Integral representations of some Hermite type matrix-valued kernels
 and non-Commutative Painlevé EQUATIONS ${ }^{1}$

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla
Congreso de la Real Sociedad Matemática Española Santiago de Compostela, January 22nd, 2013

Outline

(1) Introduction

- Motivation
- Preliminaries
(2) Integral representations
- The first example
- The second example
(3) Non-commutative Painlevé IV equation
- The first example
- The second example

Outline

(1) Introduction

- Motivation
- Preliminaries
(2) Integral representations
- The first example
- The second example
(3) Non-commutative Painlevé IV equation
- The first example
- The second example

Motivation

Let $\left(H_{n}\right)_{n}$ be the classical Hermite polynomials such that

$$
\int_{\mathbb{R}} H_{n}(x) H_{m}(x) \mathrm{e}^{-x^{2}} d x=\delta_{n m}
$$

The Christoffel-Darboux (CD) kernel

describes the statistical properties of the eigenvalues of a
random matrix \mathbf{M} in the space of $(n \times n)$ Hermitian matrices
with the measure $\mu(\mathbf{M})=e^{-T\left(M^{2}\right)} d \mathbf{M}$ (GUE, Mehta)
The last particle distribution is given by the Fredholm determinant

$$
F(s)=\mathbb{P}\left[\lambda_{\max } \leq s\right]=\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)
$$

where χ_{s} is the indicator function of the interval $[s, \infty)$
and $\mathbb{K}_{n}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the integral operator
$\left[\mathbb{K}_{n} f\right](x)=\int_{\mathbb{R}} K_{n}(x, y) f(y) d y \quad \forall f \in L^{2}(\mathbb{R})$

Motivation

Let $\left(H_{n}\right)_{n}$ be the classical Hermite polynomials such that

$$
\int_{\mathbb{R}} H_{n}(x) H_{m}(x) \mathrm{e}^{-x^{2}} d x=\delta_{n m}
$$

The Christoffel-Darboux (CD) kernel

$$
K_{n}(x, y)=\sum_{k=0}^{n-1} H_{k}(x) H_{k}(y) \mathrm{e}^{-\frac{x^{2}+y^{2}}{2}}
$$

describes the statistical properties of the eigenvalues of a random matrix \mathbf{M} in the space of $(n \times n)$ Hermitian matrices with the measure $\mu(\mathbf{M})=\mathrm{e}^{-\operatorname{Tr}\left(\mathbf{M}^{2}\right)} d \mathbf{M}$ (GUE, Mehta).
where χ_{s} is the indicator function of the interval $[s, \infty)$ and $\mathbb{K}_{n}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the integral operator

Motivation

Let $\left(H_{n}\right)_{n}$ be the classical Hermite polynomials such that

$$
\int_{\mathbb{R}} H_{n}(x) H_{m}(x) \mathrm{e}^{-x^{2}} d x=\delta_{n m}
$$

The Christoffel-Darboux (CD) kernel

$$
K_{n}(x, y)=\sum_{k=0}^{n-1} H_{k}(x) H_{k}(y) e^{-\frac{x^{2}+y^{2}}{2}}
$$

describes the statistical properties of the eigenvalues of a random matrix \mathbf{M} in the space of $(n \times n)$ Hermitian matrices with the measure $\mu(\mathbf{M})=\mathrm{e}^{-\operatorname{Tr}\left(\mathbf{M}^{2}\right)} d \mathbf{M}$ (GUE, Mehta).
The last particle distribution is given by the Fredholm determinant

$$
F(s)=\mathbb{P}\left[\lambda_{\max } \leq s\right]=\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)
$$

where χ_{s} is the indicator function of the interval $[s, \infty)$ and $\mathbb{K}_{n}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the integral operator

$$
\left[\mathbb{K}_{n} f\right](x)=\int_{\mathbb{R}} K_{n}(x, y) f(y) d y \quad \forall f \in L^{2}(\mathbb{R})
$$

Motivation

Theorem (Tracy-Widom, 1994)

