# Algebraic aspects of the Riemann-Hilbert problem for matrix orthogonal polynomials ${ }^{1}$ 

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla
International Symposium on Orthogonal Polynomials and Special
Functions: a Complex Analytic Perspective
Copenhague, June 12, 2012
${ }^{1}$ joint work with F. A. Grünbaum and A. Martínez-Finkelshtein

## Outline

(1) The Riemann-Hilbert problem for orthogonal polynomials

- The RHP for OPs
- The Lax pair
- Examples
(2) The Riemann-Hilbert problem for matrix orthogonal polynomials
- The RHP for MOPs
- The Lax pair
- Examples


## Outline

(1) The Riemann-Hilbert problem for orthogonal polynomials

- The RHP for OPs
- The Lax pair
- Examples
(2) The Riemann-Hilbert problem for matrix orthogonal polynomials
- The RHP for MOPs
- The Lax pair
- Examples


## Orthogonal polynomials

Let $d \mu$ be a positive Borel measure supported on $\mathbb{R}$. We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.


The monic polynomials $\widehat{p}_{n}(x)$ satisfy a three-term recurrence relation

$$
x \widehat{p}_{n}(x)=\widehat{p}_{n+1}(x)+\alpha_{n} \widehat{p}_{n}(x)+\beta_{n} \widehat{p}_{n-1}(x)
$$

## Orthogonal polynomials

Let $d \mu$ be a positive Borel measure supported on $\mathbb{R}$.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

$$
\begin{aligned}
\left(p_{n}, p_{m}\right)_{\omega}= & \int_{\mathbb{R}} p_{n}(x) p_{m}(x) \omega(x) d x=\delta_{n, m}, \quad n, m \geq 0 \\
& p_{n}(x)=\kappa_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\kappa_{n} \widehat{p}_{n}(x)
\end{aligned}
$$

The monic polynomials $\widehat{p}_{n}(x)$ satisfy a three-term recurrence relation

$$
x \widehat{p}_{n}(x)=\widehat{p}_{n+1}(x)+\alpha_{n} \widehat{p}_{n}(x)+\beta_{n} \widehat{p}_{n-1}(x)
$$

## Orthogonal polynomials

Let $d \mu$ be a positive Borel measure supported on $\mathbb{R}$.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

$$
\begin{aligned}
\left(p_{n}, p_{m}\right)_{\omega}= & \int_{\mathbb{R}} p_{n}(x) p_{m}(x) \omega(x) d x=\delta_{n, m}, \quad n, m \geq 0 \\
& p_{n}(x)=\kappa_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\kappa_{n} \widehat{p}_{n}(x)
\end{aligned}
$$

The monic polynomials $\widehat{p}_{n}(x)$ satisfy a three-term recurrence relation

$$
x \widehat{p}_{n}(x)=\widehat{p}_{n+1}(x)+\alpha_{n} \widehat{p}_{n}(x)+\beta_{n} \widehat{p}_{n-1}(x)
$$

## Solution of the RHP for orthogonal polynomials

We try to find a $2 \times 2$ matrix-valued function $\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) $\mathrm{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$


For $n \geq 1$ the unique solution of the RHP above is given by
Fokas-Its-Kitaev, 1990

where $C(f)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t$ is the Cauchy transform and $\gamma_{n}=\kappa_{n}^{2}$.
The existence and unicity is a consequence of the Morera's theorem, Liouville's theorem and $\operatorname{det} \mathbf{Y}^{n}(z)=1$.

## Solution of the RHP for orthogonal polynomials

We try to find a $2 \times 2$ matrix-valued function $\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) $\mathbf{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $\mathbf{Y}_{+}^{n}(x)=\mathbf{Y}_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(8) $\mathbf{Y}^{n}(z)=\left(I_{2}+\mathcal{O}(1 / z)\right)\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RHP above is given by
Foleas lta Kitacy, 1000

where $C(f)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t$ is the Cauchy transform and $\gamma_{n}=\kappa_{n}^{2}$.
The existence and unicity is a consequence of the Morera's theorem, Liouville's theorem and $\operatorname{det} \mathbf{Y}^{n}(z)=1$.

## Solution of the RHP for orthogonal polynomials

We try to find a $2 \times 2$ matrix-valued function $\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) $\mathbf{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $\mathbf{Y}_{+}^{n}(x)=\mathbf{Y}_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $\mathbf{Y}^{n}(z)=\left(\mathbf{I}_{2}+\mathcal{O}(1 / z)\right)\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RHP above is given by
Fokas-Its-Kitaev, 1990

where $C(f)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t$ is the Cauchy transform and $\gamma_{n}=\kappa_{n}^{2}$.
The existence and unicity is a consequence of the Morera's theorem, Liouville's theorem and $\operatorname{det} \mathbf{Y}^{n}(z)=1$.

## Solution of the RHP for orthogonal polynomials

We try to find a $2 \times 2$ matrix-valued function $\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) $\mathbf{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $\mathbf{Y}_{+}^{n}(x)=\mathbf{Y}_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $\mathbf{Y}^{n}(z)=\left(\mathbf{I}_{2}+\mathcal{O}(1 / z)\right)\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RHP above is given by
Fokas-Its-Kitaev, 1990

$$
\mathbf{Y}^{n}(z)=\left(\begin{array}{cc}
\widehat{p}_{n}(z) & C\left(\widehat{p}_{n} \omega\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{p}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{p}_{n-1} \omega\right)(z)
\end{array}\right)
$$

where $C(f)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t$ is the Cauchy transform and $\gamma_{n}=\kappa_{n}^{2}$.

## Solution of the RHP for orthogonal polynomials

We try to find a $2 \times 2$ matrix-valued function $\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) $\mathbf{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $\mathbf{Y}_{+}^{n}(x)=\mathbf{Y}_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $\mathbf{Y}^{n}(z)=\left(\mathbf{I}_{2}+\mathcal{O}(1 / z)\right)\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RHP above is given by
Fokas-Its-Kitaev, 1990

$$
\mathbf{Y}^{n}(z)=\left(\begin{array}{cc}
\widehat{p}_{n}(z) & C\left(\widehat{p}_{n} \omega\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{p}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{p}_{n-1} \omega\right)(z)
\end{array}\right)
$$

where $C(f)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t$ is the Cauchy transform and $\gamma_{n}=\kappa_{n}^{2}$.
The existence and unicity is a consequence of the Morera's theorem, Liouville's theorem and $\operatorname{det} \mathbf{Y}^{n}(z)=1$.

The RHP for OPs

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

## Problem. Typically, the coefficient $\mathrm{F}_{n}(z)$ is difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump. Consider the transformation



## We observe that $\mathbf{X}^{n}$ is invertible and that

$$
\mathbf{x}^{n}(x)=\mathbf{x}^{n}(x)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

That means that $\mathbf{X}^{n}$ has a constant jump
$\Rightarrow \mathbf{E}_{n}(z)$ and $\mathbf{F}_{n}(z)$ are completely determined by their behajpor at, $z_{4} \vec{\equiv}, \infty_{\overline{\underline{\underline{E}}}}$ ๑ac

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Problem. Typically, the coefficient $\mathbf{F}_{n}(z)$ is difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump.

