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Orthogonal polynomials

Let dµ be a positive Borel measure supported on R.
We will assume dµ(x) = ω(x)dx , ω ≥ 0 and x iω, x jω′ ∈ L1(R).
We can then construct a family of orthonormal polynomials (pn)n s.t.

(pn, pm)ω =

∫
R
pn(x)pm(x)ω(x)dx = δn,m, n,m ≥ 0

pn(x) = κn(xn + an,n−1x
n−1 + · · · ) = κnp̂n(x)

The monic polynomials p̂n(x) satisfy a three-term recurrence relation

xp̂n(x) = p̂n+1(x) + αnp̂n(x) + βnp̂n−1(x)
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Solution of the RHP for orthogonal polynomials

We try to find a 2× 2 matrix-valued function Yn : C→ C2×2 such that

1 Yn is analytic in C \ R

2 Yn
+(x) = Yn

−(x)

(
1 ω(x)
0 1

)
when x ∈ R

3 Yn(z) = (I2 +O(1/z))

(
zn 0
0 z−n

)
as z →∞

For n ≥ 1 the unique solution of the RHP above is given by

Fokas-Its-Kitaev, 1990

Yn(z) =

(
p̂n(z) C (p̂nω)(z)

−2πiγn−1p̂n−1(z) −2πiγn−1C (p̂n−1ω)(z)

)
where C (f )(z) = 1

2πi

∫
R

f (t)
t−z dt is the Cauchy transform and γn = κ2

n.
The existence and unicity is a consequence of the Morera’s theorem, Liouville’s
theorem and detYn(z) = 1.
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The Lax pair I

We look for a pair of first-order difference/differential equations of the form

Yn+1(z) = En(z)Yn(z),
d

dz
Yn(z) = Fn(z)Yn(z)

Problem. Typically, the coefficient Fn(z) is difficult to obtain. We can avoid that
by transforming the RHP in another RHP with constant jump.
Consider the transformation

Xn(z) = Yn(z)

(
ω1/2 0

0 ω−1/2

)
We observe that Xn is invertible and that

Xn
+(x) = Xn

−(x)

(
1 1
0 1

)
That means that Xn has a constant jump
⇒ En(z) and Fn(z) are completely determined by their behavior at z →∞.
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The Lax pair II

If we additionally assume that (ω1/2)′

ω1/2 is a polynomial of degree m, then

Xn+1(z) =

(
z − αn

1
2πi γ

−1
n

−2πiγn 0

)
︸ ︷︷ ︸

En(z)

Xn(z)

d

dz
Xn(z) =

(
−Bn(z) − 1

2πi γ
−1
n An(z)

2πi An−1(z)γn−1 Bn(z)

)
︸ ︷︷ ︸

Fn(z)

Xn(z)

where An(z) and Bn(z) are polynomials of degree m − 1 and m respectively.
Cross-differentiating the Lax pair yield

Compatibility conditions

E′n(z) + En(z)Fn(z) = Fn+1(z)En(z)

also known as string equations.
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Example I: Hermite polynomials

Consider ω(x) = e−x
2 ⇒ Hermite polynomials (Hn)n.

The transformation Xn(z) = Yn(z)

(
e−z

2/2 0

0 ez
2/2

)
gives the following Lax pair

Xn+1(z) =

(
z 1

2πi γ
−1
n

−2πiγn 0

)
Xn(z),

d

dz
Xn(z) =

(
−z − 1

πi γ
−1
n

4πiγn−1 z

)
Xn(z)

The difference equation gives (using βn = γn/γn+1) the TTRR

xĤn(x) = Ĥn+1(x) + βnĤn−1(x),

while the differential equation gives the ladder operators

Ĥ ′n(x) = 2βnĤn−1(x), Ĥ ′n(x)− 2xĤn(x) = −2Ĥn+1(x).

The compatibility conditions are

βn+1 − βn =
1

2
⇒ βn =

n

2
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The compatibility conditions are

βn+1 − βn =
1

2
⇒ βn =

n

2
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The compatibility conditions are

βn+1 − βn =
1

2
⇒ βn =

n

2
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Example II: Freud orthogonal polynomials

Consider ω(x) = e−x
4 ⇒ Freud polynomials (Pn)n.

Xn(z) = Yn(z)

(
e−z

4/2 0

0 ez
4/2

)
satisfies the following Lax pair

Xn+1(z) =

(
z 1

2πi γ
−1
n

−2πiγn 0

)
Xn(z)

d

dz
Xn(z) =

(
−2z3 − 4βnz − 2

πi γ
−1
n (z2 + βn + βn+1)

8πiγn−1(z2 + βn + βn+1) 2z3 + 4βnz

)
Xn(z)

The ladder operators are

P̂ ′n(x) + 4βnxP̂n(x) = 4(x2 + βn + βn+1)βnP̂n−1(x)

P̂ ′n(x) + 4x3P̂n(x) = −4(x2 + βn + βn+1)P̂n+1(x)

The compatibility conditions are

n = 4βn(βn+1 + βn + βn−1)
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Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was
introduced by Krein in 1949.
A N × N matrix polynomial on the real line is

