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Abstract

Most of the curves and surfaces encountered in geometric modelling are defined as the set of solutions of a system
of algebraic equations or inequalities (semi-algebraic sets). The Voronoi diagram of a set of sites is a decomposition
of the space into proximal regions (one for each site). Voronoi diagrams have been used to answer proximity
queries. The dual graph of the Voronoi diagram is called the Delaunay graph. Only approximations by conics can
guarantee a proper continuity of the first order derivative at contact points, which is necessary for guaranteeing the
exactness of the Delaunay graph. The central idea of this paper is that a (one time) symbolic preprocessing may
accelerate the certified numerical evaluation of the Delaunay graph conflict locator. The symbolic preprocessing
is the computation of the implicit equation of the generalised offset to conics. The certified computation of the
Delaunay graph conflict locator relies on theorems on the uniqueness of a root in given intervals (Kantorovich,
Moore-Krawczyk). For conics, the computations get much faster by considering only the implicit equations of the
generalised offsets.
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1. Introduction

Most of the curves and surfaces encountered in
geometric modelling are defined as the set of com-
mon zeroes of a set of polynomials (algebraic vari-

eties) or subsets of algebraic varieties defined by
one or more algebraic inequalities (semi-algebraic

sets). Many problems from different fields involve
proximity queries like finding the nearest neigh-
bour, finding all the neighbours, or quantifying
the neighbourliness of two objects. The retraction
planning [ÓY85] problem (that addresses the op-
timal trajectory of a robot around obstacles) in
robotics and spatial analysis and influence zones
in Geographic Information Systems [VC90] are
strongly linked to questions of proximity among
real-world objects in real-world environments.

The Voronoi diagram [Vor08] (see Fig. 1) of a set
of sites is a decomposition of the space into prox-
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imal regions (one for each site). The proximal re-
gion (or Voronoi zone) of a site is the locus of points
closer to that site than to any other one. Voronoi
diagrams allow one to answer proximity queries af-
ter a query point has been located in the Voronoi
zone it belongs to. The Voronoi diagram defines a
neighbourhood relationship among sites: two sites
are neighbours if, and only if, their Voronoi regions
are adjacent. The graph of this neighbourhood re-
lationship is called the Delaunay graph. The De-
launay graph of sites in the plane satisfies the fol-
lowing empty circle criterion (see Fig. 2): no site in-
tersects the interior of the circles touching (tangent
to without intersecting the interior of) the sites
that are the vertices of any triangle of the Delau-
nay graph (see Fig. 3). There have been attempts
[OBS92] to compute Voronoi diagrams of curves
by approximating curves by line segments or circu-
lar arcs, but the exactness of the Delaunay graph
is not guaranteed [RF99a]. Indeed, the Voronoi di-
agram is very sensitive to the order of continuity
at contact points (see [RF99a]). Only approxima-
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Fig. 1. The Voronoi diagram (light) of a circle, an ellipse
and a hyperbola (dark)

Fig. 2. The 3 empty circles for the sites of Fig. 1
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Fig. 3. The Delaunay graph of the sites of Fig. 1

tions by conics can guarantee a proper continuity
of the first order derivative at contact points, which
is necessary for guaranteeing the exactness of the
Delaunay graph [RF99a]. Other approximation al-
gorithms have used a Newton-Raphson scheme to
compute and classify Voronoi vertices for curves
with a rational parameterisation [RF99a,RF99b].
These do not directly address the exactness of the
Delaunay graph.

2. Preliminaries

We will recall now the formal definitions of the
Voronoi diagram and of the Delaunay graph. For
this purpose, we need to recall some basic defini-
tions.

Definition 1 (Metric) Let M be an arbitrary set.
A metric on M is a mapping d : M × M → R+

such that for any elements a, b, and c of M , the
following conditions are fulfilled: d (a, b) = 0 ⇔

a = b, d (a, b) = d (b, a), and d (a, c) ≤ d (a, b) +
d (b, c). (M,d) is then called a metric space, and
d (a, b) is the distance between a and b.

Let M = R
N , and δ denote the Euclidean dis-

tance between points. Let S = {s1, ..., sm} ⊂

M,m ≥ 2 be a set of m different subsets of M ,
which we call sites. The distance between a point
x and a site si ⊂ M is defined as d (x, si) =
infy∈si

{δ (x, y)}.
Definition 2 (Influence zone) For si, sj ∈ S, si (=
sj, the influence zone D (si, sj) of si with respect
to sj is: D (si, sj) = {x ∈ M |d (x, si) < d (x, sj)}.
Definition 3 (Voronoi region) The Voronoi re-
gion V (si,S) of si ∈ S with respect to the set S is:
V (si,S) =

⋂

sj∈S,sj "=si
D (si, sj).