The log derivative of the Fredholm determinant

$$
R(s)=\partial_{s} \log \left(\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)\right)
$$

solves the sigma-form of the Painlevé IV equation

$$
\left(R^{\prime \prime}\right)^{2}+4\left(R^{\prime}\right)^{2}\left(R^{\prime}+2 n\right)-4\left(s R^{\prime}-R\right)^{2}=0
$$

Goal or tits talk
Extend these results to CD kernels associated to Hermite-type matrix-valued orthogonal polynomials (MOP)

Motivation

Theorem (Tracy-Widom, 1994)

The log derivative of the Fredholm determinant

$$
R(s)=\partial_{s} \log \left(\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)\right)
$$

solves the sigma-form of the Painlevé IV equation

$$
\left(R^{\prime \prime}\right)^{2}+4\left(R^{\prime}\right)^{2}\left(R^{\prime}+2 n\right)-4\left(s R^{\prime}-R\right)^{2}=0
$$

GOAL OF THIS TALK

Extend these results to CD kernels associated to Hermite-type matrix-valued orthogonal polynomials (MOP).

- Double integral representations of some Hermite-type MOP \Rightarrow Matrix-valued CD kernels.
- Relate the Fredholm determinant of this kernel to a Riemann-Hilbert problem (RHP) whose compatibility conditions lead to a derived version of a non-commutative Painlevé IV equation.

Motivation

Theorem (Tracy-Widom, 1994)

The log derivative of the Fredholm determinant

$$
R(s)=\partial_{s} \log \left(\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)\right)
$$

solves the sigma-form of the Painlevé IV equation

$$
\left(R^{\prime \prime}\right)^{2}+4\left(R^{\prime}\right)^{2}\left(R^{\prime}+2 n\right)-4\left(s R^{\prime}-R\right)^{2}=0
$$

GOAL OF THIS TALK

Extend these results to CD kernels associated to Hermite-type matrix-valued orthogonal polynomials (MOP).

- Double integral representations of some Hermite-type MOP \Rightarrow Matrix-valued CD kernels.
- Relate the Fredholm determinant of this kernel to a Riemann-Hibbert problem (RHP) whose compatibility conditions lead to a derived version of a non-commutative Painlevé IV equation.

Motivation

Theorem (Tracy-Widom, 1994)

The log derivative of the Fredholm determinant

$$
R(s)=\partial_{s} \log \left(\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)\right)
$$

solves the sigma-form of the Painlevé IV equation

$$
\left(R^{\prime \prime}\right)^{2}+4\left(R^{\prime}\right)^{2}\left(R^{\prime}+2 n\right)-4\left(s R^{\prime}-R\right)^{2}=0
$$

GOAL OF THIS TALK

Extend these results to CD kernels associated to Hermite-type matrix-valued orthogonal polynomials (MOP).

- Double integral representations of some Hermite-type MOP \Rightarrow Matrix-valued CD kernels.
- Relate the Fredholm determinant of this kernel to a Riemann-Hilbert problem (RHP) whose compatibility conditions lead to a derived version of a non-commutative Painlevé IV equation.

Preliminaries

Let \mathbf{W} be a weight matrix (positive definite and finite moments). Consider $L_{\mathrm{w}}^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)$ the weighted space with the inner product

$$
\langle\mathbf{F}, \mathbf{G}\rangle_{\mathbf{W}}=\int_{\mathbb{R}} \mathbf{F}(x) \mathbf{W}(x) \mathbf{G}^{*}(x) d x
$$

A sequence $\left(P_{n}\right)_{n}$ of matrix orthonormal polynomials (MOP) with respect to W is a sequence satisfying

$$
\operatorname{deg} \mathbf{P}_{n}=n, \quad\left(\mathbf{P}_{n}, \mathbf{P}_{m}\right) \mathbf{w}=I_{N} \delta_{n m}
$$

