Riemann-Hilbert techniques
 in the theory of orthogonal matrix polynomials ${ }^{1}$

Manuel Domínguez de la Iglesia

Courant Institute of Mathematical Sciences, New York University Departamento de Análisis Matemático, Universidad de Sevilla

XI Encuentros de Análisis Real y Complejo Chinchón, May 9, 2009

${ }^{1}$ joint work with F. A. Grünbaum and A. Martínez Finkelshtein

Outline

(1) What is a Riemann-Hilbert problem?
(2) The Riemann-Hilbert problem for orthogonal matrix polynomials

Outline

(1) What is a Riemann-Hilbert problem?

(2) The Riemann-Hilbert problem for orthogonal matrix polynomials

Hilbert's 21st problem

Riemann: The problem that an analytic function could be completely defined by its singularities and monodromy properties.
Hilbert: A $N \times N$ linear system of differential equations

is called Fuchsian if $A(x)$ is a rational function with simple poles. If S is the punctured (at the poles) Riemann sphere $\mathbb{C} \cup\{\infty\}$ then

gives a representation, called monodromy group.
Question: Does always exist a Fuchsian system with given poles and a given monodromy group?

Hilbert's 21st problem

Riemann: The problem that an analytic function could be completely defined by its singularities and monodromy properties. Hilbert: A $N \times N$ linear system of differential equations

$$
\frac{d \Psi(x)}{d x}=A(x) \Psi(x)
$$

is called Fuchsian if $A(x)$ is a rational function with simple poles.
If S is the punctured (at the poles) Riemann sphere $\mathbb{C} \cup\{\infty\}$ then
gives a representation, called monodromy group.
Question: Does always exist a Fuchsian system with given poles and a
given monodromy group?

Hilbert's 21st problem

Riemann: The problem that an analytic function could be completely defined by its singularities and monodromy properties. Hilbert: A $N \times N$ linear system of differential equations

$$
\frac{d \Psi(x)}{d x}=A(x) \Psi(x)
$$

is called Fuchsian if $A(x)$ is a rational function with simple poles. If S is the punctured (at the poles) Riemann sphere $\mathbb{C} \cup\{\infty\}$ then

$$
\Psi: \Pi_{1}(S) \rightarrow G L(N, \mathbb{C})
$$

gives a representation, called monodromy group.
given monodromy group?

Hilbert's 21st problem

Riemann: The problem that an analytic function could be completely defined by its singularities and monodromy properties. Hilbert: A $N \times N$ linear system of differential equations

$$
\frac{d \Psi(x)}{d x}=A(x) \Psi(x)
$$

is called Fuchsian if $A(x)$ is a rational function with simple poles. If S is the punctured (at the poles) Riemann sphere $\mathbb{C} \cup\{\infty\}$ then

$$
\Psi: \Pi_{1}(S) \rightarrow G L(N, \mathbb{C})
$$

gives a representation, called monodromy group.
Question: Does always exist a Fuchsian system with given poles and a given monodromy group?

Some history

J. Plemelj (1909) published a solution relating the problem into the context of analytic factorization of matrix-valued functions and methods of singular integral equations.
A. Bolibruch (1989) gave a counterexample of size $N=3$. For $N=2$ Plemelj's claim is true (Dekkers, 1978)
There is now a modern version (D-module and derived category), the Riemann-Hilbert correspondence.
The Riemann-Hilbert method consists of reconstructing an analytic function from jump conditions or the analytic factorization of a given matrix-valued function defined on a curve. This is what we will call Riemann-Hilbert problems (RHP) Applications: Integrable systems, Orthogonal polynomials and Random matrices, Combinatorial probability.

Some history

J. Plemelj (1909) published a solution relating the problem into the context of analytic factorization of matrix-valued functions and methods of singular integral equations.
A. Bolibruch (1989) gave a counterexample of size $N=3$. For $N=2$ Plemelj's claim is true (Dekkers, 1978).

Riemann-Hilbert correspondence.
The Riemann-Hilbert method consists of reconstructing an analytic function from jump conditions or the analytic factorization of a given matrix-valued function defined on a curve. This is what we will call Riemann-Hilbert problems (RHP) Applications: Integrable systems, Orthogonal polynomials and Random matrices, Combinatorial probability.

Some history

J. Plemelj (1909) published a solution relating the problem into the context of analytic factorization of matrix-valued functions and methods of singular integral equations.
A. Bolibruch (1989) gave a counterexample of size $N=3$. For $N=2$ Plemelj's claim is true (Dekkers, 1978).
There is now a modern version (D-module and derived category), the Riemann-Hilbert correspondence.
 matrices, Combinatorial probability.

Some history

J. Plemelj (1909) published a solution relating the problem into the context of analytic factorization of matrix-valued functions and methods of singular integral equations.
A. Bolibruch (1989) gave a counterexample of size $N=3$. For $N=2$ Plemelj's claim is true (Dekkers, 1978).
There is now a modern version (D-module and derived category), the Riemann-Hilbert correspondence.
The Riemann-Hilbert method consists of reconstructing an analytic function from jump conditions or the analytic factorization of a given matrix-valued function defined on a curve. This is what we will call Riemann-Hilbert problems (RHP).