Definition 4 (Voronoi diagram) The Voronoi di-
agram of S is the union V (S) =

⋃

si∈S
∂V (si,S)

of all region boundaries.
Definition 5 (Delaunay graph) The Delaunay
graph DG (S) of S is the dual graph of V (S)
defined as follows:
– the set of vertices of DG (S) is S,
– for each N − 1−dimensional facet of V (S) that

belongs to the common boundary of V (si,S) and
of V (sj ,S) with si, sj ∈ S and si (= sj, there is
an edge of DG (S) between si and sj and recip-
rocally, and

– for each vertex of V (S) that belongs to the com-
mon boundary of V (si1 ,S),. . . ,V

(

siN+2
,S

)

,
with ∀k ∈ {1, ..., N + 2} , sik

∈ S all distinct,
there exists a complete graph KN+2 between the
sik

, k ∈ {1, ..., N + 2}, and reciprocally. (see
example on Fig. 3).
Let us introduce the generalised offset and the

generalised Voronoi vertex. We place ourselves in
the affine space K2 where K = C for the sake of
introducing those notions in an easier way. While
the R−generalised offset to ν is the locus of the
centres of circles of radius R that are tangent to ν,
the true R−offset to ν is the locus of the centres of
circles of radius R that are tangent to ν and do not
contain any point of ν in its interior (see Fig. 4).
Definition 6 (generalised Voronoi vertex) A gen-
eralised Voronoi vertex of three semi-algebraic sets
S1, S2, and S3 is a point of intersection of the
R−generalised offsets of S1, S2, and S3 (see Exam-
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Fig. 4. The strophoid and its true (left) and generalised
(right) offsets

Fig. 5. A generalised Voronoi vertex (dot) of three conics
(thick lines)

ple on Fig. 5).

3. The Delaunay graph conflict locator for
semi-algebraic sets

Let X1, ...,XN+2, be semi-algebraic sets
[BR90,BCR98]. A semi-algebraic set Xi is de-
fined as:

⋃si

j=1

⋂ri,j

k=1

{

x ∈ R
N |fi,j,k ⋆i,j,k 0

}

, where
fi,j,k is a polynomial with real coefficients in the
variables xi1 , ..., xiN

and ⋆i,j,k is either < or =,
for i = 1, 2, 3, 4, j = 1, ..., si and k = 1, ..., ri,j .
The Delaunay graph conflict locator determines
which ones of the maximal dimensional facets of
the Delaunay graph of N + 1 semi-algebraic sets
X1, ..., XN+1 would be changed by the addition of
the semi-algebraic set XN+2.

Let us assume without loose of generality that
each

⋂ri,j

k=1

{

x ∈ R
N |fi,j,k ⋆i,j,k 0

}

for each Xi is
defined by at least one non-trivial algebraic equa-
tion (i.e. different from the zero polynomial). If
our starting assumption is not valid in the case we
treat, we can make it valid by adding the equa-
tions corresponding to fi,j,k = 0 for each (i, j, k)
such that j is the index of a component that is not
defined as in the assumption and i is the index of
the semi-algebraic set to which the component be-
longs. Let us denote Vi as the intersection of all the
V (fi,j,k) such that ⋆i,j,k is = for each i = 1, 2, 3, 4.
Let Ni be the normal space to Vi at the point xi =
(xi1 , ..., xiN

). Each fi,j,k defining Vi induces N − 1
polynomials ni,j,k,l with l = 1, ..., N − 1 that are

the equations defining the normal to V (fi,j,k) at
xi. A point q = (y1, ..., yN ) belongs to Ni if its co-
ordinates satisfy all the equations of the normal
spaces to V (fi,j,k) at xi such that ⋆i,j,k is =.

For a given q = (y1, ..., yN ), let Mi be the the
set of points mi = (zi1 , ..., ziN

) ∈ Xi such that q

belongs to the normal space to Vi at the point mi.
In the general case, each set Mi is a finite set of
points. However, if Vi contains a portion of hyper-
sphere PHS (q, ρ) centered on q, then Mi contains
that portion of hypersphere. To get in all cases a
finite set of points mi of Vi, we use Si = Mi when
Mi is finite, and Si

⋂

PHS (q, ρ) = {wi} for an
arbitrary point wi of PHS (q, ρ) when Vi contains
a portion of hypersphere PHS (q, ρ) centered on q.