If $\left(P_{n}\right)_{n}$ is complete, the Christoffel-Darboux (CD) kernel is

with the properties $\left(\mathbf{F} \in L_{\mathbf{w}}^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)\right)$
(1) $\mathbf{K}_{n}(x, y)=\mathbf{K}_{n}^{*}(y, x)$
(3) $\mathbf{F}(y)=\left\langle\mathbf{F}(x), \mathbf{K}_{n}(x, y)\right\rangle_{\mathbf{w}} \quad$ (reproducing kernel property)
(3) $\mathbf{K}_{n}(x, z)=\left\langle\mathbf{K}_{n}^{*}(z, y), \mathbf{K}_{n}(y, x)\right\rangle_{\mathbf{w}}$

Preliminaries

Let \mathbf{W} be a weight matrix (positive definite and finite moments). Consider $L_{\mathbf{w}}^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)$ the weighted space with the inner product

$$
\langle\mathbf{F}, \mathbf{G}\rangle_{\mathbf{w}}=\int_{\mathbb{R}} \mathbf{F}(x) \mathbf{W}(x) \mathbf{G}^{*}(x) d x
$$

A sequence $\left(\mathbf{P}_{n}\right)_{n}$ of matrix orthonormal polynomials (MOP) with respect to \mathbf{W} is a sequence satisfying

$$
\operatorname{deg} \mathbf{P}_{n}=n, \quad\left\langle\mathbf{P}_{n}, \mathbf{P}_{m}\right\rangle \mathbf{w}=\mathbf{I}_{N} \delta_{n m}
$$

If $\left(\mathbf{P}_{n}\right)_{n}$ is complete, the Christoffel-Darboux (CD) kernel is

\square
\square
(3) $\mathbf{F}(y)=\left\langle\mathbf{F}(x), \mathbf{K}_{n}(x, y)\right\rangle_{\mathrm{w}}$ (reproducing kernel property)

Preliminaries

Let \mathbf{W} be a weight matrix (positive definite and finite moments). Consider $L_{W}^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)$ the weighted space with the inner product

$$
\langle\mathbf{F}, \mathbf{G}\rangle_{\mathbf{W}}=\int_{\mathbb{R}} \mathbf{F}(x) \mathbf{W}(x) \mathbf{G}^{*}(x) d x
$$

A sequence $\left(\mathbf{P}_{n}\right)_{n}$ of matrix orthonormal polynomials (MOP) with respect to \mathbf{W} is a sequence satisfying

$$
\operatorname{deg} \mathbf{P}_{n}=n, \quad\left\langle\mathbf{P}_{n}, \mathbf{P}_{m}\right\rangle \mathbf{w}=\mathbf{I}_{N} \delta_{n m}
$$

If $\left(\mathbf{P}_{n}\right)_{n}$ is complete, the Christoffel-Darboux (CD) kernel is

$$
\mathbf{K}_{n}(x, y)=\sum_{k=0}^{n-1} \mathbf{P}_{k}^{*}(y) \mathbf{P}_{k}(x), \quad x, y \in \mathbb{R}
$$

with the properties $\left(\mathbf{F} \in L_{\mathbf{W}}^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)\right)$
(1) $\mathbf{K}_{n}(x, y)=\mathbf{K}_{n}^{*}(y, x)$
(2) $\mathbf{F}(y)=\left\langle\mathbf{F}(x), \mathbf{K}_{n}(x, y)\right\rangle \mathbf{w}$ (reproducing kernel property)
(3) $\mathbf{K}_{n}(x, z)=\left\langle\mathbf{K}_{n}^{*}(z, y), \mathbf{K}_{n}(y, x)\right\rangle_{\mathbf{w}}$

Some notation

$$
\mathbf{A}_{N}=\left(\begin{array}{ccccc}
0 & \nu_{1} & 0 & \cdots & 0 \\
0 & 0 & \nu_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \nu_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \nu_{i} \in \mathbb{R}, \mathbf{J}_{N}=\left(\begin{array}{cccc}
N-1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0 \\
0 & \cdots & 0 & 0
\end{array}\right)
$$

We will remove the dependence of N whenever there is no confusion about the dimension of the matrices.