Some history

J. Plemelj (1909) published a solution relating the problem into the context of analytic factorization of matrix-valued functions and methods of singular integral equations.
A. Bolibruch (1989) gave a counterexample of size $N=3$. For $N=2$ Plemelj's claim is true (Dekkers, 1978).
There is now a modern version (D-module and derived category), the Riemann-Hilbert correspondence.
The Riemann-Hilbert method consists of reconstructing an analytic function from jump conditions or the analytic factorization of a given matrix-valued function defined on a curve. This is what we will call Riemann-Hilbert problems (RHP).
Applications: Integrable systems, Orthogonal polynomials and Random matrices, Combinatorial probability.

Riemann-Hilbert factorization problem

Let $G: \Sigma \rightarrow G L(N, \mathbb{C})$ be a matrix-valued function. The RHP determined by (Σ, G) consists of finding an $N \times N$ matrix-valued function $Y(z)$ s.t.

Riemann-Hilbert factorization problem

Let $G: \Sigma \rightarrow G L(N, \mathbb{C})$ be a matrix-valued function. The RHP determined by (Σ, G) consists of finding an $N \times N$ matrix-valued function $Y(z)$ s.t.
(1) $Y(z)$ is analytic in $\mathbb{C} \backslash \Sigma$
(3) $Y_{+}(z)=Y_{-}(z) G(z)$ when $z \in \Sigma$ $Y_{ \pm}(z)=\lim _{z^{\prime} \rightarrow z, \pm \text { side }} Y(z)$
(3) $Y(z)=I$ as $z \rightarrow \infty$

Riemann-Hilbert factorization problem

Let $G: \Sigma \rightarrow G L(N, \mathbb{C})$ be a matrix-valued function. The RHP determined by (Σ, G) consists of finding an $N \times N$ matrix-valued function $Y(z)$ s.t.
(1) $Y(z)$ is analytic in $\mathbb{C} \backslash \Sigma$
(2) $Y_{+}(z)=Y_{-}(z) G(z)$ when $z \in \Sigma$
$Y_{ \pm}(z)=\lim _{z^{\prime} \rightarrow z, \pm \text { side }} Y(z)$

Riemann-Hilbert factorization problem

Let $G: \Sigma \rightarrow G L(N, \mathbb{C})$ be a matrix-valued function. The RHP determined by (Σ, G) consists of finding an $N \times N$ matrix-valued function $Y(z)$ s.t.
(1) $Y(z)$ is analytic in $\mathbb{C} \backslash \Sigma$
(2) $Y_{+}(z)=Y_{-}(z) G(z)$ when $z \in \Sigma$
$Y_{ \pm}(z)=\lim _{z^{\prime} \rightarrow z, \pm \text { side }} Y(z)$
(3) $Y(z)=I$ as $z \rightarrow \infty$

Scalar and additive RHP $(N=1)$

Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a $L^{1}(\mathbb{R})$ and Hölder continous function. The Riemann-Hilbert problem determined by (\mathbb{R}, ω) consists of finding a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that
$f(z)=\mathcal{O}(1 / z)$ as $z \rightarrow \infty$ The unique solution of the RH problem above is the Stieltjes or Cauchy

Scalar and additive RHP $(N=1)$

Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a $L^{1}(\mathbb{R})$ and Hölder continous function. The Riemann-Hilbert problem determined by (\mathbb{R}, ω) consists of finding a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that
(1) $f(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$

 The unique solution of the RH problem above is the Stieltjes or Cauchy

Scalar and additive RHP $(N=1)$

Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a $L^{1}(\mathbb{R})$ and Hölder continous function. The Riemann-Hilbert problem determined by (\mathbb{R}, ω) consists of finding a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that
(1) $f(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $f_{+}(x)=f_{-}(x)+\omega(x)$ when $x \in \mathbb{R}$

Scalar and additive RHP $(N=1)$

Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a $L^{1}(\mathbb{R})$ and Hölder continous function. The Riemann-Hilbert problem determined by (\mathbb{R}, ω) consists of finding a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that
(1) $f(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $f_{+}(x)=f_{-}(x)+\omega(x)$ when $x \in \mathbb{R}$
(3) $f(z)=\mathcal{O}(1 / z)$ as $z \rightarrow \infty$

Scalar and additive RHP $(N=1)$

Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a $L^{1}(\mathbb{R})$ and Hölder continous function. The Riemann-Hilbert problem determined by (\mathbb{R}, ω) consists of finding a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that
(1) $f(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $f_{+}(x)=f_{-}(x)+\omega(x)$ when $x \in \mathbb{R}$
(3) $f(z)=\mathcal{O}(1 / z)$ as $z \rightarrow \infty$

The unique solution of the RH problem above is the Stieltjes or Cauchy transform of ω, i.e.

$$
f(z)=C(\omega)(z) \doteq \frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{\omega(t)}{t-z}
$$

RHP for orthogonal polynomials $(N=2)$

Let $d \mu$ be a positive Borel measure.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

We try to find a 2×2 matrix-valued function $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that

RHP for orthogonal polynomials $(N=2)$

Let $d \mu$ be a positive Borel measure.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

$$
\begin{aligned}
\left(p_{n}, p_{m}\right)_{\omega}= & \int_{\mathbb{R}} p_{n}(x) p_{m}(x) \omega(x) d x=\delta_{n, m}, \quad n, m \geq 0 \\
& p_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{p}_{n}(x)
\end{aligned}
$$

