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Abstract 
 
Research shows that managerial decision making is directly correlated to both, the swift 
availability, and subsequently the ease of interpretation of the relevant information. 
Visualizations are already widely used to transform raw data into a more understandable 
format and to compress the constantly growing amount of information produced. However, 
research in this area is highly fragmented and results are contradicting. This paper proposes a 
preliminary model based on an extensive literature review including top current research on 
cognition theory. Furthermore an early stage validation of this model by experimental 
research using structural equation modeling is presented. The authors are able to identify task 
complexity as one of the most important predicting variables for information perception of 
visual data, however, other influences are significant as well (data density, domain expertise, 
working memory capacity and subjective visual complexity). 
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1. Introduction  

A visual representation of data can be seen as a means to accelerate, as well as to improve 
cognition and interpretation (Al-Kassab et al., 2014) of such, and thus should in theory 
improve a rational managerial decision making process. However, such representations are 
used inconsistently in praxis (Cho et al., 2012; Dilla and Janvrin, 2010) and sometimes either 
in a way that misses the purpose of informing the reader in an effective and efficient way 
(Falschlunger et al., 2014) or in a way that may even be misleading or manipulating (Beattie 
and Jones, 2002).  

According to Conati and Maclaren (2008) the success of visualizations should be deter-
mined by the ability of users to retrieve relevant information in an effective and efficient way. 
In this context the theory of cognitive fit, which heavily draws on information processing 
theory and cognitive load theory, has been used as a research framework in a lot of different 
empirical investigations, however, results so far are contradicting, often due to the lack of 
knowledge in relation to the visual perception process (e.g.: Barat, 2007; Dilla et al., 2010; 
Galletta and Vessey, 1991; Porat et al., 2009; So and Smith, 2004).  

Understanding how visualizations affect a user’s perception is highly complex as it is 
influenced by the task and the data at hand as well as by individual factors such as experience, 
knowledge or culture (Dilla and Janvrin, 2010; Parush et al., 2007; Peck et al., 2012; Yigitba-
sioglu and Valcu, 2012). So far, research in the area of information visualization lacks a 
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means and method of determining the quality of a graphical representation for such purposes 
a-priori (Peck et al., 2012; Ziemkiewicz and Kosara, 2010). To advance theory, the authors 
introduce a new triangulated and validated holistic model based on structural equation 
modeling. It predicts cognitive effectivity and efficiency, and is adaptive to the individual 
recipients’ differences by incorporating the cognitive burden a graph presents to its reader. 
 
2. Theoretical Background 

The model is based on information processing theory and cognitive load theory. 
Information processing theory provides knowledge on the perceptual process and is divided 
into three essential stores: sensory store (reception of environmental information for a few 
seconds), short-term memory (temporarily store that analyses, deconstructs and synthesizes 
information), and long-term memory (responsible for creating and saving mental constructs or 
schemas) (Lord and Maher, 1990). Cognitive load theory provides guidelines on how to foster 
information retrieval and learning by enhancing either germane cognitive load by using 
standardized or well-known formats or by enhancing extraneous cognitive load by using the 
right visualization formats and designs (Mostyn, 2012). In order to enhance the extraneous 
cognitive load cognitive fit theory is important. It states that visualization always needs to fit 
the task at hand because the problem solver does not need to exert additional cognitive effort 
to either transform the problem representation to better match the task or to transform their 
decision processes to better match problem representation (Vessey, 1991). However, as 
mentioned in the introduction this theory produced contradicting results, indicating that other 
influences might be relevant as moderator and mediator variables. 

Based on an extensive literature review (initial search: 1.952 articles; after abstract sorting 
based on the content: 237 articles) four essential dimensions of information visualization 
could be identified and an overview of the model can be seen in figure 1 (red framed variables 
were alternated): 

• Visual Complexity: Visual complexity is the degree of difficulty to transform an image 
into a consistent verbal description of the designer and the recipient of the 
visualization (Yigitbasioglu and Valcu, 2012). Ziemkiewicz and Kosara (2010) claim 
that telling “meaningful stories is the goal of visualization…but stories can rise up 
purely from differences in shape and arrangement.” Two components determine visual 
complexity, namely the used visualization type and the design or structure of a given 
visualization (Hill and Milner, 2003; Kuang et al., 2012; Parsons and Sedig, 2014).  

• Task Complexity: Task complexity has three variables: task type, task difficulty (or 
complexity) and task environment (Speier et al., 2003). Two essential classifications 
can be found for task type: first spatial (determining relationships and making 
comparisons) and symbolic tasks (use of discrete data values) by Vessey (1991), and 
second accumulation (acquiring and recalling a single information cue), recognition 
(recognizing patterns and relationships between 2-3 information cues), estimation 
(identifying trends between numerous information cues), and projection (making 
projections to future values) by Hard and Vanecek (1991). Task difficulty can either be 
calculated objectively or tested subjectively by asking participants, and task 
environment represents time constraints, task interruptions (Speier, 2006). 

• Data Complexity: Data complexity combines data type and data density. To evaluate 
data type the accompanied dimensions need to be considered (Kuang et al, 2012) and 
for data density the amount of data compressed in a visualization (Gelman and Unwin, 
2013). 