Some notation

$$
\mathbf{A}_{N}=\left(\begin{array}{ccccc}
0 & \nu_{1} & 0 & \cdots & 0 \\
0 & 0 & \nu_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \nu_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \nu_{i} \in \mathbb{R}, \mathbf{J}_{N}=\left(\begin{array}{cccc}
N-1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0 \\
0 & \cdots & 0 & 0
\end{array}\right)
$$

We will remove the dependence of N whenever there is no confusion about the dimension of the matrices.
Let us denote $z^{\mathbf{M}}=e^{\mathrm{M} \log z}$. For example

$$
z^{\mathrm{J}_{N}}=\left(\begin{array}{llll}
z^{N-1} & & & \\
& \ddots & & \\
& & z & \\
& & & 1
\end{array}\right), \quad z^{-\mathbf{J}_{N}}=\left(\begin{array}{llll}
\frac{1}{z^{N-1}} & & & \\
& \ddots & & \\
& & \frac{1}{z} & \\
& & & 1
\end{array}\right)
$$

Outline

(1) InTRODUCTION

- Motivation
- Preliminaries
(2) Integral representations
- The first example
- The second example
(3) Non-commutative Painlevé IV equation
- The first example
- The second example

The first example

Let us consider the weight matrix (Durán-Grünbaum, 2004)

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{2}} \mathrm{e}^{\mathbf{A} x} \mathrm{e}^{\mathbf{A}^{*} x}, \quad x \in \mathbb{R}
$$

and the family of MOP $\left(\mathbf{P}_{n}\right)_{n}$ satisfying the second order differential equation

$$
\mathbf{P}_{n}^{\prime \prime}(x)+\mathbf{P}_{n}^{\prime}(x)(-2 x \mathbf{I}+2 \mathbf{A})+\mathbf{P}_{n}(x)\left(\mathbf{A}^{2}-2 \mathbf{J}\right)=(-2 n \mathbf{I}-2 \mathbf{J}) \mathbf{P}_{n}(x)
$$

Theorem (CAFASso-MdI, 2013)

There exist suitable constant matrices \mathbf{C}_{n} and \mathbf{D}_{n} such that

$$
\begin{gathered}
\mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{A} x}=\oint_{\gamma} z^{-\mathrm{J}} \mathbf{C}_{n} z^{\mathrm{J}} \mathrm{e}^{-z^{2}+2 z x} \frac{d z}{z^{n+1}} \\
\mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{A} x}=\mathrm{e}^{x^{2}} \int_{\mathcal{I}} w^{\mathbf{J}} \mathbf{D}_{n} w^{-\mathrm{J}} \mathrm{e}^{w^{2}-2 x w} w^{n} d w
\end{gathered}
$$

CASE $N=2$

For the family of MOP $\left(\mathbf{P}_{n}\right)_{n}$ with respect to $(N=2)$

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{2}}\left(\begin{array}{cc}
1+x^{2} \nu^{2} & \nu x \\
\nu x & 1
\end{array}\right), \quad x \in \mathbb{R}
$$

we have that, if $\gamma_{n}^{2}=1+\frac{n}{2} \nu^{2}$

CASE $N=2$

For the family of MOP $\left(\mathbf{P}_{n}\right)_{n}$ with respect to $(N=2)$

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{2}}\left(\begin{array}{cc}
1+x^{2} \nu^{2} & \nu x \\
\nu x & 1
\end{array}\right), \quad x \in \mathbb{R}
$$

we have that, if $\gamma_{n}^{2}=1+\frac{n}{2} \nu^{2}$

$$
\begin{gathered}
\mathbf{P}_{n}(x)\left(\begin{array}{cc}
1 & \nu x \\
0 & 1
\end{array}\right)=\frac{n!}{2^{n+1} \pi i} \oint_{\gamma}\left(\begin{array}{cc}
1 & \frac{(n+1) \nu}{2 z} \\
-\frac{z \nu}{\gamma_{n}^{2}} & \frac{1}{\gamma_{n}^{2}}
\end{array}\right) \mathrm{e}^{-z^{2}+2 z x} \frac{d z}{z^{n+1}} \\
\mathbf{P}_{n}(x)\left(\begin{array}{cc}
1 & \nu x \\
0 & 1
\end{array}\right)=\frac{\mathrm{e}^{x^{2}}}{i \sqrt{\pi}} \int_{\mathcal{I}}\left(\begin{array}{cc}
1 & w \nu \\
-\frac{n \nu}{2 w \gamma_{n}^{2}} & \frac{1}{\gamma_{n}^{2}}
\end{array}\right) \mathrm{e}^{w^{2}-2 x w} w^{n} d w
\end{gathered}
$$