We try to find a 2×2 matrix-valued function

RHP for orthogonal polynomials $(N=2)$

Let $d \mu$ be a positive Borel measure.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

$$
\begin{aligned}
\left(p_{n}, p_{m}\right)_{\omega}= & \int_{\mathbb{R}} p_{n}(x) p_{m}(x) \omega(x) d x=\delta_{n, m}, \quad n, m \geq 0 \\
& p_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{p}_{n}(x)
\end{aligned}
$$

We try to find a 2×2 matrix-valued function $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$

RHP for orthogonal polynomials $(N=2)$

Let $d \mu$ be a positive Borel measure.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

$$
\begin{aligned}
\left(p_{n}, p_{m}\right)_{\omega}= & \int_{\mathbb{R}} p_{n}(x) p_{m}(x) \omega(x) d x=\delta_{n, m}, \quad n, m \geq 0 \\
& p_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{p}_{n}(x)
\end{aligned}
$$

We try to find a 2×2 matrix-valued function $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$

RHP for orthogonal polynomials $(N=2)$

Let $d \mu$ be a positive Borel measure.
We will assume $d \mu(x)=\omega(x) d x, \omega \geq 0$ and $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$.
We can then construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$ s.t.

$$
\begin{aligned}
\left(p_{n}, p_{m}\right)_{\omega}= & \int_{\mathbb{R}} p_{n}(x) p_{m}(x) \omega(x) d x=\delta_{n, m}, \quad n, m \geq 0 \\
& p_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{p}_{n}(x)
\end{aligned}
$$

We try to find a 2×2 matrix-valued function $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

Solution of the RHP for orthogonal polynomials

Fokas-Its-Kitaev (1990): For $n \geq 1$ the unique solution of the RHP above is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{p}_{n}(z) & C\left(\widehat{p}_{n} \omega\right)(z) \\
c_{n} \widehat{p}_{n-1}(z) & c_{n} C\left(\widehat{p}_{n-1} \omega\right)(z)
\end{array}\right)
$$

where $c_{n}=-2 \pi i \gamma_{n-1}^{2}$.

```
The existence and unicity is a consequence of the Morera's theorem,
Liouville's theorem, the additive RHP and \(\operatorname{det} Y^{n}(z)=1\)
The Liouville-Ostrogradski formula
\[
q_{n}(z) p_{n-1}(z)-p_{n}(z) q_{n-1}(z)=\gamma_{n} / \gamma_{n-1}
\]
```


Solution of the RHP for orthogonal polynomials

Fokas-Its-Kitaev (1990): For $n \geq 1$ the unique solution of the RHP above is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{p}_{n}(z) & C\left(\widehat{p}_{n} \omega\right)(z) \\
c_{n} \widehat{p}_{n-1}(z) & c_{n} C\left(\widehat{p}_{n-1} \omega\right)(z)
\end{array}\right)
$$

where $c_{n}=-2 \pi i \gamma_{n-1}^{2}$.
The existence and unicity is a consequence of the Morera's theorem, Liouville's theorem, the additive RHP and $\operatorname{det} Y^{n}(z)=1$.

$$
q_{n}(z) p_{n-1}(z)-p_{n}(z) q_{n-1}(z)=\gamma_{n} / \gamma_{n-1}
$$

Solution of the RHP for orthogonal polynomials

Fokas-Its-Kitaev (1990): For $n \geq 1$ the unique solution of the RHP above is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{p}_{n}(z) & C\left(\widehat{p}_{n} \omega\right)(z) \\
c_{n} \widehat{p}_{n-1}(z) & c_{n} C\left(\widehat{p}_{n-1} \omega\right)(z)
\end{array}\right)
$$

where $c_{n}=-2 \pi i \gamma_{n-1}^{2}$.
The existence and unicity is a consequence of the Morera's theorem, Liouville's theorem, the additive RHP and $\operatorname{det} Y^{n}(z)=1$.
The Liouville-Ostrogradski formula

$$
q_{n}(z) p_{n-1}(z)-p_{n}(z) q_{n-1}(z)=\gamma_{n} / \gamma_{n-1}
$$

where $q_{n}(z)=\int_{\mathbb{R}} \frac{p_{n}(t)-p_{n}(z)}{t-z} \omega(t) d t$ is a consequence of $Y^{n}\left(Y^{n}\right)^{-1}=I$.

Example: Hermite polynomials

The solution $Y^{n}(z)$ of the RHP
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & e^{-x^{2}} \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$
is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
h_{n}(z) & C\left(h_{n} e^{-t^{2}}\right)(z) \\
c_{n} h_{n-1}(z) & c_{n} C\left(h_{n-1} e^{-t^{2}}\right)(z)
\end{array}\right)
$$

where $\left(h_{n}\right)_{n}$ is the family of monic Hermite polynomials.