We are now able to write the system of alge-
braic equations and inequalities that define the
outcome of the Delaunay graph conflict locator.
Let us consider the map π : K3N → KN defined
by π (xi, q,mi) = q.

The point q is at the distance r from the point
xi if, and only if, the distance between q and xi is
r. This is expressed algebraically by the equation
di (q, xi) = (y1 − xi1)

2
+ ...+(yN − xiN

)
2
−r2 = 0.

The generalised r-offset Oi to Xi is the image
by π of the points of K3N defined by the following
system of equations and inequalities:

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if ⋆i,j,k is “ = ”,

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








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

di (xi, q) = 0

∀l = 1, .., N − 1, ni,j,k,l (xi, q) = 0

fxi1
(xi) &= 0 or . . . or fxiN

(xi) &= 0

The true r-offset to Xi is obtained as the differ-
ence of the generalised r-offset Oi to Xi and the
union of each one of the images by π of the semi-
algebraic sets defined by the following system of
equations and inequalities for each point mi of Si:

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if ⋆i,j,k is “ = ”,

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













f (mi) = 0

∀l = 1, .., N − 1, ni,j,k,l (mi, q) = 0

d (mi, q) < 0

It is obvious that a true Voronoi vertex of
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Running time above systems generalised offsets

General Solve 6 min 38 s 12 min 37 s

Gradient Solve 2 h 56 min 10 s 2 min 26 s

Hessian Solve 20 h 17 min 42 s 3 min 42 s

Table 1
Some running time results for ellipses

X1, ..., XN+1 is a point of intersection of the true
r−offsets to X1, ..., XN+1 respectively. A true
Voronoi vertex of X1, ..., XN+1 is at the distance
R from XN+2, or alternatively, a true Voronoi ver-
tex of X1, ..., XN+1 belongs to the true R−offset
to XN+2. Consider the N + 2−dimensional points
whose first N coordinates are the coordinates of
a true Voronoi vertex of X1, ..., XN+1, and the re-
maining two are the distances r between that true
Voronoi vertex and X1, ..., XN+1, and R between
that true Voronoi vertex and XN+2. The Delau-
nay graph conflict locator should report all the
true Voronoi vertices such as the corresponding
N + 2−dimensional points satisfy R − r < 0.

We have evaluated the Delaunay graph conflict
locator without solving any intermediary system
by using an interval analysis based library (ALIAS
[Mer00]) for solving zero-dimensional systems of
equations and inequalities. The certified computa-
tion of the Delaunay graph conflict locator relies
on theorems on the uniqueness of a root in given in-
tervals (Kantorovich and Moore-Krawczyk). This
computation uses a bisection process on one or
all the variables using either only the equations of
the system, or using the Jacobian of the system
(Moore-Krawczyk test for finding “exactly” the so-
lutions), or using the Jacobian and the Hessian of
the system (with Kantorovich, Moore-Krawczyk
tests). We first used ALIAS on the above system
of algebraic equations and inequalities that spec-
ify the Delaunay graph conflict locator for semi-
algebraic sets. Then for conics, we used ALIAS on
the system simplified by replacing the equations fi,
ni and di of the conics, normals and distances be-
tween the points on the conics and the true Voronoi
vertex by the implicit equations of the generalised
offsets to the conics (see [Ant04]). This induces
much faster computations (see Table 1).

4. Conclusions

We have presented what we believe is the first
certified conflict locator for the incremental main-
tenance of the Delaunay graph for semi-algebraic
sets. Further research will try to improve the run-
ning time of the computations.
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[ÓY85] Colm Ó’Dúnlaing and Chee-K. Yap. A
“retraction” method for planning the motion of
a disc. J. Algorithms, 6(1):104–111, 1985.

[RF99a] Rajesh Ramamurthy and Rida T. Farouki.
Voronoi diagram and medial axis algorithm
for planar domains with curved boundaries.
I. Theoretical foundations. J. Comput. Appl.

Math., 102(1):119–141, 1999. Special issue:
computational methods in computer graphics.

[RF99b] Rajesh Ramamurthy and Rida T. Farouki.
Voronoi diagram and medial axis algorithm
for planar domains with curved boundaries. II.
Detailed algorithm description. J. Comput. Appl.

Math., 102(2):253–277, 1999.

[VC90] Christine Voiron-Canicio. Analyse spatiale

et analyse d’images par la morphologie
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