P(x) = Anx
n + An−1x

n−1 + · · ·+ A0, x ∈ R Ai ∈ CN×N

Let W be a N × N a matrix of measures or weight matrix.
We will assume dW(x) = W(x)dx and W smooth and positive definite on R.
We can construct a family of MOP with respect to the inner product

(P,Q)W =

∫
R
P(x)W(x)Q∗(x)dx ∈ CN×N

such that

(Pn,Pm)W =

∫
R
Pn(x)W(x)P∗m(x)dx = δn,mIN , n,m ≥ 0

Pn(x) = κn(xn + an,n−1x
n−1 + · · · ) = κnP̂n(x)
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Manuel Doḿınguez de la Iglesia Algebraic aspects of the RHP for MOP



The RH problem for OP
The RH problem for MOP

The RHP for MOPs
The Lax pair
Examples

Solution of the RHP for MOP

Yn : C→ C2N×2N such that

1 Yn is analytic in C \ R

2 Yn
+(x) = Yn

−(x)

(
IN W(x)
0 IN

)
when x ∈ R

3 Yn(z) = (I2N +O(1/z))

(
znIN 0
0 z−nIN

)
as z →∞

For n ≥ 1 the unique solution of the RH problem above is given by

Yn(z) =

(
P̂n(z) C (P̂nW)(z)

−2πiγn−1P̂n−1(z) −2πiγn−1C (P̂n−1W)(z)

)

where C (F)(z) = 1
2πi

∫
R

F(t)
t−z dt and γn = κ∗nκn.
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The Lax pair I

We look for a pair of first-order difference/differential equations of the form

Yn+1(z) = En(z)Yn(z),
d

dz
Yn(z) = Fn(z)Yn(z)

Goal: obtain an invertible transformation Yn → Xn such that Xn has a constant
jump across R. Consider Xn(z) = Yn(z)V(z) where

V(z) =

(
T(z) 0
0 T−∗(z)

)
where T is an invertible N × N smooth matrix function.
This motivates to consider a factorization of the weight in the form

W(x) = T(x)T∗(x), x ∈ R.

This factorization is not unique since

T(x) = T̂(x)S(x), x ∈ R

T̂(x) is upper triangular and S(x) is an arbitrary smooth and unitary matrix.
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The Lax pair II

We additionally assume
T′(z) = G(z)T(z),

where G is a matrix polynomial of degree m (most of our examples)

Yn+1(z) =

(
z −αn

1
2πi γ

−1
n

−2πiγn 0

)
︸ ︷︷ ︸

En(z;G)

Yn(z)

d

dz
Yn(z) =

(
−Bn(z ;G) − 1

2πi γ
−1
n An(z ;G)

2πi An−1(z ;G)γn−1 B∗n(z ;G)

)
︸ ︷︷ ︸

Fn(z;G)

Yn(z)

where An and Bn are matrix polynomials of degree m − 1 and m respectively.
Cross-differentiating the Lax pair yield the compatibility conditions

E′n(z ;G) + En(z ;G)Fn(z ;G) = Fn+1(z ;G)En(z ;G)
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Manuel Doḿınguez de la Iglesia Algebraic aspects of the RHP for MOP



The RH problem for OP
The RH problem for MOP

The RHP for MOPs
The Lax pair
Examples

The Lax pair II

We additionally assume
T′(z) = G(z)T(z),

where G is a matrix polynomial of degree m (most of our examples)

Yn+1(z) =

(
z −αn

1
2πi γ

−1
n

−2πiγn 0

)
︸ ︷︷ ︸

En(z;G)

Yn(z)

d

dz
Yn(z) =

(
−Bn(z ;G) − 1

2πi γ
−1
n An(z ;G)

2πi An−1(z ;G)γn−1 B∗n(z ;G)

)
︸ ︷︷ ︸

Fn(z;G)

Yn(z)

where An and Bn are matrix polynomials of degree m − 1 and m respectively.
Cross-differentiating the Lax pair yield the compatibility conditions

E′n(z ;G) + En(z ;G)Fn(z ;G) = Fn+1(z ;G)En(z ;G)
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The Lax pair III

If there exists a non-trivial matrix-valued function S, non-singular on C, smooth
and unitary on R, s.t.

H(z) = T(z)S′(z)S∗(z)T−1(z)

is also a polynomial, then T̃ = TS satisfies

W(x) = T̃(x)T̃
∗
(x), x ∈ R, T̃

′
(z) = G̃(z)T̃(z), z ∈ C,

with G̃(z) = G(z) + H(z) and the matrix Xn satisfies

d

dz
Xn(z) = Fn(z ;G)Xn(z) + Fn(z ;H)Xn(z)− Xn(z)

(
χ(z) 0
0 −χ∗(z)

)
with χ(z) = S′(z)S∗(z).

Consequences: We have a class of ladder operators.
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Example I: Hermite type MOP

Let us consider T(x) = e−x
2/2eAx and

W(x) = e−x
2

eAxeA
∗x , A ∈ CN×N , x ∈ R.