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(1+\frac{1}{z}\left(\begin{array}{ll}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right), \quad z \rightarrow \infty
$$

we have that

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(1+\frac{1}{z}\left(\begin{array}{cc}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(3) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

Therefore

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(1+\frac{1}{z}\left(\begin{array}{cc}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

Therefore

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(1+\frac{1}{z}\left(\begin{array}{cc}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3) $R(z)=\left(\begin{array}{cc}z+d_{n+1}-d_{n} & -e_{n} \\ f_{n+1} & 0\end{array}\right)$ as $z \rightarrow \infty$

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(1+\frac{1}{z}\left(\begin{array}{cc}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3) $R(z)=\left(\begin{array}{cc}z+d_{n+1}-d_{n} & -e_{n} \\ f_{n+1} & 0\end{array}\right)$ as $z \rightarrow \infty$

Therefore

$$
Y^{n+1}(z)=\left(\begin{array}{cc}
z+d_{n+1}-d_{n} & -e_{n} \\
f_{n+1} & 0
\end{array}\right) Y^{n}(z)
$$

A recurrence relation II

If we put

$$
\alpha_{n}=d_{n}-d_{n+1}, \quad \text { and } \quad \beta_{n}=e_{n} f_{n}
$$

entry $(1,1)$ gives the three-term recurrence formula

$$
z h_{n}(z)=h_{n+1}(z)+\alpha_{n} h_{n}(z)+\beta_{n} h_{n-1}(z)
$$

The entry $(2,1)$ gives

$$
f_{n}=c_{n}=-2 \pi i \gamma_{n-1}^{2}
$$

From the explicit expression of α_{n} and β_{n} we have

Also we have the following

$$
f_{n+1}+e_{n}=1 \quad d_{n}+g_{n}=0
$$

A recurrence relation II

If we put

$$
\alpha_{n}=d_{n}-d_{n+1}, \quad \text { and } \quad \beta_{n}=e_{n} f_{n}
$$

entry $(1,1)$ gives the three-term recurrence formula

$$
z h_{n}(z)=h_{n+1}(z)+\alpha_{n} h_{n}(z)+\beta_{n} h_{n-1}(z)
$$

The entry $(2,1)$ gives

$$
f_{n}=c_{n}=-2 \pi i \gamma_{n-1}^{2}
$$

From the explicit expression of α_{n} and β_{n} we have

Also we have the following
$f_{n+1} e_{n}=1 \quad d_{n}+g_{n}=0$

A recurrence relation II

If we put

$$
\alpha_{n}=d_{n}-d_{n+1}, \quad \text { and } \quad \beta_{n}=e_{n} f_{n}
$$

entry $(1,1)$ gives the three-term recurrence formula

$$
z h_{n}(z)=h_{n+1}(z)+\alpha_{n} h_{n}(z)+\beta_{n} h_{n-1}(z)
$$

The entry $(2,1)$ gives

$$
f_{n}=c_{n}=-2 \pi i \gamma_{n-1}^{2}
$$

From the explicit expression of α_{n} and β_{n} we have

$$
d_{n}=a_{n, n-1}, \quad \text { and } \quad c_{n+1}^{-1}=e_{n}
$$

Also we have the following

A recurrence relation II

If we put

$$
\alpha_{n}=d_{n}-d_{n+1}, \quad \text { and } \quad \beta_{n}=e_{n} f_{n}
$$

entry $(1,1)$ gives the three-term recurrence formula

$$
z h_{n}(z)=h_{n+1}(z)+\alpha_{n} h_{n}(z)+\beta_{n} h_{n-1}(z)
$$

The entry $(2,1)$ gives

$$
f_{n}=c_{n}=-2 \pi i \gamma_{n-1}^{2}
$$

From the explicit expression of α_{n} and β_{n} we have

$$
d_{n}=a_{n, n-1}, \quad \text { and } \quad c_{n+1}^{-1}=e_{n}
$$

Also we have the following

$$
f_{n+1} e_{n}=1 \quad d_{n}+g_{n}=0
$$

A differential equation

Consider the transformation

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} & 0 \\
0 & e^{z^{2} / 2}
\end{array}\right)
$$

We observe that X^{n} is invertible and that

That means that X^{n} has a constant jump.

A differential equation

Consider the transformation

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} & 0 \\
0 & e^{z^{2} / 2}
\end{array}\right)
$$

We observe that X^{n} is invertible and that

$$
\begin{aligned}
X_{+}^{n}(x) & =Y_{+}^{n}(x)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right)=Y_{-}^{n}(x)\left(\begin{array}{cc}
1 & e^{-x^{2}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right) \\
& =Y_{-}^{n}(x)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right)\left(\begin{array}{cc}
e^{x^{2} / 2} & 0 \\
0 & e^{-x^{2} / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & e^{-x^{2}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right) \\
& =X_{-}^{n}(x)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

That means that X^{n} has a constant jump.

A differential equation

Consider the transformation

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} & 0 \\
0 & e^{z^{2} / 2}
\end{array}\right)
$$

We observe that X^{n} is invertible and that

$$
\begin{aligned}
X_{+}^{n}(x) & =Y_{+}^{n}(x)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right)=Y_{-}^{n}(x)\left(\begin{array}{cc}
1 & e^{-x^{2}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right) \\
& =Y_{-}^{n}(x)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right)\left(\begin{array}{cc}
e^{x^{2} / 2} & 0 \\
0 & e^{-x^{2} / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & e^{-x^{2}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-x^{2} / 2} & 0 \\
0 & e^{x^{2} / 2}
\end{array}\right) \\
& =X_{-}^{n}(x)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

That means that X^{n} has a constant jump.