Christoffel-Darboux kernel $(N=2)$

The CD kernel

$$
\mathbf{K}_{n}(x, y)=\sum_{k=0}^{n-1} \boldsymbol{\Phi}_{k}^{*}(y) \boldsymbol{\Phi}_{k}(x)
$$

where $\boldsymbol{\Phi}_{n}(x)=\mathrm{e}^{-x^{2} / 2}\left\|\mathbf{P}_{n}\right\|_{\mathbf{W}}^{-1} \mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{A} x}$ can be written as

where

In other words

Christoffel-Darboux kernel $(N=2)$

The CD kernel

$$
\mathbf{K}_{n}(x, y)=\sum_{k=0}^{n-1} \boldsymbol{\Phi}_{k}^{*}(y) \boldsymbol{\Phi}_{k}(x)
$$

where $\boldsymbol{\Phi}_{n}(x)=\mathrm{e}^{-x^{2} / 2}\left\|\mathbf{P}_{n}\right\|_{\mathbf{W}}^{-1} \mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{A} x}$ can be written as

$$
\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z z^{\mathbf{J}_{2}} \mathbf{B}_{n} z^{-\mathbf{J}_{2}} w^{\mathbf{J}_{2}} \mathbf{B}_{n}^{-1} w^{-\mathbf{J}_{2}} \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}
$$

where

$$
\mathbf{B}_{n}=\left(\begin{array}{cc}
1 & -\nu \\
\frac{n \nu}{2} & 1
\end{array}\right)
$$

In other words

Christoffel-Darboux kernel $(N=2)$

The CD kernel

$$
\mathbf{K}_{n}(x, y)=\sum_{k=0}^{n-1} \boldsymbol{\Phi}_{k}^{*}(y) \boldsymbol{\Phi}_{k}(x)
$$

where $\boldsymbol{\Phi}_{n}(x)=\mathrm{e}^{-x^{2} / 2}\left\|\mathbf{P}_{n}\right\|_{\mathbf{W}}^{-1} \mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{A} x}$ can be written as

$$
\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z z^{\mathbf{J}_{2}} \mathbf{B}_{n} z^{-\mathbf{J}_{2}} w^{\mathbf{J}_{2}} \mathbf{B}_{n}^{-1} w^{-\mathbf{J}_{2}} \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}
$$

where

$$
\mathbf{B}_{n}=\left(\begin{array}{cc}
1 & -\nu \\
\frac{n \nu}{2} & 1
\end{array}\right)
$$

In other words
$\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z\left(\begin{array}{cc}\frac{z\left(\gamma_{n}^{2}-1\right)+w}{w \gamma_{n}^{2}} & \frac{\nu(w-z)}{\gamma_{n}^{2}} \\ \frac{n \nu(z-w)}{2 \gamma_{n}^{2}} & \frac{w\left(\gamma_{n}^{2}-1\right)+z}{z \gamma_{n}^{2}}\end{array}\right) \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}$

The second example

Let us consider the weight matrix (Durán-Grünbaum, 2004)

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{2}} \mathrm{e}^{\mathbf{B} x^{2}} \mathrm{e}^{\mathbf{B}^{*} x^{2}}, \quad x \in \mathbb{R}
$$

where $\mathbf{B}=\mathbf{A}(\mathbf{I}+\mathbf{A})^{-1}$ and the family of MOP $\left(\mathbf{P}_{n}\right)_{n}$ satisfying the second-order differential equation

$$
\mathbf{P}_{n}^{\prime \prime}(x)+\mathbf{2 x} P_{n}^{\prime}(x)(2 \mathbf{B}-\mathbf{I})+\mathbf{2} P_{n}(x)(\mathbf{B}-2 \mathbf{J})=(-2 n \mathbf{I}-4 \mathbf{J}) \mathbf{P}_{n}(x)
$$