Lax pair

Xn+1(z) =

(
zIN − αn

1
2πi γ

−1
n

−2πiγn 0

)
Xn(z)

d

dz
Xn(z) =

(
−zIN + A − 1

πi γ
−1
n

4πiγn−1 zIN − A∗

)
X n(z)

Compatibility conditions

αn = (A + γ−1
n A∗γn)/2, 2(βn+1 − βn) = Aαn −αnA + IN
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Ladder operators

P̂
′
n(x) + P̂n(x)A− AP̂n(x) = 2βnP̂n−1(x),

−P̂
′
n(x) + 2xP̂n(x) + AP̂n(x)− P̂n(x)A− 2αnP̂n(x) = 2P̂n+1(x).

Combining them we get a second order differential equation

Second order differential equation

P̂
′′
n(x) + 2P̂

′
n(x)(A− xIN) + P̂n(x)(A2 − 2xA)

= (−2xA + A2 − 4βn)P̂n(x) + 2(A−αn)(P̂
′
n(x) + P̂n(x)A− AP̂n(x)).
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In order to use the freedom in the matrix case by a unitary matrix function
S we have to impose additional constraints on the weight W.
The matrix H can be written as

H(x) = eAxχe−Ax = χ + adA(χ)x + ad2
A(χ)

x2

2
+ · · · ,

where χ(x) = S′(x)S∗(x) is skew-Hermitian on R.
This matrix equation was considered already by Durán-Grünbaum (2004),
when χ is a constant matrix.

If deg H = 0 then χ = iaIN , a ∈ R⇒ No new ladder operators.

If deg H = 1 then

1 A = L =
N∑
i=1

νiEi,i+1, and χ = iJ = i
N∑
i=1

(N − i)Ei,i

⇒ adA(χ) = −A and S(x) = e iJx

2 A = L(IN + L)−1, and χ = iJ
⇒ adA(χ) = −A + A2 and S(x) = e iJx
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+ · · · ,

where χ(x) = S′(x)S∗(x) is skew-Hermitian on R.
This matrix equation was considered already by Durán-Grünbaum (2004),
when χ is a constant matrix.

If deg H = 0 then χ = iaIN , a ∈ R⇒ No new ladder operators.

If deg H = 1 then

1 A = L =
N∑
i=1

νiEi,i+1, and χ = iJ = i
N∑
i=1

(N − i)Ei,i

⇒ adA(χ) = −A and S(x) = e iJx

2 A = L(IN + L)−1, and χ = iJ
⇒ adA(χ) = −A + A2 and S(x) = e iJx
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First case A = L

New compatibility conditions

Jαn −αnJ + αn = L +
1

2
(L2αn −αnL

2), J− γ−1
n Jγn = Lαn + αnL− 2α2

n

New ladder operators (0-th order)

P̂n(x)J− JP̂n(x) − x(P̂n(x)L− LP̂n(x)) + 2βnP̂n(x) − nP̂n(x) = 2(L−αn)βnP̂n−1(x)

P̂n(x)(J−xL)−γ−1
n (J−xL∗)γnP̂n(x) + 2βn+1P̂n(x)− (n+ 1)P̂n(x) = 2(αn −L)P̂n+1(x)

First-order differential equation

(L−αn)P̂
′
n(x)+(L−αn+xIN)(P̂n(x)L−LP̂n(x))−2βnP̂n(x) = P̂n(x)J−JP̂n(x)−nP̂n(x)

Sturm-Liouville type differential equation (Durán-Grünbaum, 2004)

P̂
′′
n (x) + 2P̂

′
n(x)(L− xIN) + P̂n(x)(L2 − 2J) = (−2nIN + L2 − 2J)P̂n(x)
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Example II: Freud type MOP

Let us consider W(x) = e−x
4

eBx
2

eB
∗x2

, B ∈ CN×N , x ∈ R.

Ladder operators

P̂
′
n(x) + 2x(P̂n(x)B− BP̂n(x)) + 4xβnP̂n(x) =

(4(x2I + βn+1 + βn)− 2(B + γ−1
n B∗γn))βnP̂n−1(x)

P̂
′
n(x) + 2x(P̂n(x)B− BP̂n(x)) = (4x3I + 2(2βn+1 − B− γ−1

n B∗γn)x)P̂n(x)

(−4(x2I + βn+1 + βn) + 2(B + γ−1
n B∗γn))P̂n+1(x)

Compatibility conditions

nI + 2(an,n−2B− Ban,n−2) = 4(βnβn−1 + β2
n + βn+1βn)− 2(B + γ−1

n B∗γn)βn
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Final remarks

Conclusions
1 The ladder operators method gives more insight about the differential

properties of MOP and new phenomena

2 This method works for every weight matrix W. The corresponding
MOP satisfy differential equations, but not necessarily of
Sturm-Liouville type

Future directions
1 Examples when supp(W) ⊂ [0,+∞) or supp(W) ⊂ [−1, 1]

2 Uniform asymptotics: steepest descent analysis for RHP
(Deift-Zhou,1993) extended to MOPRL
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