• Individual Complexity: Individual complexity can be clustered into three fundamental 
dimensions: Cognitive traits representing a persons’ working memory ability, 
cognitive states representing situational and emotional influences and experience and 
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biases (Peck et al., 2012). Situational and emotional states revere to a persons’ origin 
and current state. Of particular interest in conjunction with visual representations are 
knowledge and expertise, experience, decision making style, gender, and culture for 
the origin part as well as motivation, concentration and emotional issues that might 
focus attention (Al-Kassab et al., 2014; Hahn, 2014; Lord and Maher, 1990; Mostyn, 
2012).  

 
Figure 1: Data Visualization Score (DVS) Model 
 
3. Research Questions and Hypotheses 

Despite early individual studies on correlations, there is a lack of research on a more 
holistic level, bringing the various influences together into a unified model to predict the 
quality of visualization for managerial decision making. The focus of this paper lies on the 
examination of the most frequently as well as the strongest influence mentioned in literature – 
task complexity. A high task complexity is said to hinder effectivity and effectiveness (Speier, 
2006). Therefore the hypotheses we are looking out for in particular are: 

H1: A lower task complexity (TC) improves efficiency in cognition. 
H2: A lower task complexity (TC) positively influences the correct interpretation of the 

data (effectivity).  
The variable TC was objectively measured by looking at behavioral acts and information 

cues caused by the used information visualization and its data density (Wood 1986). For 
evaluating this variable in relation to the other identified influences the authors then came up 
with a preliminary model based on the main dimensions as laid out before. In a first step the 
model is transformed into structural equations to cater for the interdependencies and to 
identify effect sizes.  

 
4. Methodology 

We conducted a laboratory experiment in which subjects were given four different tasks 
while viewing 18 different visualizations, which included different versions of bar charts, 
column charts, and tables. All of these visualizations showed a company’s financial 
performance and all of the tasks had an optimal solution. Participants were selected from a 
student population with at least one year background in business administration. During a 30 
minute session, tasks were given to subjects by a computer-based decision support system and 
eye tracking data was recorded. In total, 84 students volunteered to participate in the 
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experiment which resulted in a total of 1,476 data records, since each student completed 
multiple tasks. Participants were randomly assigned to one of four experimental groups. 
Using various parametric and nonparametric tests, we found no significant differences across 
treatments according to gender, age, years in school, major, and prior experience.  

A 4x9x2 between-subjects and within-subjects experimental design was used with four 
levels of task type based on Vessey (1991) and Hard and Vanecek (1991) (accumulation, 
recognition, estimation, projection), nine levels of information presentation format, and two 
levels of information types (i.e. time series data and data on the structural split of e.g. revenue 
within one year on the product mix of the company). Randomization of the tasks within the 
four groups was used. 

Our dependent variables were efficiency and effectiveness. Participants were able to 
determine the pace of the experiment by independently going through the test by clicking. No 
time constraints were imposed. Efficiency was measured with the time span between seeing 
the visualization and stating the answer (net dwell time) and by the total fixation count per 
participant for each task. The latter was recorded using an eye tracking device (SMI RED 
with a sampling rate of 120 Hz, a nine point calibration and a 4 point validation). When 
analyzing eye tracking, data fixations are of particular interest. They are short stops where the 
eye is able to process information. No information can be processed during a movement of the 
eye, which is called saccade. Longer fixations are associated with greater visual and/or 
cognitive complexity. An increased number of fixations can be interpreted as having a 
negative impact on search efficiency (Goldberg and Helfman, 2014; Renshaw et al., 2003). 
Effectiveness was measured by the correctness of the stated answers. 

Additional factors used in the model include domain expertise, spatial ability, culture, task 
complexity and visual complexity. Expertise with charts, working experience, years of school 
education, and visual complexity were measured via self-reported data. Spatial ability was 
measured by operating span and symmetry span which were collected with an automated test 
using E-Prime, a software frequently used for psychological tests (Redick, 2012). Cultural 
dimensions, such as Uncertainty Avoidance and Long Term Orientation, were measured using 
Hofstede’s scales (Hofstede, 2001) and task complexity was calculated according to Wood 
(1986).  

In order to estimate the parameters of the underlying conceptual model, the authors turn to 
structural equation modeling (SEM) - in particular to variance-based SEM because of its mild 
distributional assumptions (Reinartz et al., 2009) and fewer convergence problems. The 
authors apply a version of partial least square path modelling because of its widely 
demonstrated capabilities of approximating latent variables using linear composites of 
observed variables. The computation was supported by the software Smart PLS 3 (Ringle et 
al, 2015). 

 
5. Early interpretation and Conclusion  

H1 asked whether a low task complexity (TC) improves efficiency in cognition and H2 for 
its influence on the effectivity (correct interpretation). As we can see in figure 2, TC predicts 
Efficiency and Effectivity at a significance level of p<0.01. Therefore we can confirm both 
hypotheses.   

Besides the confirmed factor TC, the main predictors for effectivity and efficiency differ. 
When analyzing efficiency domain expertise and subjective visual complexity show a high 
influence. However, individual factors such as cultural dimensions or spatial ability show 
modest but also significant results as well. When looking at effectiveness data density shows 
the highest influence. Overall, this preliminary study looks promising as it can be seen as an 
early endorsement of the created model and the DVS. The highly interlinked model allows the 
authors to create an optimal data visualization given a specific task for a specific audience, 
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concerning experience and various cultural backgrounds. 

 
Figure 2: Model for DVS (Consistent PLS after Bootstrapping 1000 subsamples), significant 
if T score>1,96 
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