quadrant staircase.

We construct the staircase £ in an incremen-
tal way with a cost of O(logn) time per point in-
sertion. In the worst case the number of different
siphons to be checked can be O(n?). Assume that
O and A have been computed and also for each
point p; we have a pointer to ¢; such that p; = ¢;.

ORTOGONAL-SIPHON-ALGORITHM

Input: S, O, A,

Output: Widest orthogonal siphon,

(i) Initial stage: O, A, E := staircase formed
by the horizontal and vertical half-lines de-
fined by g1 and p;. Compute the Voronoi di-
agram for S, V. D(S), and store it in a data
structure such that a query point can be an-
swered in O(logn) time.

(ii) For i = 2 to n, do “Compute the widest
orthogonal siphon supported by p; and g;,
such that z,. <y, yq, <¥p,”,

Let €; be the distance between y = y;
and the horizontal line containing the seg-
ment of the current E which is intersected
by z = x4;. Compute €2 = x4; — x4(;_1) and
€0 = min{eq, €2 }. The orthogonal siphon sup-
ported by p; and g; has width smaller than
or equal to €y/2. Compute the part E;; of £
in-between the z-coordinates z,; —€p and z4;
and the y-coordinates y,,; and y,; +€p. Check
that F;; is empty and compute the orthogo-
nal siphon of width €y /2 supported by p; and
g;j. Otherwise, we analyze each point of E;;
determining (if it exists) the corresponding
orthogonal siphon as follows:

The vertex of the 1-corner polygonal line
of the siphon will be located in the bisec-
tor of the second quadrant passing through
(g5, Ypi)- This vertex is the center of the cir-
cle which contains the arc of the siphon. By
using E and V D(S), we consider each of the
three possible locations for the point belong-
ing to the exterior boundary.

(iii) Updating stage: Insert p; in F and update
E in time O(logn) per insertion and in to-
tal time O(nlogn) for the deletion of points
from FE (a point is deleted only once). Delete
p; from O, delete ¢; = p; from A, update the
widest width and the current siphon.
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Lemma 2 Each vertex ¢; of the staircase E is an-
alyzed at most once.

Analysis of the algorithm: The number of stages is
O(n?). At the stage (i,7) we check all the vertices
in E;; in O(logn) time. By Lemma 2 a vertex in £
is analyzed only once, then the total time cost in
the analysis of points in F is O(nlogn). Therefore
the running time of the algorithm is O(nlogn) +
O(n?) = 0(n?).

Theorem 3 The widest orthogonal siphon can be
computed in O(n?) time.

The techniques above can be adapted for com-
puting the widest oriented «-siphon, i.e., a a-
siphon with a given angle o, 0 < o < 180° and a
fixed direction of one of its half-lines.

Corollary 4 The widest oriented c-siphon can be
computed in O(n?) time.

Theorem 5 The problem of computing the widest
oriented a-siphon has an Q(nlogn) time lower
bound in the algebraic decision tree model.

Notice that the complexity of the algorithm
above match the complexity of the algorithm for
computing the widest corridor of a set of points.
A small variation of the algorithm above can be
used to compute the widest L-shaped orthogonal
corridor (as defined by Chen [1]) with the same
O(n?) running time.

Corollary 6 The widest L-shaped orthogonal cor-
ridor can be computed in O(n?) time.

A similar algorithm can be used if we want to
compute a corridor of the same kind but with an
angle different from 90° and knowing the direction
of one of the links.

3. The arbitrarily-oriented a-siphon

In this section we deal with the computation of
a widest-empty arbitrarily-oriented a-siphon, i.e.,
we only fix the siphon angle a. Assume that ais 7.
Lemma 7 There always exists an optimal 7-
siphon such that the interior boundary contains
two points of S (one per each leg) or only one point
if this point is on the corner of that boundary.

The points in S that determine a tentative place-
ment of an optimal a-siphon are called the critical
points. Therefore we can classify the cases for crit-
ical points according to their location on the parts

of the siphon, as it is shown in Figure 2.
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Fig. 2. Types of candidate siphons.

We sketch the idea of our approach without de-
tails. We only consider siphons that are bounded
by a point of each its interior half-lines (according
to Lemma 7). The orientation 6 of our siphon is the
smaller of the two angles given by the ortogonal
lines supporting the interior boundary legs. Given
two points p;, p; (xp, > xp,), we consider the ro-
tation of the two perpendicular lines r;(0) (around
pi) and s;(0) (around p;), say counterclockwise, to
obtain all possible empty siphon supported at p;
and p;. The essence of our algorithm is to generate
a discrete set of subintervals in such rotation and
compute a siphon of maximum width for each.

We begin the rotation in # = 0. A pair of orthog-
onal lines through p; and p; partitions the point set
into four disjoint subsets which we label I, IT, IT11
and IV (corresponding to the four quadrants). As
we change the orientation continuously, the parti-
tion survive till some two points become collinear.
In fact, by insertion and deletion of the points,
we can maintain dynamically each one of the cor-
responding partition. This spend O(n?) time and
space. This produces a partition of the rotation in-
terval. Taking into account the intervals of such
partitions for each point py € S, we define the fol-
lowing functions:
= () = d(pk,7i(0)), forpy€el,

— uk(0) = d(pk,7i(9)), k(0) = d(pr,s;(0)) and

() = d(pk, ciji(0)), for py € 11,

— 1e(0) = d(px, s;(0)), for px € 111,

where ¢;j1(6) is the center of the circle passing

through py, tangent to the lines r;(#) and s;(6).

Lemma 8 Let pi and p; be two distinct points of
S. Then, the graphs of two functions corresponding
to pr, and p; intersect at most twice.

Let £ be the lower envelope of the graphs of
the functions ug, I and ci. Lemma 8 implies that
the labels of the points corresponding to the edges
of L, when we traverse £ from left to right, form
a Davenport-Schinzel sequence of order two [6].
Therefore, the number of intervals in the partition
is O(n) [6], and by using a standard divide-and-
conquer approach we can compute £ in O(nlogn)
time. Thus, by traversing £, from left to right, we
can identify the highest vertex, which corresponds
to the optimal direction for the F-siphon. In sum-
mary, working over all pair of points in S, we have
proven the following result.

Theorem 9 Given a set S of n points in the plane,
the widest empty arbitrarily-oriented % -siphon can
be computed in O(n?logn) time.

An adaptation of above approach permits to
solve the problem for a fixed angle a, 0° < o <
180° in the same time bound.

A constrained version of this problem consists
into anchoring the vertex of the 1-corner polygonal
chain. In this case we obtain the following result.
Theorem 10 Given a set S of n points in the
plane, the widest-empty arbitrarily-oriented an-
chored «-siphon can be computed in optimal
Q(nlogn) time.
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