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

3

$$
\begin{aligned}
R(z) & =\left(\begin{array}{cc}
-z & 0 \\
0 & z
\end{array}\right)+\left(\begin{array}{ll}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-z & 2 e_{n} \\
-2 f_{n} & z
\end{array}\right)
\end{aligned}
$$

as $z \rightarrow \infty$
Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3)

$$
\begin{aligned}
R(z) & =\left(\begin{array}{cc}
-z & 0 \\
0 & z
\end{array}\right)+\left(\begin{array}{ll}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
d_{n} & e_{n} \\
f_{n} & g_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-z & 2 e_{n} \\
-2 f_{n} & z
\end{array}\right)
\end{aligned}
$$

as $z \rightarrow \infty$
Therefore

$$
\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}
-z & 2 c_{n+1}^{-1} \\
-2 c_{n} & z
\end{array}\right) X^{n}(z)
$$

The Lax pair and compatibility conditions

X^{n} satisfies the following Lax pair

$$
X^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\alpha_{n} & -c_{n+1}^{-1} \\
c_{n+1} & 0
\end{array}\right)}_{E_{n}(z)} X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\underbrace{\left(\begin{array}{cc}
-z & 2 c_{n+1}^{-1} \\
-2 c_{n} & z
\end{array}\right)}_{F_{n}(z)} X^{n}(z)
$$

Combining them we get

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

In this case we get (using $\beta_{n}=c_{n} / c_{n+1}$)

The Lax pair and compatibility conditions

X^{n} satisfies the following Lax pair

$$
X^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\alpha_{n} & -c_{n+1}^{-1} \\
c_{n+1} & 0
\end{array}\right)}_{E_{n}(z)} X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\underbrace{\left(\begin{array}{cc}
-z & 2 c_{n+1}^{-1} \\
-2 c_{n} & z
\end{array}\right)}_{F_{n}(z)} X^{n}(z)
$$

Combining them we get

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

In this case we get (using $\beta_{n}=c_{n} / c_{n+1}$)

The Lax pair and compatibility conditions

X^{n} satisfies the following Lax pair

$$
X^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z-\alpha_{n} & -c_{n+1}^{-1} \\
c_{n+1} & 0
\end{array}\right)}_{E_{n}(z)} X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\underbrace{\left(\begin{array}{cc}
-z & 2 c_{n+1}^{-1} \\
-2 c_{n} & z
\end{array}\right)}_{F_{n}(z)} X^{n}(z)
$$

Combining them we get

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

In this case we get (using $\beta_{n}=c_{n} / c_{n+1}$)

$$
\alpha_{n}=0, \quad \beta_{n+1}-\beta_{n}=\frac{1}{2} \Rightarrow \beta_{n}=\frac{n}{2}
$$

The ladder operators and second order differential equation

From entries $(1,1)$ and $(2,1)$ of $\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z & 2 c_{n+1}^{-1} \\ -2 c_{n} & z\end{array}\right) X^{n}(z)$ we get the ladder operators

$$
h_{n}^{\prime}(z)=n h_{n-1}(z), \quad h_{n-1}^{\prime}(z)-2 z h_{n-1}(z)=-2 h_{n}(z)
$$

Combining them we get the second order differential equation

The ladder operators and second order differential equation

From entries $(1,1)$ and $(2,1)$ of $\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z & 2 c_{n+1}^{-1} \\ -2 c_{n} & z\end{array}\right) X^{n}(z)$ we get the ladder operators

$$
h_{n}^{\prime}(z)=n h_{n-1}(z), \quad h_{n-1}^{\prime}(z)-2 z h_{n-1}(z)=-2 h_{n}(z)
$$

Combining them we get the second order differential equation

$$
h_{n}^{\prime \prime}(z)-2 z h_{n}^{\prime}(z)+2 n h_{n}(z)=0
$$

The ladder operators and second order differential equation

From entries $(1,1)$ and $(2,1)$ of $\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z & 2 c_{n+1}^{-1} \\ -2 c_{n} & z\end{array}\right) X^{n}(z)$ we get the ladder operators

$$
h_{n}^{\prime}(z)=n h_{n-1}(z), \quad h_{n-1}^{\prime}(z)-2 z h_{n-1}(z)=-2 h_{n}(z)
$$

Combining them we get the second order differential equation

$$
h_{n}^{\prime \prime}(z)-2 z h_{n}^{\prime}(z)+2 n h_{n}(z)=0
$$

Conclusion: advantages
(1) Algebraic properties: three term recurrence relation, ladder operators, second order differential equationUniform asymptotics: steepest descent analysis for RHP (Deift-Zhou,1993). The idea is to transform Y^{n} into another RHP R^{n} where

The ladder operators and second order differential equation

From entries $(1,1)$ and $(2,1)$ of $\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z & 2 c_{n+1}^{-1} \\ -2 c_{n} & z\end{array}\right) X^{n}(z)$ we get the ladder operators

$$
h_{n}^{\prime}(z)=n h_{n-1}(z), \quad h_{n-1}^{\prime}(z)-2 z h_{n-1}(z)=-2 h_{n}(z)
$$

Combining them we get the second order differential equation

$$
h_{n}^{\prime \prime}(z)-2 z h_{n}^{\prime}(z)+2 n h_{n}(z)=0
$$

Conclusion: advantages

(1) Algebraic properties: three term recurrence relation, ladder operators, second order differential equation
(2) Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou,1993). The idea is to transform Y^{n} into another RHP R^{n} where $R^{n}(z)=I+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$ and $R_{+}(z)=R_{-}(z)(I+\mathcal{O}(1 / n))$. Therefore $R^{n}(z)=I+\mathcal{O}(1 / n)$ as $n \rightarrow \infty$ uniformly for all $z \in \mathbb{C}$.

Outline

(1) What is a Riemann-Hilbert problem?

(2) The Riemann-Hilbert problem for orthogonal matrix polynomials

Orthogonal matrix polynomials

The theory of orthogonal matrix polynomials (OMP) was introduced by Krein in 1949.