## Consider the transformation



We observe that $\mathbf{X}^{n}$ is invertible and that


That means that $\mathbf{X}^{n}$ has a constant jump


## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Problem. Typically, the coefficient $\mathbf{F}_{n}(z)$ is difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump.
Consider the transformation

$$
\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}
\omega^{1 / 2} & 0 \\
0 & \omega^{-1 / 2}
\end{array}\right)
$$

We observe that $\mathbf{X}^{n}$ is invertible and that


That means that $\mathbf{X}^{n}$ has a constant jump


## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Problem. Typically, the coefficient $\mathbf{F}_{n}(z)$ is difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump.
Consider the transformation

$$
\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}
\omega^{1 / 2} & 0 \\
0 & \omega^{-1 / 2}
\end{array}\right)
$$

We observe that $\mathbf{X}^{n}$ is invertible and that

$$
\mathbf{X}_{+}^{n}(x)=\mathbf{X}_{-}^{n}(x)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Problem. Typically, the coefficient $\mathbf{F}_{n}(z)$ is difficult to obtain. We can avoid that by transforming the RHP in another RHP with constant jump.
Consider the transformation

$$
\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}
\omega^{1 / 2} & 0 \\
0 & \omega^{-1 / 2}
\end{array}\right)
$$

We observe that $\mathbf{X}^{n}$ is invertible and that

$$
\mathbf{X}_{+}^{n}(x)=\mathbf{X}_{-}^{n}(x)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

That means that $\mathbf{X}^{n}$ has a constant jump


## The Lax pair II

If we additionally assume that $\frac{\left(\omega^{1 / 2}\right)^{\prime}}{\omega^{1 / 2}}$ is a polynomial of degree $m$, then

$$
\begin{gathered}
\mathbf{X}^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right)}_{\mathbf{E}_{n}(z)} \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z)=\underbrace{\left(\begin{array}{cc}
-\mathcal{B}_{n}(z) & -\frac{1}{2 \pi i} \gamma_{n}^{-1} \mathcal{A}_{n}(z) \\
2 \pi i \mathcal{A}_{n-1}(z) \gamma_{n-1} & \mathcal{B}_{n}(z)
\end{array}\right)}_{\mathbf{F}_{n}(z)} \mathbf{X}^{n}(z)
\end{gathered}
$$

where $\mathcal{A}_{n}(z)$ and $\mathcal{B}_{n}(z)$ are polynomials of degree $m-1$ and $m$ respectively. Cross-differentiating the Lax pair yield

$$
\mathbf{E}_{n}^{\prime}(z)+\mathbf{E}_{n}(z) \mathbf{F}_{n}(z)=\mathbf{F}_{n+1}(z) \mathbf{E}_{n}(z)
$$

## The Lax pair II

If we additionally assume that $\frac{\left(\omega^{1 / 2}\right)^{\prime}}{\omega^{1 / 2}}$ is a polynomial of degree $m$, then

$$
\begin{gathered}
\mathbf{X}^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right)}_{\mathbf{E}_{n}(z)} \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z)=\underbrace{\left(\begin{array}{cc}
-\mathcal{B}_{n}(z) & -\frac{1}{2 \pi i} \gamma_{n}^{-1} \mathcal{A}_{n}(z) \\
2 \pi i \mathcal{A}_{n-1}(z) \gamma_{n-1} & \mathcal{B}_{n}(z)
\end{array}\right)}_{\mathbf{F}_{n}(z)} \mathbf{X}^{n}(z)
\end{gathered}
$$

where $\mathcal{A}_{n}(z)$ and $\mathcal{B}_{n}(z)$ are polynomials of degree $m-1$ and $m$ respectively. Cross-differentiating the Lax pair yield

## Compatibility conditions

$$
\mathbf{E}_{n}^{\prime}(z)+\mathbf{E}_{n}(z) \mathbf{F}_{n}(z)=\mathbf{F}_{n+1}(z) \mathbf{E}_{n}(z)
$$

also known as string equations.

## Example I: Hermite polynomials

Consider $\omega(x)=e^{-x^{2}} \Rightarrow$ Hermite polynomials $\left(H_{n}\right)_{n}$.
The transformation $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{2} / 2} & 0 \\ 0 & e^{z^{2} / 2}\end{array}\right)$ gives the following Lax pair
$\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\ -2 \pi i \gamma_{n} & 0\end{array}\right) \mathbf{X}^{n}(z), \quad \frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}-z & -\frac{1}{\pi i} \gamma_{n}^{-1} \\ 4 \pi i \gamma_{n-1} & z\end{array}\right) \mathbf{X}^{n}(z)$
The difference equation gives (using $\beta_{n}=\gamma_{n} / \gamma_{n-1}$ ) the TTRP

$$
x \widehat{H}_{n}(x)=\widehat{H}_{n+1}(x)+\beta_{n} \widehat{H}_{n-1}(x)
$$

while the differential equation gives the ladder operators

$$
\widehat{H}_{n}^{\prime}(x)=2 \beta_{n} \widehat{H}_{n-1}(x), \quad \widehat{H}_{n}^{\prime}(x)-2 x \widehat{H}_{n}(x)=-2 \widehat{H}_{n+1}(x) .
$$

The compatibility conditions are

$$
\beta_{n+1}-\beta_{n}=\frac{1}{2} \Rightarrow \beta_{n}=\frac{n}{2}
$$

## Example I: Hermite polynomials

Consider $\omega(x)=e^{-x^{2}} \Rightarrow$ Hermite polynomials $\left(H_{n}\right)_{n}$.
The transformation $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{2} / 2} & 0 \\ 0 & e^{z^{2} / 2}\end{array}\right)$ gives the following Lax pair
$\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\ -2 \pi i \gamma_{n} & 0\end{array}\right) \mathbf{X}^{n}(z), \quad \frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}-z & -\frac{1}{\pi i} \gamma_{n}^{-1} \\ 4 \pi i \gamma_{n-1} & z\end{array}\right) \mathbf{X}^{n}(z)$
The difference equation gives (using $\beta_{n}=\gamma_{n} / \gamma_{n+1}$ ) the TTRR
while the differential equation gives the ladder operators

$$
\widehat{H}_{n}^{\prime}(x)=2 \beta_{n} \widehat{H}_{n-1}(x), \quad \widehat{H}_{n}^{\prime}(x)-2 x \widehat{H}_{n}(x)=-2 \widehat{H}_{n+1}(x) .
$$

## The compatibility conditions are

## Example I: Hermite polynomials

Consider $\omega(x)=e^{-x^{2}} \Rightarrow$ Hermite polynomials $\left(H_{n}\right)_{n}$.
The transformation $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{2} / 2} & 0 \\ 0 & e^{z^{2} / 2}\end{array}\right)$ gives the following Lax pair

$$
\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}
z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z), \quad \frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}
-z & -\frac{1}{\pi i} \gamma_{n}^{-1} \\
4 \pi i \gamma_{n-1} & z
\end{array}\right) \mathbf{X}^{n}(z)
$$

The difference equation gives (using $\beta_{n}=\gamma_{n} / \gamma_{n+1}$ ) the TTRR

$$
x \widehat{H}_{n}(x)=\widehat{H}_{n+1}(x)+\beta_{n} \widehat{H}_{n-1}(x),
$$

while the differential equation gives the ladder operators

$$
\widehat{H}_{n}^{\prime}(x)=2 \beta_{n} \widehat{H}_{n-1}(x), \quad \widehat{H}_{n}^{\prime}(x)-2 x \widehat{H}_{n}(x)=-2 \widehat{H}_{n+1}(x) .
$$

## Example I: Hermite polynomials

Consider $\omega(x)=e^{-x^{2}} \Rightarrow$ Hermite polynomials $\left(H_{n}\right)_{n}$.
The transformation $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{2} / 2} & 0 \\ 0 & e^{z^{2} / 2}\end{array}\right)$ gives the following Lax pair

$$
\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}
z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z), \quad \frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}
-z & -\frac{1}{\pi i} \gamma_{n}^{-1} \\
4 \pi i \gamma_{n-1} & z
\end{array}\right) \mathbf{X}^{n}(z)
$$

The difference equation gives (using $\beta_{n}=\gamma_{n} / \gamma_{n+1}$ ) the TTRR

$$
x \widehat{H}_{n}(x)=\widehat{H}_{n+1}(x)+\beta_{n} \widehat{H}_{n-1}(x),
$$

while the differential equation gives the ladder operators

$$
\widehat{H}_{n}^{\prime}(x)=2 \beta_{n} \widehat{H}_{n-1}(x), \quad \widehat{H}_{n}^{\prime}(x)-2 x \widehat{H}_{n}(x)=-2 \widehat{H}_{n+1}(x) .
$$

The compatibility conditions are

$$
\beta_{n+1}-\beta_{n}=\frac{1}{2} \Rightarrow \beta_{n}=\frac{n}{2}
$$

## Example II: Freud orthogonal polynomials

Consider $\omega(x)=e^{-x^{4}} \Rightarrow$ Freud polynomials $\left(P_{n}\right)_{n}$.