\square There exist suitable constant matrices C_{n} and D_{n} such that

The second example

Let us consider the weight matrix (Durán-Grünbaum, 2004)

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{2}} \mathrm{e}^{\mathbf{B} x^{2}} \mathrm{e}^{\mathbf{B}^{*} x^{2}}, \quad x \in \mathbb{R}
$$

where $\mathbf{B}=\mathbf{A}(\mathbf{I}+\mathbf{A})^{-1}$ and the family of $\operatorname{MOP}\left(\mathbf{P}_{n}\right)_{n}$ satisfying the second-order differential equation

$$
\mathbf{P}_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)(2 \mathbf{B}-\mathbf{I})+2 P_{n}(x)(\mathbf{B}-2 \mathbf{J})=(-2 n \mathbf{I}-4 \mathbf{J}) \mathbf{P}_{n}(x)
$$

Theorem (CAFASSO-MDI, 2013)

There exist suitable constant matrices \mathbf{C}_{n} and \mathbf{D}_{n} such that

$$
\begin{gathered}
\mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{B} x^{2}}=\oint_{\gamma} z^{-2 \mathbf{J}} \mathbf{C}_{n} z^{2 \mathbf{J}} \mathrm{e}^{-z^{2}+2 z x} \frac{d z}{z^{n+1}} \\
\mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{B} x^{2}}=\mathrm{e}^{x^{2}} \int_{\mathcal{I}} w^{2 \mathbf{J}} \mathbf{D}_{n} w^{-2 \mathbf{J}} \mathrm{e}^{w^{2}-2 x w} w^{n} d w
\end{gathered}
$$

CASE $N=2$

For the family of MOP $\left(\mathbf{P}_{n}\right)_{n}$ with respect to $(N=2)$

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{4}}\left(\begin{array}{cc}
1+x^{2} \nu^{2} & \nu x^{2} \\
\nu x^{2} & 1
\end{array}\right), \quad x \in \mathbb{R}
$$

we have that, if $\delta_{n}^{2}=1+\frac{n(n-1)}{4} \nu^{2}$

CASE $N=2$

For the family of MOP $\left(\mathbf{P}_{n}\right)_{n}$ with respect to $(N=2)$

$$
\mathbf{W}(x)=\mathrm{e}^{-x^{4}}\left(\begin{array}{cc}
1+x^{2} \nu^{2} & \nu x^{2} \\
\nu x^{2} & 1
\end{array}\right), \quad x \in \mathbb{R}
$$

we have that, if $\delta_{n}^{2}=1+\frac{n(n-1)}{4} \nu^{2}$

$$
\begin{aligned}
& \mathbf{P}_{n}(x)\left(\begin{array}{cc}
1 & \nu x^{2} \\
0 & 1
\end{array}\right)=\frac{n!}{2^{n+1} \pi i} \oint_{\gamma}\left(\begin{array}{cc}
1 & \frac{(n+1)(n+2) \nu}{4 z^{2}} \\
-\frac{z^{2} \nu}{\delta_{n}^{2}} & \frac{1}{\delta_{n}^{2}}
\end{array}\right) \mathrm{e}^{-z^{2}+2 \mathrm{zx}} \frac{d z}{z^{n+1}} \\
& \mathbf{P}_{n}(x)\left(\begin{array}{cc}
1 & \nu x^{2} \\
0 & 1
\end{array}\right)=\frac{\mathrm{e}^{x^{2}}}{i \sqrt{\pi}} \int_{\mathcal{I}}\left(\begin{array}{cc}
1 & w^{2} \nu \\
-\frac{n(n-1) \nu}{4 w^{2} \delta_{n}^{2}} & \frac{1}{\delta_{n}^{2}}
\end{array}\right) \mathrm{e}^{w^{2}-2 x w} w^{n} d w
\end{aligned}
$$