A $N \times N$ matrix polynomial on the real line is

Let W be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d W(x)=W(x) d x$ and $\int x^{n} W(x) d x \int x^{m} W^{\prime}(x) d x$ exist. We can construct a family of OMP with respect to the inner product

such that

Orthogonal matrix polynomials

The theory of orthogonal matrix polynomials (OMP) was introduced by Krein in 1949.

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R} \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Let W be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d W(x)=W(x) d x$ and $\int x^{n} W(x) d x \int x^{m} W^{\prime}(x) d x$ exist.
We can construct a family of OMP with respect to the inner product

such that

Orthogonal matrix polynomials

The theory of orthogonal matrix polynomials (OMP) was introduced by Krein in 1949.

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R} \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Let W be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d W(x)=W(x) d x$ and $\int x^{n} W(x) d x \int x^{m} W^{\prime}(x) d x$ exist.
We can construct a family of OMP with respect to the inner product

Orthogonal matrix polynomials

The theory of orthogonal matrix polynomials (OMP) was introduced by Krein in 1949.

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R} \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Let W be a $N \times N$ a matrix of measures or weight matrix.
We will assume $d W(x)=W(x) d x$ and $\int x^{n} W(x) d x \int x^{m} W^{\prime}(x) d x$ exist.
We can construct a family of OMP with respect to the inner product

$$
(P, Q)_{w}=\int_{\mathbb{R}} P(x) W(x) Q^{*}(x) d x \in \mathbb{C}^{N \times N}
$$

such that

$$
\begin{aligned}
\left(P_{n}, P_{m}\right) W= & \int_{\mathbb{R}} P_{n}(x) W(x) P_{m}^{*}(x) d x=\delta_{n, m} I, \quad n, m \geq 0 \\
& P_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{P}_{n}(x)
\end{aligned}
$$

Solution of the RHP for OMP

$Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 N \times 2 N}$ such that
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & W(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(-) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} I & 0 \\ 0 & z^{-n} I\end{array}\right)$ as $z \rightarrow \infty$
For $n \geq 1$ the unique solution of the RH problem above is given by

where $C(F)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{F(t)}{t-z} d t$ and $c_{n}=-2 \pi i \gamma_{n-1}^{*} \gamma_{n-1}$

Solution of the RHP for OMP

$Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 N \times 2 N}$ such that
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}l & W(x) \\ 0 & I\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} I & 0 \\ 0 & z^{-n} I\end{array}\right)$ as $z \rightarrow \infty$

For $n \geq 1$ the unique solution of the RH problem above is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} W\right)(z) \\
c_{n} \widehat{P}_{n-1}(z) & c_{n} C\left(\widehat{P}_{n-1} W\right)(z)
\end{array}\right)
$$

where $C(F)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{F(t)}{t-z} d t$ and $c_{n}=-2 \pi i \gamma_{n-1}^{*} \gamma_{n-1}$.

Again, we have that $\operatorname{det} Y^{n}(z)=1$, so we find a solution of the inverse

$$
\left(Y^{n}\right)^{-1}=\left(\begin{array}{cc}
C\left(W \widehat{P}_{n-1}^{*}\right)(z) c_{n} & -C\left(W \widehat{P}_{n}^{*}\right)(z) \\
-\widehat{P}_{n-1}^{*}(\bar{z}) c_{n} & \widehat{P}_{n}^{*}(\bar{z})
\end{array}\right)
$$

Again, we have that $\operatorname{det} Y^{n}(z)=1$, so we find a solution of the inverse

$$
\left(Y^{n}\right)^{-1}=\left(\begin{array}{cc}
C\left(W \widehat{P}_{n-1}^{*}\right)(z) c_{n} & -C\left(W \widehat{P}_{n}^{*}\right)(z) \\
-\widehat{P}_{n-1}^{*}(\bar{z}) c_{n} & \widehat{P}_{n}^{*}(\bar{z})
\end{array}\right)
$$

- The Liouville-Ostrogradski formula (Durán, 1996)

$$
Q_{n}(z) P_{n-1}^{*}(\bar{z})-P_{n}(z) Q_{n-1}^{*}(\bar{z})=\gamma_{n} \gamma_{n-1}^{-1}
$$

$$
Q_{n}(z) P_{n}^{*}(\bar{z})=P_{n}(z) Q_{n}^{*}(\bar{z})
$$

Again, we have that $\operatorname{det} Y^{n}(z)=1$, so we find a solution of the inverse

$$
\left(Y^{n}\right)^{-1}=\left(\begin{array}{cc}
C\left(W \widehat{P}_{n-1}^{*}\right)(z) c_{n} & -C\left(W \widehat{P}_{n}^{*}\right)(z) \\
-\widehat{P}_{n-1}^{*}(\bar{z}) c_{n} & \widehat{P}_{n}^{*}(\bar{z})
\end{array}\right)
$$

- The Liouville-Ostrogradski formula (Durán, 1996)

$$
Q_{n}(z) P_{n-1}^{*}(\bar{z})-P_{n}(z) Q_{n-1}^{*}(\bar{z})=\gamma_{n} \gamma_{n-1}^{-1}
$$