## The ladder operators are

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime}(x)+4 \beta_{n} x \hat{P}_{n}(x)=4\left(x^{2}+\beta_{n}+\beta_{n+1}\right) \beta_{n} \hat{P}_{n-1}(x) \\
& \hat{P}_{n}^{\prime}(x)+4 x^{3} \hat{P}_{n}(x)=-4\left(x^{2}+\beta_{n}+\beta_{n+1}\right) \hat{P}_{n+1}(x)
\end{aligned}
$$

The compatibility conditions are

$$
n=4 \beta_{n}\left(\beta_{n+1}+\beta_{n}+\beta_{n-1}\right)
$$

## Example II: Freud orthogonal polynomials

Consider $\omega(x)=e^{-x^{4}} \Rightarrow$ Freud polynomials $\left(P_{n}\right)_{n}$.
$\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{4} / 2} & 0 \\ 0 & e^{z^{4} / 2}\end{array}\right)$ satisfies the following Lax pair

$$
\begin{gathered}
\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}
z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}
-2 z^{3}-4 \beta_{n} z & -\frac{2}{\pi i} \gamma_{n}^{-1}\left(z^{2}+\beta_{n}+\beta_{n+1}\right) \\
8 \pi i \gamma_{n-1}\left(z^{2}+\beta_{n}+\beta_{n+1}\right) & 2 z^{3}+4 \beta_{n} z
\end{array}\right) \mathbf{X}^{n}(z)
\end{gathered}
$$

The ladder operators are


The compatibility conditions are

## Example II: Freud orthogonal polynomials

Consider $\omega(x)=e^{-x^{4}} \Rightarrow$ Freud polynomials $\left(P_{n}\right)_{n}$.
$\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{4} / 2} & 0 \\ 0 & e^{z^{4} / 2}\end{array}\right)$ satisfies the following Lax pair

$$
\begin{gathered}
\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}
z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}
-2 z^{3}-4 \beta_{n} z & -\frac{2}{\pi i} \gamma_{n}^{-1}\left(z^{2}+\beta_{n}+\beta_{n+1}\right) \\
8 \pi i \gamma_{n-1}\left(z^{2}+\beta_{n}+\beta_{n+1}\right) & 2 z^{3}+4 \beta_{n} z
\end{array}\right) \mathbf{X}^{n}(z)
\end{gathered}
$$

The ladder operators are

$$
\begin{gathered}
\widehat{P}_{n}^{\prime}(x)+4 \beta_{n} x \widehat{P}_{n}(x)=4\left(x^{2}+\beta_{n}+\beta_{n+1}\right) \beta_{n} \widehat{P}_{n-1}(x) \\
\widehat{P}_{n}^{\prime}(x)+4 x^{3} \widehat{P}_{n}(x)=-4\left(x^{2}+\beta_{n}+\beta_{n+1}\right) \widehat{P}_{n+1}(x)
\end{gathered}
$$

## Example II: Freud orthogonal polynomials

Consider $\omega(x)=e^{-x^{4}} \Rightarrow$ Freud polynomials $\left(P_{n}\right)_{n}$.
$\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z)\left(\begin{array}{cc}e^{-z^{4} / 2} & 0 \\ 0 & e^{z^{4} / 2}\end{array}\right)$ satisfies the following Lax pair

$$
\begin{gathered}
\mathbf{X}^{n+1}(z)=\left(\begin{array}{cc}
z & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z)=\left(\begin{array}{cc}
-2 z^{3}-4 \beta_{n} z & -\frac{2}{\pi i} \gamma_{n}^{-1}\left(z^{2}+\beta_{n}+\beta_{n+1}\right) \\
8 \pi i \gamma_{n-1}\left(z^{2}+\beta_{n}+\beta_{n+1}\right) & 2 z^{3}+4 \beta_{n} z
\end{array}\right) \mathbf{X}^{n}(z)
\end{gathered}
$$

The ladder operators are

$$
\begin{gathered}
\widehat{P}_{n}^{\prime}(x)+4 \beta_{n} x \widehat{P}_{n}(x)=4\left(x^{2}+\beta_{n}+\beta_{n+1}\right) \beta_{n} \widehat{P}_{n-1}(x) \\
\widehat{P}_{n}^{\prime}(x)+4 x^{3} \widehat{P}_{n}(x)=-4\left(x^{2}+\beta_{n}+\beta_{n+1}\right) \widehat{P}_{n+1}(x)
\end{gathered}
$$

The compatibility conditions are

$$
n=4 \beta_{n}\left(\beta_{n+1}+\beta_{n}+\beta_{n-1}\right)
$$

## Outline

(1) The Riemann-Hilbert problem for orthogonal polynomials

- The RHP for OPs
- The Lax pair
- Examples
(2) The Riemann-Hilbert problem for matrix orthogonal polynomials
- The RHP for MOPs
- The Lax pair
- Examples


## Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.
A $N \times N$ matrix polynomial on the real line is


Let $\mathbf{W}$ be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d \mathbf{W}(x)=\mathbf{W}(x) d x$ and $\mathbf{W}$ smooth and positive definite on $\mathbb{R}$. We can construct a family of MOP with respect to the inner product

such that


## Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.
A $N \times N$ matrix polynomial on the real line is

$$
\mathbf{P}(x)=\mathbf{A}_{n} x^{n}+\mathbf{A}_{n-1} x^{n-1}+\cdots+\mathbf{A}_{0}, \quad x \in \mathbb{R} \quad \mathbf{A}_{i} \in \mathbb{C}^{N \times N}
$$

Let $W$ be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d \mathbf{W}(x)=\mathbf{W}(x) d x$ and $W$ smooth and positive definite on $\mathbb{R}$ We can construct a family of MOP with respect to the inner product


## such that



## Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.
A $N \times N$ matrix polynomial on the real line is

$$
\mathbf{P}(x)=\mathbf{A}_{n} x^{n}+\mathbf{A}_{n-1} x^{n-1}+\cdots+\mathbf{A}_{0}, \quad x \in \mathbb{R} \quad \mathbf{A}_{i} \in \mathbb{C}^{N \times N}
$$

Let $\mathbf{W}$ be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d \mathbf{W}(x)=\mathbf{W}(x) d x$ and $\mathbf{W}$ smooth and positive definite on $\mathbb{R}$.