- The Hermitian property (Durán, 1996)

$$
Q_{n}(z) P_{n}^{*}(\bar{z})=P_{n}(z) Q_{n}^{*}(\bar{z})
$$

A special case

Let us consider

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

for any $A \in \mathbb{C}^{N \times N}$.
The solution $Y^{n}(z)$ of the RHP
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(a) $Y n(x)=Y n(x)\left(\begin{array}{l}1 \\ 0\end{array}\right.$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))$

is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} e^{-t^{2}} e^{A t} e^{A^{*} t}\right)(z) \\
c_{n} \widehat{P}_{n-1}(z) & c_{n} C\left(\widehat{P}_{n-1} e^{-t^{2}} e^{A t} e^{A^{*} t}\right)(z)
\end{array}\right)
$$

where $\left(\widehat{P}_{n}\right)_{n}$ is the family of monic polynomials with respecter to, Nh. Nh

A special case

Let us consider

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

for any $A \in \mathbb{C}^{N \times N}$.
The solution $Y^{n}(z)$ of the RHP
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}I & e^{-x^{2}} e^{A x} e^{A^{*} x} \\ 0 & I\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} I & 0 \\ 0 & z^{-n} I\end{array}\right)$ as $z \rightarrow \infty$
is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} e^{-t^{2}} e^{A t} e^{A^{*} t}\right)(z) \\
c_{n} \widehat{P}_{n-1}(z) & c_{n} C\left(\widehat{P}_{n-1} e^{-t^{2}} e^{A t} e^{A^{*} t}\right)(z)
\end{array}\right)
$$

where $\left(\widehat{P}_{n}\right)_{n}$ is the family of monic polynomials with respect to W.

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(3) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

Therefore

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$

Therefore

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

Therefore

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3) $R(z)=\left(\begin{array}{cc}z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\ \left(Y_{1}^{n+1}\right)_{21} & 0\end{array}\right)$ as $z \rightarrow \infty$

Therefore

A recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty
$$

we have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3) $R(z)=\left(\begin{array}{cc}z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\ \left(Y_{1}^{n+1}\right)_{21} & 0\end{array}\right)$ as $z \rightarrow \infty$

Therefore

$$
Y^{n+1}(z)=\left(\begin{array}{cc}
z l+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) Y^{n}(z)
$$

A recurrence relation II

If we put

$$
\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}
$$

block entry $(1,1)$ gives the three-term recurrence formula

$$
z \widehat{P}_{n}(z)=\widehat{P}_{n+1}(z)+\alpha_{n} \widehat{P}_{n}(z)+\beta_{n} \widehat{P}_{n-1}(z)
$$

The block entry $(2,1)$ gives

From the explicit expression of α_{n} and β_{n} we have

Also we have the following

A recurrence relation II

If we put

$$
\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}
$$

block entry $(1,1)$ gives the three-term recurrence formula

$$
z \widehat{P}_{n}(z)=\widehat{P}_{n+1}(z)+\alpha_{n} \widehat{P}_{n}(z)+\beta_{n} \widehat{P}_{n-1}(z)
$$

The block entry $(2,1)$ gives

$$
c_{n}=\left(Y_{1}^{n}\right)_{21}
$$

From the explicit expression of α_{n} and β_{n} we have

Also we have the following

A recurrence relation II

If we put

$$
\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}
$$

block entry $(1,1)$ gives the three-term recurrence formula

$$
z \widehat{P}_{n}(z)=\widehat{P}_{n+1}(z)+\alpha_{n} \widehat{P}_{n}(z)+\beta_{n} \widehat{P}_{n-1}(z)
$$

The block entry $(2,1)$ gives

$$
c_{n}=\left(Y_{1}^{n}\right)_{21}
$$

From the explicit expression of α_{n} and β_{n} we have

$$
\left(Y_{1}^{n+1}\right)_{11}=a_{n, n-1}, \quad \text { and } \quad c_{n+1}^{-1}=\left(Y_{1}^{n-1}\right)_{12}
$$

Also we have the following

A recurrence relation II

If we put

$$
\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}
$$

block entry $(1,1)$ gives the three-term recurrence formula

$$
z \widehat{P}_{n}(z)=\widehat{P}_{n+1}(z)+\alpha_{n} \widehat{P}_{n}(z)+\beta_{n} \widehat{P}_{n-1}(z)
$$

The block entry $(2,1)$ gives

$$
c_{n}=\left(Y_{1}^{n}\right)_{21}
$$

From the explicit expression of α_{n} and β_{n} we have

$$
\left(Y_{1}^{n+1}\right)_{11}=a_{n, n-1}, \quad \text { and } \quad c_{n+1}^{-1}=\left(Y_{1}^{n-1}\right)_{12}
$$

Also we have the following

$$
\left(Y_{1}^{n+1}\right)_{21}\left(Y_{1}^{n}\right)_{12}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n+1}\right)_{21}=I, \quad\left(Y_{1}^{n}\right)_{11}+\left(Y_{1}^{n}\right)_{22}^{*}=0
$$

A differential equation

Consider the transformation

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

We observe that X^{n} is invertible and that

That means that X^{n} has a constant jump.

A differential equation

Consider the transformation

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

We observe that X^{n} is invertible and that

$$
X_{+}^{n}(x)=X_{-}^{n}(x)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

That means that X^{n} has a constant jump.

A differential equation

Consider the transformation

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

We observe that X^{n} is invertible and that

$$
X_{+}^{n}(x)=X_{-}^{n}(x)\left(\begin{array}{ll}
I & I \\
0 & I
\end{array}\right)
$$

That means that X^{n} has a constant jump.

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3)

$$
\begin{aligned}
R(z) & =\left(\begin{array}{cc}
-z l+A & 0 \\
0 & z I-A^{*}
\end{array}\right)+Y_{1}^{n}\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)-\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) Y_{1}^{n} \\
& =\left(\begin{array}{cc}
-z I+A & 2\left(Y_{1}^{n}\right)_{12} \\
-2\left(Y_{1}^{n+1}\right)_{21} & z I-A^{*}
\end{array}\right)
\end{aligned}
$$

as $z \rightarrow \infty$

Therefore

A differential equation II

Consider $R=\frac{d}{d z} X^{n}\left(X^{n}\right)^{-1}$. We have that
(1) R is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $R_{+}(x)=R_{-}(x)$ for all $x \in \mathbb{R}$
(3)

$$
\begin{aligned}
R(z) & =\left(\begin{array}{cc}
-z l+A & 0 \\
0 & z I-A^{*}
\end{array}\right)+Y_{1}^{n}\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)-\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) Y_{1}^{n} \\
& =\left(\begin{array}{cc}
-z l+A & 2\left(Y_{1}^{n}\right)_{12} \\
-2\left(Y_{1}^{n+1}\right)_{21} & z l-A^{*}
\end{array}\right)
\end{aligned}
$$

as $z \rightarrow \infty$
Therefore

$$
\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}
-z l+A & 2 c_{n+1}^{-1} \\
-2 c_{n} & z l-A^{*}
\end{array}\right) X^{n}(z)
$$

The Lax pair and compatibility conditions

X^{n} satisfies the following Lax pair

$$
X^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z I-\alpha_{n} & -c_{n+1}^{-1} \\
c_{n+1} & 0^{2}
\end{array}\right)}_{E_{n}(z)} X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\underbrace{\left(\begin{array}{cc}
-z I+A & 2 c_{n+1}^{-1} \\
-2 c_{n} & z l-A^{*}
\end{array}\right)}_{F_{n}(z)} X^{n}(z)
$$

Combining them we get

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

In this case we get (using $\beta_{n}=c_{n} c_{n+1}^{-1}$)

The Lax pair and compatibility conditions

X^{n} satisfies the following Lax pair

$$
X^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z I-\alpha_{n} & -c_{n+1}^{-1} \\
c_{n+1} & 0^{2}
\end{array}\right)}_{E_{n}(z)} X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\underbrace{\left(\begin{array}{cc}
-z I+A & 2 c_{n+1}^{-1} \\
-2 c_{n} & z l-A^{*}
\end{array}\right)}_{F_{n}(z)} X^{n}(z)
$$

Combining them we get

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

In this case we get (using $\beta_{n}=c_{n} c_{n+1}^{-1}$)

The Lax pair and compatibility conditions

X^{n} satisfies the following Lax pair

$$
X^{n+1}(z)=\underbrace{\left(\begin{array}{cc}
z I-\alpha_{n} & -c_{n+1}^{-1} \\
c_{n+1} & 0
\end{array}\right)}_{E_{n}(z)} X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\underbrace{\left(\begin{array}{cc}
-z I+A & 2 c_{n+1}^{-1} \\
-2 c_{n} & z I-A^{*}
\end{array}\right)}_{F_{n}(z)} X^{n}(z)
$$

Combining them we get

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

In this case we get (using $\beta_{n}=c_{n} c_{n+1}^{-1}$)

Compatibility conditions

$$
\begin{gathered}
2\left(\beta_{n+1}-\beta_{n}\right)=A \alpha_{n}-\alpha_{n} A+I \\
\alpha_{n}=\frac{1}{2}\left(A+c_{n+1}^{-1} A^{*} c_{n+1}\right)
\end{gathered}
$$

The ladder operators and second order differential equation

From block entries $(1,1)$ and $(2,1)$ of
$\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z l+A & 2 c_{n+1}^{-1} \\ -2 c_{n} & z l-A^{*}\end{array}\right) X^{n}(z)$ we get the ladder operators
Ladder operators

$$
\begin{gathered}
\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)=2 \beta_{n} \widehat{P}_{n-1}(z) \\
-\widehat{P}_{n}^{\prime}(z)+2\left(z-\alpha_{n}\right) \widehat{P}_{n}(z)+A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A=2 \widehat{P}_{n+1}(z)
\end{gathered}
$$

Combining them we get the second order differential equation

The ladder operators and second order differential equation

From block entries $(1,1)$ and $(2,1)$ of
$\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z l+A & 2 c_{n+1}^{-1} \\ -2 c_{n} & z l-A^{*}\end{array}\right) X^{n}(z)$ we get the ladder operators
Ladder operators

$$
\begin{gathered}
\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)=2 \beta_{n} \widehat{P}_{n-1}(z) \\
-\widehat{P}_{n}^{\prime}(z)+2\left(z-\alpha_{n}\right) \widehat{P}_{n}(z)+A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A=2 \widehat{P}_{n+1}(z)
\end{gathered}
$$

Combining them we get the second order differential equation
Second order differential equation

$$
\begin{aligned}
\widehat{P}_{n}^{\prime \prime}(z) & +2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z) A^{2}-A^{2} \widehat{P}_{n}(z)+4 \beta_{n} \widehat{P}_{n}(z)= \\
& -2 z\left(\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)+2\left(\alpha_{n}-A\right)\left(\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)
\end{aligned}
$$