## We can construct a family of MOP with respect to the inner product



## such that



## Matrix orthogonal polynomials

The theory of matrix orthogonal polynomials on the real line (MOP) was introduced by Krein in 1949.
A $N \times N$ matrix polynomial on the real line is

$$
\mathbf{P}(x)=\mathbf{A}_{n} x^{n}+\mathbf{A}_{n-1} x^{n-1}+\cdots+\mathbf{A}_{0}, \quad x \in \mathbb{R} \quad \mathbf{A}_{i} \in \mathbb{C}^{N \times N}
$$

Let $\mathbf{W}$ be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d \mathbf{W}(x)=\mathbf{W}(x) d x$ and $\mathbf{W}$ smooth and positive definite on $\mathbb{R}$.
We can construct a family of MOP with respect to the inner product

$$
(\mathbf{P}, \mathbf{Q})_{\mathbf{w}}=\int_{\mathbb{R}} \mathbf{P}(x) \mathbf{W}(x) \mathbf{Q}^{*}(x) d x \in \mathbb{C}^{N \times N}
$$

such that

$$
\begin{array}{r}
\left(\mathbf{P}_{n}, \mathbf{P}_{m}\right) \mathbf{w}=\int_{\mathbb{R}} \mathbf{P}_{n}(x) \mathbf{W}(x) \mathbf{P}_{m}^{*}(x) d x=\delta_{n, m} \mathbf{l}_{N}, \quad n, m \geq 0 \\
\mathbf{P}_{n}(x)=\boldsymbol{\kappa}_{n}\left(x^{n}+\mathbf{a}_{n, n-1} x^{n-1}+\cdots\right)=\boldsymbol{\kappa}_{n} \widehat{\mathbf{P}}_{n}(x)
\end{array}
$$

## Solution of the RHP for MOP

$\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 N \times 2 N}$ such that
(1) $\mathbf{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $\mathbf{Y}_{+}^{n}(x)=\mathbf{Y}_{-}^{n}(x)\left(\begin{array}{cc}\mathbf{I}_{N} & \mathbf{W}(x) \\ \mathbf{0} & \mathbf{I}_{N}\end{array}\right)$ when $x \in \mathbb{R}$
(3) $\mathbf{Y}^{n}(z)=\left(\mathbf{I}_{2 N}+\mathcal{O}(1 / z)\right)\left(\begin{array}{cc}z^{n} \mathbf{I}_{N} & \mathbf{0} \\ \mathbf{0} & z^{-n} \mathbf{I}_{N}\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RH problem above is given by

where $C(\mathbf{F})(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{\mathbf{F}(t)}{t-z} d t$ and $\gamma_{n}=\kappa_{n}^{*} \kappa_{n}$.

## Solution of the RHP for MOP

$\mathbf{Y}^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 N \times 2 N}$ such that
(1) $\mathbf{Y}^{n}$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $\mathbf{Y}_{+}^{n}(x)=\mathbf{Y}_{-}^{n}(x)\left(\begin{array}{cc}\mathbf{I}_{N} & \mathbf{W}(x) \\ \mathbf{0} & \mathbf{I}_{N}\end{array}\right)$ when $x \in \mathbb{R}$
(3) $\mathbf{Y}^{n}(z)=\left(\mathbf{I}_{2 N}+\mathcal{O}(1 / z)\right)\left(\begin{array}{cc}z^{n} \mathbf{I}_{N} & \mathbf{0} \\ \mathbf{0} & z^{-n} \mathbf{I}_{N}\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RH problem above is given by

$$
\mathbf{Y}^{n}(z)=\left(\begin{array}{cc}
\widehat{\mathbf{P}}_{n}(z) & C\left(\widehat{\mathbf{P}}_{n} \mathbf{W}\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{\mathbf{P}}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{\mathbf{P}}_{n-1} \mathbf{W}\right)(z)
\end{array}\right)
$$

where $C(\mathbf{F})(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{\mathbf{F}(t)}{t-z} d t$ and $\gamma_{n}=\boldsymbol{\kappa}_{n}^{*} \kappa_{n}$.

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Goal: obtain an invertible transformation $\mathrm{Y}^{n} \rightarrow \mathrm{X}^{n}$ such that $\mathrm{X}^{n}$ has a constant jump across $\mathbb{R}$. Consider $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z) \mathbf{V}(z)$ where

where $\mathbf{T}$ is an invertible $N \times N$ smooth matrix function.
This motivates to consider a factorization of the weight in the form

$$
\mathbf{W}(x)=\mathbf{T}(x) \mathbf{T}^{*}(x), \quad x \in \mathbb{R}
$$

This factorization is not unique since

$$
\mathbf{T}(x)=\widehat{\mathbf{T}}(x) \mathbf{S}(x), \quad x \in \mathbb{R}
$$

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Goal: obtain an invertible transformation $\mathbf{Y}^{n} \rightarrow \mathbf{X}^{n}$ such that $\mathbf{X}^{n}$ has a constant jump across $\mathbb{R}$. Consider $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z) \mathbf{V}(z)$ where

$$
\mathbf{V}(z)=\left(\begin{array}{cc}
\mathbf{T}(z) & \mathbf{0} \\
\mathbf{0} & \mathbf{T}^{-*}(z)
\end{array}\right)
$$

where $\mathbf{T}$ is an invertible $N \times N$ smooth matrix function.
This motivates to consider a factorization of the weight in the form

This factorization is not unique since

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Goal: obtain an invertible transformation $\mathbf{Y}^{n} \rightarrow \mathbf{X}^{n}$ such that $\mathbf{X}^{n}$ has a constant jump across $\mathbb{R}$. Consider $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z) \mathbf{V}(z)$ where

$$
\mathbf{V}(z)=\left(\begin{array}{cc}
\mathbf{T}(z) & \mathbf{0} \\
\mathbf{0} & \mathbf{T}^{-*}(z)
\end{array}\right)
$$

where $\mathbf{T}$ is an invertible $N \times N$ smooth matrix function.
This motivates to consider a factorization of the weight in the form

$$
\mathbf{W}(x)=\mathbf{T}(x) \mathbf{T}^{*}(x), \quad x \in \mathbb{R}
$$

This factorization is not unique since

## The Lax pair I

We look for a pair of first-order difference/differential equations of the form

$$
\mathbf{Y}^{n+1}(z)=\mathbf{E}_{n}(z) \mathbf{Y}^{n}(z), \quad \frac{d}{d z} \mathbf{Y}^{n}(z)=\mathbf{F}_{n}(z) \mathbf{Y}^{n}(z)
$$

Goal: obtain an invertible transformation $\mathbf{Y}^{n} \rightarrow \mathbf{X}^{n}$ such that $\mathbf{X}^{n}$ has a constant jump across $\mathbb{R}$. Consider $\mathbf{X}^{n}(z)=\mathbf{Y}^{n}(z) \mathbf{V}(z)$ where

$$
\mathbf{V}(z)=\left(\begin{array}{cc}
\mathbf{T}(z) & \mathbf{0} \\
\mathbf{0} & \mathbf{T}^{-*}(z)
\end{array}\right)
$$

where $\mathbf{T}$ is an invertible $N \times N$ smooth matrix function.
This motivates to consider a factorization of the weight in the form

$$
\mathbf{W}(x)=\mathbf{T}(x) \mathbf{T}^{*}(x), \quad x \in \mathbb{R}
$$

This factorization is not unique since

$$
\mathbf{T}(x)=\widehat{\mathbf{T}}(x) \mathbf{S}(x), \quad x \in \mathbb{R}
$$

$\widehat{\mathbf{T}}(x)$ is upper triangular and $\mathbf{S}(x)$ is an arbitrary smooth and unitary matrix

## The Lax pair II

We additionally assume

$$
\mathbf{T}^{\prime}(z)=\mathbf{G}(z) \mathbf{T}(z)
$$

where $\mathbf{G}$ is a matrix polynomial of degree $m$ (most of our examples)

where $\mathcal{A}_{n}$ and $\mathcal{B}_{n}$ are matrix polynomials of degree $m-1$ and $m$ respectively. Cross-differentiating the Lax pair yield the compatibility conditions

$$
\mathbf{E}_{n}^{\prime}(z ; \mathbf{G})+\mathbf{E}_{n}(z ; \mathbf{G}) \mathbf{F}_{n}(z ; \mathbf{G})=\mathbf{F}_{n+1}(z ; \mathbf{G}) \mathbf{E}_{n}(z ; \mathbf{G})
$$

## The Lax pair II

We additionally assume

$$
\mathbf{T}^{\prime}(z)=\mathbf{G}(z) \mathbf{T}(z)
$$

where $\mathbf{G}$ is a matrix polynomial of degree $m$ (most of our examples)

$$
\begin{gathered}
\mathbf{Y}^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\boldsymbol{\alpha}_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right)}_{\mathbf{E}_{n}(z ; \mathbf{G})} \mathbf{Y}^{n}(z) \\
\frac{d}{d z} \mathbf{Y}^{n}(z)=\underbrace{\left(\begin{array}{cc}
-\mathcal{B}_{n}(z ; \mathbf{G}) & -\frac{1}{2 \pi i} \boldsymbol{\gamma}_{n}^{-1} \mathcal{A}_{n}(z ; \mathbf{G}) \\
2 \pi i \mathcal{A}_{n-1}(z ; \mathbf{G}) \gamma_{n-1} & \mathcal{B}_{n}^{*}(z ; \mathbf{G})
\end{array}\right)}_{\mathbf{F}_{n}(z ; \mathbf{G})} \mathbf{Y}^{n}(z)
\end{gathered}
$$

where $\mathcal{A}_{n}$ and $\mathcal{B}_{n}$ are matrix polynomials of degree $m-1$ and $m$ respectively. Cross-differentiating the Lax pair yield the compatibility conditions
$\mathrm{E}_{n}^{\prime}(z ; \mathbf{G})+\mathrm{E}_{n}(z ; \mathbf{G}) \mathrm{F}_{n}(z ; \mathbf{G})=\mathrm{F}_{n+1}(z ; \mathbf{G}) \mathrm{E}_{n}(z ; \mathbf{G})$

## The Lax pair II

We additionally assume

$$
\mathbf{T}^{\prime}(z)=\mathbf{G}(z) \mathbf{T}(z)
$$

where $\mathbf{G}$ is a matrix polynomial of degree $m$ (most of our examples)

$$
\begin{gathered}
\mathbf{Y}^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\boldsymbol{\alpha}_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right)}_{\mathbf{E}_{n}(z ; \mathbf{G})} \mathbf{Y}^{n}(z) \\
\frac{d}{d z} \mathbf{Y}^{n}(z)=\underbrace{\left(\begin{array}{cc}
-\mathcal{B}_{n}(z ; \mathbf{G}) & -\frac{1}{2 \pi i} \gamma_{n}^{-1} \mathcal{A}_{n}(z ; \mathbf{G}) \\
2 \pi i \mathcal{A}_{n-1}(z ; \mathbf{G}) \gamma_{n-1} & \mathcal{B}_{n}^{*}(z ; \mathbf{G})
\end{array}\right)}_{\mathbf{F}_{n}(z ; \mathbf{G})} \mathbf{Y}^{n}(z)
\end{gathered}
$$

where $\mathcal{A}_{n}$ and $\mathcal{B}_{n}$ are matrix polynomials of degree $m-1$ and $m$ respectively. Cross-differentiating the Lax pair yield the compatibility conditions

$$
\mathbf{E}_{n}^{\prime}(z ; \mathbf{G})+\mathbf{E}_{n}(z ; \mathbf{G}) \mathbf{F}_{n}(z ; \mathbf{G})=\mathbf{F}_{n+1}(z ; \mathbf{G}) \mathbf{E}_{n}(z ; \mathbf{G})
$$

## The Lax pair III

If there exists a non-trivial matrix-valued function $\mathbf{S}$, non-singular on $\mathbb{C}$, smooth and unitary on $\mathbb{R}$, s.t.

$$
\mathbf{H}(z)=\mathbf{T}(z) \mathbf{S}^{\prime}(z) \mathbf{S}^{*}(z) \mathbf{T}^{-1}(z)
$$

is also a polynomial, then $\widetilde{\mathbf{T}}=\mathbf{T S}$ satisfies

$$
\mathbf{W}(x)=\tilde{\mathbf{T}}(x) \widetilde{\mathbf{T}}^{*}(x), \quad x \in \mathbb{R}, \quad \tilde{\mathbf{T}}^{\prime}(z)=\tilde{\mathbf{G}}(z) \widetilde{\mathbf{T}}(z), \quad z \in \mathbb{C},
$$

with $\widetilde{\mathbf{G}}(z)=\mathbf{G}(z)+\mathbf{H}(z)$ and the matrix $\mathbf{X}^{n}$ satisfies

$$
\frac{d}{d z} \mathbf{X}^{n}(z)=\mathbf{F}_{n}(z ; \mathbf{G}) \mathbf{X}^{n}(z)+\mathbf{F}_{n}(z ; \mathbf{H}) \mathbf{X}^{n}(z)-\mathbf{X}^{n}(z)\left(\begin{array}{cc}
\chi(z) & \mathbf{0} \\
\mathbf{0} & -\chi^{*}(z)
\end{array}\right)
$$

with $\chi(z)=\mathbf{S}^{\prime}(z) \mathbf{S}^{*}(z)$.

## The Lax pair III

If there exists a non-trivial matrix-valued function $\mathbf{S}$, non-singular on $\mathbb{C}$, smooth and unitary on $\mathbb{R}$, s.t.

$$
\mathbf{H}(z)=\mathbf{T}(z) \mathbf{S}^{\prime}(z) \mathbf{S}^{*}(z) \mathbf{T}^{-1}(z)
$$

is also a polynomial, then $\widetilde{\mathbf{T}}=\mathbf{T S}$ satisfies

$$
\mathbf{W}(x)=\tilde{\mathbf{T}}(x) \tilde{\mathbf{T}}^{*}(x), \quad x \in \mathbb{R}, \quad \tilde{\mathbf{T}}^{\prime}(z)=\widetilde{\mathbf{G}}(z) \widetilde{\mathbf{T}}(z), \quad z \in \mathbb{C},
$$

with $\widetilde{\mathbf{G}}(z)=\mathbf{G}(z)+\mathbf{H}(z)$ and the matrix $\mathbf{X}^{n}$ satisfies

$$
\frac{d}{d z} \mathbf{X}^{n}(z)=\mathbf{F}_{n}(z ; \mathbf{G}) \mathbf{X}^{n}(z)+\mathbf{F}_{n}(z ; \mathbf{H}) \mathbf{X}^{n}(z)-\mathbf{X}^{n}(z)\left(\begin{array}{cc}
\chi(z) & \mathbf{0} \\
\mathbf{0} & -\chi^{*}(z)
\end{array}\right)
$$

with $\chi(z)=\mathbf{S}^{\prime}(z) \mathbf{S}^{*}(z)$.
Consequences: We have a class of ladder operators.

## Example I: Hermite type MOP

Let us consider $\mathbf{T}(x)=e^{-x^{2} / 2} e^{\mathbf{A} x}$ and

$$
\mathbf{W}(x)=e^{-x^{2}} e^{\mathbf{A} x} e^{\mathbf{A}^{*} x}, \quad \mathbf{A} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R} .
$$



## Example I: Hermite type MOP

Let us consider $\mathbf{T}(x)=e^{-x^{2} / 2} e^{\mathbf{A} x}$ and

$$
\mathbf{W}(x)=e^{-x^{2}} e^{\mathbf{A} x} e^{\mathbf{A}^{*} x}, \quad \mathbf{A} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R} .
$$

## Lax pair

$$
\begin{aligned}
\mathbf{X}^{n+1}(z) & =\left(\begin{array}{cc}
z \mathbf{l}_{N}-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z) & =\left(\begin{array}{cc}
-z \mathbf{l}_{N}+\mathbf{A} & -\frac{1}{\pi i} \gamma_{n}^{-1} \\
4 \pi i \gamma_{n-1} & z \mathbf{l}_{N}-\mathbf{A}^{*}
\end{array}\right) X^{n}(z)
\end{aligned}
$$

## Example I: Hermite type MOP

Let us consider $\mathbf{T}(x)=e^{-x^{2} / 2} e^{\mathbf{A} x}$ and

$$
\mathbf{W}(x)=e^{-x^{2}} e^{\mathbf{A} x} e^{\mathbf{A}^{*} x}, \quad \mathbf{A} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R} .
$$

## Lax pair

$$
\begin{aligned}
\mathbf{X}^{n+1}(z) & =\left(\begin{array}{cc}
z \mathbf{l}_{N}-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) \mathbf{X}^{n}(z) \\
\frac{d}{d z} \mathbf{X}^{n}(z) & =\left(\begin{array}{cc}
-z \mathbf{l}_{N}+\mathbf{A} & -\frac{1}{\pi i} \gamma_{n}^{-1} \\
4 \pi i \gamma_{n-1} & z \mathbf{l}_{N}-\mathbf{A}^{*}
\end{array}\right) X^{n}(z)
\end{aligned}
$$

Compatibility conditions

$$
\boldsymbol{\alpha}_{n}=\left(\mathbf{A}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{A}^{*} \gamma_{n}\right) / 2, \quad 2\left(\boldsymbol{\beta}_{n+1}-\boldsymbol{\beta}_{n}\right)=\mathbf{A} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{A}+\mathbf{I}_{N}
$$

## Ladder operators

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}^{\prime}(x)+\widehat{\mathbf{P}}_{n}(x) \mathbf{A}-\mathbf{A} \widehat{\mathbf{P}}_{n}(x)=2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x), \\
-\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x \widehat{\mathbf{P}}_{n}(x)+\mathbf{A} \widehat{\mathbf{P}}_{n}(x)-\widehat{\mathbf{P}}_{n}(x) \mathbf{A}-2 \boldsymbol{\alpha}_{n} \widehat{\mathbf{P}}_{n}(x)=2 \widehat{\mathbf{P}}_{n+1}(x) .
\end{gathered}
$$

## Combining them we get a second order differential equation

Second order differential equation

$=\left(-2 x \mathbf{A}+\mathbf{A}^{2}-4 \boldsymbol{\beta}_{n}\right) \widehat{\mathbf{P}}_{n}(x)+2\left(\mathbf{A}-\alpha_{n}\right)\left(\widehat{\mathbf{P}}_{n}^{\prime}(x)+\widehat{\mathbf{P}}_{n}(x) \mathbf{A}-\mathbf{A} \widehat{\mathbf{P}}_{n}(x)\right)$.

## Ladder operators

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}^{\prime}(x)+\widehat{\mathbf{P}}_{n}(x) \mathbf{A}-\mathbf{A} \widehat{\mathbf{P}}_{n}(x)=2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x), \\
-\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x \widehat{\mathbf{P}}_{n}(x)+\mathbf{A} \widehat{\mathbf{P}}_{n}(x)-\widehat{\mathbf{P}}_{n}(x) \mathbf{A}-2 \boldsymbol{\alpha}_{n} \widehat{\mathbf{P}}_{n}(x)=2 \widehat{\mathbf{P}}_{n+1}(x) .
\end{gathered}
$$

Combining them we get a second order differential equation
Second order differential equation

$$
\begin{aligned}
& \widehat{\mathbf{P}}_{n}^{\prime \prime}(x)+2 \widehat{\mathbf{P}}_{n}^{\prime}(x)\left(\mathbf{A}-x \mathbf{I}_{N}\right)+\widehat{\mathbf{P}}_{n}(x)\left(\mathbf{A}^{2}-2 x \mathbf{A}\right) \\
= & \left(-2 x \mathbf{A}+\mathbf{A}^{2}-4 \boldsymbol{\beta}_{n}\right) \widehat{\mathbf{P}}_{n}(x)+2\left(\mathbf{A}-\boldsymbol{\alpha}_{n}\right)\left(\widehat{\mathbf{P}}_{n}^{\prime}(x)+\widehat{\mathbf{P}}_{n}(x) \mathbf{A}-\mathbf{A} \widehat{\mathbf{P}}_{n}(x)\right) .
\end{aligned}
$$

The RHP for MOPs

In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.
The matrix $\mathbf{H}$ can be written as

$$
\mathbf{H}(x)=e^{\mathbf{A} x} \chi e^{-\mathbf{A} x}=\chi+\operatorname{ad}_{\mathbf{A}}(\chi) x+\operatorname{ad}_{\mathbf{A}}^{2}(\chi) \frac{x^{2}}{2}+\cdots,
$$

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.
The matrix $\mathbf{H}$ can be written as

$$
\mathbf{H}(x)=e^{\mathbf{A} x} \chi e^{-\mathbf{A} x}=\chi+\operatorname{ad}_{\mathbf{A}}(\chi) x+\operatorname{ad}_{\mathbf{A}}^{2}(\chi) \frac{x^{2}}{2}+\cdots,
$$

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

- If deg $\mathrm{H}=0$ then $\chi=i \mathrm{a}_{\mathrm{N}}, a \in \mathbb{R} \Rightarrow$ No new ladder operators
- If $\operatorname{deg} \mathbf{H}=1$ then

In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.
The matrix $\mathbf{H}$ can be written as

$$
\mathbf{H}(x)=e^{\mathbf{A} x} \chi e^{-\mathbf{A} x}=\chi+\operatorname{ad}_{\mathbf{A}}(\chi) x+\operatorname{ad}_{\mathbf{A}}^{2}(\chi) \frac{x^{2}}{2}+\cdots,
$$

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

- If $\operatorname{deg} \mathbf{H}=0$ then $\chi=i a \mathbf{l}_{N}, a \in \mathbb{R} \Rightarrow$ No new ladder operators.

In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.
The matrix $\mathbf{H}$ can be written as

$$
\mathbf{H}(x)=e^{\mathbf{A} x} \chi e^{-\mathbf{A} x}=\chi+\operatorname{ad}_{\mathbf{A}}(\chi) x+\operatorname{ad}_{\mathbf{A}}^{2}(\chi) \frac{x^{2}}{2}+\cdots,
$$

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

- If $\operatorname{deg} \mathbf{H}=0$ then $\chi=i a \mathbf{I}_{N}, a \in \mathbb{R} \Rightarrow$ No new ladder operators.
- If $\operatorname{deg} \mathbf{H}=1$ then


In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.
The matrix $\mathbf{H}$ can be written as

$$
\mathbf{H}(x)=e^{\mathbf{A} x} \chi e^{-\mathbf{A} x}=\chi+\operatorname{ad}_{\mathbf{A}}(\chi) x+\operatorname{ad}_{\mathbf{A}}^{2}(\chi) \frac{x^{2}}{2}+\cdots,
$$

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

- If $\operatorname{deg} \mathbf{H}=0$ then $\chi=i a \mathbf{l}_{N}, a \in \mathbb{R} \Rightarrow$ No new ladder operators.
- If $\operatorname{deg} \mathbf{H}=1$ then
(1) $\mathbf{A}=\mathbf{L}=\sum_{i=1}^{N} \nu_{i} \mathbf{E}_{i, i+1}$, and $\chi=i \mathbf{J}=i \sum_{i=1}^{N}(N-i) \mathbf{E}_{i, i}$

$$
\Rightarrow \operatorname{ad}_{\mathbf{A}}(\chi)=-\mathbf{A} \text { and } \mathbf{S}(x)=e^{i \mathbf{J} x}
$$

In order to use the freedom in the matrix case by a unitary matrix function $\mathbf{S}$ we have to impose additional constraints on the weight $\mathbf{W}$.
The matrix $\mathbf{H}$ can be written as

$$
\mathbf{H}(x)=e^{\mathbf{A} x} \chi e^{-\mathbf{A} x}=\chi+\operatorname{ad}_{\mathbf{A}}(\chi) x+\operatorname{ad}_{\mathbf{A}}^{2}(\chi) \frac{x^{2}}{2}+\cdots,
$$

where $\chi(x)=\mathbf{S}^{\prime}(x) \mathbf{S}^{*}(x)$ is skew-Hermitian on $\mathbb{R}$.
This matrix equation was considered already by Durán-Grünbaum (2004), when $\chi$ is a constant matrix.

- If $\operatorname{deg} \mathbf{H}=0$ then $\chi=i a \mathbf{l}_{N}, a \in \mathbb{R} \Rightarrow$ No new ladder operators.
- If $\operatorname{deg} \mathbf{H}=1$ then
(1) $\mathbf{A}=\mathbf{L}=\sum_{i=1}^{N} \nu_{i} \mathbf{E}_{i, i+1}$, and $\chi=i \mathbf{J}=i \sum_{i=1}^{N}(N-i) \mathbf{E}_{i, i}$

$$
\Rightarrow \operatorname{ad}_{\mathbf{A}}(\chi)=-\mathbf{A} \text { and } \mathbf{S}(x)=e^{i \boldsymbol{J} x}
$$

(2) $\mathbf{A}=\mathbf{L}\left(\mathbf{I}_{N}+\mathbf{L}\right)^{-1}$, and $\chi=i \mathbf{J}$
$\Rightarrow \operatorname{ad}_{\mathbf{A}}(\chi)=-\mathbf{A}+\mathbf{A}^{2}$ and $\mathbf{S}(x)=e^{i \boldsymbol{J} x}$

The RHP for MOPs
The Lax pair
Examples

## First case $\mathbf{A}=\mathbf{L}$

## New compatibility conditions

$$
\mathbf{J} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{J}+\boldsymbol{\alpha}_{n}=\mathbf{L}+\frac{1}{2}\left(\mathbf{L}^{2} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{L}^{2}\right), \quad \mathbf{J}-\boldsymbol{\gamma}_{n}^{-1} \mathbf{J} \boldsymbol{\gamma}_{n}=\mathbf{L} \boldsymbol{\alpha}_{n}+\boldsymbol{\alpha}_{n} \mathbf{L}-2 \boldsymbol{\alpha}_{n}^{2}
$$



First-order differential equation

## First case $\mathbf{A}=\mathbf{L}$

New compatibility conditions

$$
\mathbf{J} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{J}+\boldsymbol{\alpha}_{n}=\mathbf{L}+\frac{1}{2}\left(\mathbf{L}^{2} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{L}^{2}\right), \quad \mathbf{J}-\boldsymbol{\gamma}_{n}^{-1} \mathbf{J} \boldsymbol{\gamma}_{n}=\mathbf{L} \boldsymbol{\alpha}_{n}+\boldsymbol{\alpha}_{n} \mathbf{L}-2 \boldsymbol{\alpha}_{n}^{2}
$$

New ladder operators (0-th order)

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}(x) \mathbf{J}-\mathbf{J} \widehat{\mathbf{P}}_{n}(x)-x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{L}-\mathbf{L} \widehat{\mathbf{P}}_{n}(x)\right)+2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)-n \widehat{\mathbf{P}}_{n}(x)=2\left(\mathbf{L}-\boldsymbol{\alpha}_{n}\right) \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x) \\
\widehat{\mathbf{P}}_{n}(x)(\mathbf{J}-x \mathbf{L})-\boldsymbol{\gamma}_{n}^{-1}\left(\mathbf{J}-x \mathbf{L}^{*}\right) \boldsymbol{\gamma}_{n} \widehat{\mathbf{P}}_{n}(x)+2 \boldsymbol{\beta}_{n+1} \widehat{\mathbf{P}}_{n}(x)-(n+1) \widehat{\mathbf{P}}_{n}(x)=2\left(\boldsymbol{\alpha}_{n}-\mathbf{L}\right) \widehat{\mathbf{P}}_{n+1}(x)
\end{gathered}
$$

## First case $\mathbf{A}=\mathbf{L}$

New compatibility conditions

$$
\mathbf{J} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{J}+\boldsymbol{\alpha}_{n}=\mathbf{L}+\frac{1}{2}\left(\mathbf{L}^{2} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{L}^{2}\right), \quad \mathbf{J}-\boldsymbol{\gamma}_{n}^{-1} \mathbf{J} \boldsymbol{\gamma}_{n}=\mathbf{L} \boldsymbol{\alpha}_{n}+\boldsymbol{\alpha}_{n} \mathbf{L}-2 \boldsymbol{\alpha}_{n}^{2}
$$

New ladder operators (0-th order)

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}(x) \mathbf{J}-\mathbf{J} \widehat{\mathbf{P}}_{n}(x)-x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{L}-\mathbf{L} \widehat{\mathbf{P}}_{n}(x)\right)+2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)-n \widehat{\mathbf{P}}_{n}(x)=2\left(\mathbf{L}-\boldsymbol{\alpha}_{n}\right) \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x) \\
\widehat{\mathbf{P}}_{n}(x)(\mathbf{J}-x \mathbf{L})-\boldsymbol{\gamma}_{n}^{-1}\left(\mathbf{J}-x \mathbf{L}^{*}\right) \boldsymbol{\gamma}_{n} \widehat{\mathbf{P}}_{n}(x)+2 \boldsymbol{\beta}_{n+1} \widehat{\mathbf{P}}_{n}(x)-(n+1) \widehat{\mathbf{P}}_{n}(x)=2\left(\boldsymbol{\alpha}_{n}-\mathbf{L}\right) \widehat{\mathbf{P}}_{n+1}(x)
\end{gathered}
$$

## First-order differential equation

$$
\left(\mathbf{L}-\boldsymbol{\alpha}_{n}\right) \widehat{\mathbf{P}}_{n}^{\prime}(x)+\left(\mathbf{L}-\boldsymbol{\alpha}_{n}+x \mathbf{I}_{N}\right)\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{L}-\mathbf{L} \widehat{\mathbf{P}}_{n}(x)\right)-2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)=\widehat{\mathbf{P}}_{n}(x) \mathbf{J}-\widehat{\mathbf{P}}_{n}(x)-n \widehat{\mathbf{P}}_{n}(x)
$$

Sturm-Liouville type differential equation (Durán-Grünbaum, 2004) $\widehat{\mathbf{P}}_{n}^{\prime \prime}(x)+2 \widehat{\mathbf{P}}_{n}^{\prime}(x)\left(\mathrm{L}-x \mathbf{I}_{N}\right)+\widehat{\mathbf{P}}_{n}(x)\left(\mathrm{L}^{2}-2 \mathrm{~J}\right)=\left(-2 n \mathrm{I}_{N}+\mathrm{L}^{2}-2 \mathrm{~J}\right) \widehat{\mathbf{P}}_{n}(x)$

## First case $\mathbf{A}=\mathbf{L}$

New compatibility conditions

$$
\mathbf{J} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{J}+\boldsymbol{\alpha}_{n}=\mathbf{L}+\frac{1}{2}\left(\mathbf{L}^{2} \boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n} \mathbf{L}^{2}\right), \quad \mathbf{J}-\boldsymbol{\gamma}_{n}^{-1} \mathbf{J} \boldsymbol{\gamma}_{n}=\mathbf{L} \boldsymbol{\alpha}_{n}+\boldsymbol{\alpha}_{n} \mathbf{L}-2 \boldsymbol{\alpha}_{n}^{2}
$$

New ladder operators ( 0 -th order)

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}(x) \mathbf{J}-\mathbf{J} \widehat{\mathbf{P}}_{n}(x)-x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{L}-\mathbf{L} \widehat{\mathbf{P}}_{n}(x)\right)+2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)-n \widehat{\mathbf{P}}_{n}(x)=2\left(\mathbf{L}-\boldsymbol{\alpha}_{n}\right) \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x) \\
\widehat{\mathbf{P}}_{n}(x)(\mathbf{J}-x \mathbf{L})-\boldsymbol{\gamma}_{n}^{-1}\left(\mathbf{J}-x \mathbf{L}^{*}\right) \boldsymbol{\gamma}_{n} \widehat{\mathbf{P}}_{n}(x)+2 \boldsymbol{\beta}_{n+1} \widehat{\mathbf{P}}_{n}(x)-(n+1) \widehat{\mathbf{P}}_{n}(x)=2\left(\boldsymbol{\alpha}_{n}-\mathbf{L}\right) \widehat{\mathbf{P}}_{n+1}(x)
\end{gathered}
$$

## First-order differential equation

$\left(\mathbf{L}-\boldsymbol{\alpha}_{n}\right) \widehat{\mathbf{P}}_{n}^{\prime}(x)+\left(\mathbf{L}-\boldsymbol{\alpha}_{n}+x \mathbf{I}_{n}\right)\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{L}-\mathbf{L} \widehat{\mathbf{P}}_{n}(x)\right)-2 \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)=\widehat{\mathbf{P}}_{n}(x) \mathbf{J}-\mathbf{J} \widehat{\mathbf{P}}_{n}(x)-n \widehat{\mathbf{P}}_{n}(x)$
Sturm-Liouville type differential equation (Durán-Grünbaum, 2004)

$$
\widehat{\mathbf{P}}_{n}^{\prime \prime}(x)+2 \widehat{\mathbf{P}}_{n}^{\prime}(x)\left(\mathbf{L}-x \mathbf{I}_{N}\right)+\widehat{\mathbf{P}}_{n}(x)\left(\mathbf{L}^{2}-2 \mathbf{J}\right)=\left(-2 n \mathbf{I}_{N}+\mathbf{L}^{2}-2 \mathbf{J}\right) \widehat{\mathbf{P}}_{n}(x)
$$

The RHP for MOPs
The Lax pair
Examples

## Example II: Freud type MOP

Let us consider $\mathbf{W}(x)=e^{-x^{4}} e^{\mathbf{B} x^{2}} e^{\mathbf{B}^{*} x^{2}}, \quad \mathbf{B} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}$.

## Ladder operators

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{B}-\mathbf{B} \widehat{\mathbf{P}}_{n}(x)\right)+4 x \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)= \\
\left(4\left(x^{2} \mathbf{I}+\boldsymbol{\beta}_{n+1}+\boldsymbol{\beta}_{n}\right)-2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right)\right) \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x) \\
\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{B}-\mathbf{B} \widehat{\mathbf{P}}_{n}(x)\right)=\left(4 x^{3} \mathbf{I}+2\left(2 \boldsymbol{\beta}_{n+1}-\mathbf{B}-\gamma_{n}^{-1} \mathbf{B}^{*} \gamma_{n}\right) x\right) \widehat{\mathbf{P}}_{n}(x) \\
\left(-4\left(x^{2} \mathbf{I}+\boldsymbol{\beta}_{n+1}+\boldsymbol{\beta}_{n}\right)+2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \gamma_{n}\right)\right) \widehat{\mathbf{P}}_{n+1}(x)
\end{gathered}
$$

Compatibility conditions

$\square$

## Example II: Freud type MOP

Let us consider $\mathbf{W}(x)=e^{-x^{4}} e^{\mathbf{B} x^{2}} e^{\mathbf{B}^{*} x^{2}}, \quad \mathbf{B} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}$.

## Ladder operators

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{B}-\mathbf{B} \widehat{\mathbf{P}}_{n}(x)\right)+4 x \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)= \\
\left(4\left(x^{2} \mathbf{I}+\boldsymbol{\beta}_{n+1}+\boldsymbol{\beta}_{n}\right)-2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right)\right) \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x) \\
\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{B}-\mathbf{B} \widehat{\mathbf{P}}_{n}(x)\right)=\left(4 x^{3} \mathbf{I}+2\left(2 \boldsymbol{\beta}_{n+1}-\mathbf{B}-\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \gamma_{n}\right) x\right) \widehat{\mathbf{P}}_{n}(x) \\
\left(-4\left(x^{2} \mathbf{I}+\boldsymbol{\beta}_{n+1}+\boldsymbol{\beta}_{n}\right)+2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right)\right) \widehat{\mathbf{P}}_{n+1}(x)
\end{gathered}
$$

## Example II: Freud type MOP

Let us consider $\mathbf{W}(x)=e^{-x^{4}} e^{\mathbf{B} x^{2}} e^{\mathbf{B}^{*} x^{2}}, \quad \mathbf{B} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}$.

## Ladder operators

$$
\begin{gathered}
\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{B}-\mathbf{B} \widehat{\mathbf{P}}_{n}(x)\right)+4 x \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n}(x)= \\
\left(4\left(x^{2} \mathbf{I}+\boldsymbol{\beta}_{n+1}+\boldsymbol{\beta}_{n}\right)-2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right)\right) \boldsymbol{\beta}_{n} \widehat{\mathbf{P}}_{n-1}(x) \\
\widehat{\mathbf{P}}_{n}^{\prime}(x)+2 x\left(\widehat{\mathbf{P}}_{n}(x) \mathbf{B}-\mathbf{B} \widehat{\mathbf{P}}_{n}(x)\right)=\left(4 x^{3} \mathbf{I}+2\left(2 \boldsymbol{\beta}_{n+1}-\mathbf{B}-\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right) x\right) \widehat{\mathbf{P}}_{n}(x) \\
\left(-4\left(x^{2} \mathbf{I}+\boldsymbol{\beta}_{n+1}+\boldsymbol{\beta}_{n}\right)+2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right)\right) \widehat{\mathbf{P}}_{n+1}(x)
\end{gathered}
$$

## Compatibility conditions

$$
n \mathbf{I}+2\left(\mathbf{a}_{n, n-2} \mathbf{B}-\mathbf{B} \mathbf{a}_{n, n-2}\right)=4\left(\boldsymbol{\beta}_{n} \boldsymbol{\beta}_{n-1}+\boldsymbol{\beta}_{n}^{2}+\boldsymbol{\beta}_{n+1} \boldsymbol{\beta}_{n}\right)-2\left(\mathbf{B}+\boldsymbol{\gamma}_{n}^{-1} \mathbf{B}^{*} \boldsymbol{\gamma}_{n}\right) \boldsymbol{\beta}_{n}
$$

The RHP for MOPs

## Final remarks

## Conclusions

(1) The ladder operators method gives more insight about the differential properties of MOP and new phenomena
(2) This method works for every weight matrix $\mathbf{W}$. The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type

## Final remarks

## Conclusions

(1) The ladder operators method gives more insight about the differential properties of MOP and new phenomena
(2) This method works for every weight matrix $\mathbf{W}$. The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type

## Final remarks

## Conclusions

(1) The ladder operators method gives more insight about the differential properties of MOP and new phenomena
(2) This method works for every weight matrix $\mathbf{W}$. The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type

## Future directions

(1) Examples when $\operatorname{supp}(\mathbf{W}) \subset[0,+\infty)$ or $\operatorname{supp}(\mathbf{W}) \subset[-1,1]$
(2) Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou, 1993) extended to MOPRL

## Final remarks

## Conclusions

(1) The ladder operators method gives more insight about the differential properties of MOP and new phenomena
(2) This method works for every weight matrix $\mathbf{W}$. The corresponding MOP satisfy differential equations, but not necessarily of Sturm-Liouville type

## Future directions

(1) Examples when $\operatorname{supp}(\mathbf{W}) \subset[0,+\infty)$ or $\operatorname{supp}(\mathbf{W}) \subset[-1,1]$
(2) Uniform asymptotics: steepest descent analysis for RHP
(Deift-Zhou,1993) extended to MOPRL