Christoffel-Darboux kernel $(N=2)$

The CD kernel

$$
\mathbf{K}_{n}(x, y)=\sum_{k=0}^{n-1} \boldsymbol{\Phi}_{k}^{*}(y) \boldsymbol{\Phi}_{k}(x)
$$

where $\boldsymbol{\Phi}_{n}(x)=\mathrm{e}^{-x^{2} / 2}\left\|\mathbf{P}_{n}\right\|_{\mathbf{W}}^{-1} \mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{B} x^{2}}$ can be written as

where

We have that $\hat{\mathbf{B}}_{n}$ is a right inverse of \mathbf{B}_{n}, i.e. $\mathbf{B}_{n} \hat{\mathbf{B}}_{n}=\mathbf{I}$

Christoffel-Darboux kernel $(N=2)$

The CD kernel

$$
\mathbf{K}_{n}(x, y)=\sum_{k=0}^{n-1} \boldsymbol{\Phi}_{k}^{*}(y) \boldsymbol{\Phi}_{k}(x)
$$

where $\boldsymbol{\Phi}_{n}(x)=\mathrm{e}^{-x^{2} / 2}\left\|\mathbf{P}_{n}\right\|_{\mathbf{W}}^{-1} \mathbf{P}_{n}(x) \mathrm{e}^{\mathbf{B} x^{2}}$ can be written as

$$
\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z z^{2 \mathbf{J}_{2}} \mathbf{B}_{n} z^{-\mathbf{J}_{3}} w^{\mathbf{J}_{3}} \hat{\mathbf{B}}_{n} w^{-2 \mathbf{J}_{2}} \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}
$$

where

$$
\mathbf{B}_{n}=\left(\begin{array}{ccc}
\frac{1}{\delta_{n+1}^{2}} & \frac{n \nu^{2}}{2 \delta_{n+1}^{2} \delta_{n}^{2}} & -\nu \\
\frac{\nu n(n+1)}{4 \delta_{n+1}^{2}} & -\frac{n \nu}{2 \delta_{n+1}^{2} \delta_{n}^{2}} & 1
\end{array}\right), \quad \hat{\mathbf{B}}_{n}=\left(\begin{array}{cc}
1 & \nu \\
1 & \nu \\
-\frac{\nu n(n-1)}{4 \delta_{n}^{2}} & \frac{1}{\delta_{n}^{2}}
\end{array}\right)
$$

We have that $\hat{\mathbf{B}}_{n}$ is a right inverse of \mathbf{B}_{n}, i.e. $\mathbf{B}_{n} \hat{\mathbf{B}}_{n}=\mathbf{I}$.

Outline

(1) InTRODUCTION

- Motivation
- Preliminaries
(2) InTEGRAL REPRESENTATIONS
- The first example
- The second example
(3) Non-COMmutative Painlevé IV equation
- The first example
- The second example

CD kernels and Riemann-Hilbert problems

The Christoffel-Darboux kernel in both cases can be written as
$\mathbf{K}_{n}(x, y)=\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z \mathcal{B}_{n}(z) \hat{\mathcal{B}}_{n}(w) \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}$
where \mathcal{B}_{n} is $(N \times p)$ and $\hat{\mathcal{B}}_{n}$ is $(p \times N)$ such that $\mathcal{B}_{n}(z) \hat{\mathcal{B}}_{n}(z)=\mathbf{I}_{N}$.

where we denoted

CD kernels and Riemann-Hilbert problems

The Christoffel-Darboux kernel in both cases can be written as
$\mathbf{K}_{n}(x, y)=\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z \boldsymbol{\mathcal { B }}_{n}(z) \hat{\mathcal{B}}_{n}(w) \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}$
where \mathcal{B}_{n} is $(N \times p)$ and $\hat{\mathcal{B}}_{n}$ is $(p \times N)$ such that $\mathcal{B}_{n}(z) \hat{\mathcal{B}}_{n}(z)=\mathbf{I}_{N}$.
Consider \mathbb{K}_{n} the integral operator with kernel $\mathbf{K}_{n}(x, y)$

$$
\left[\mathbb{K}_{n} \mathbf{F}\right](x)=\int_{\mathbb{R}} \mathbf{F}(y) \mathbf{K}_{n}(x, y) d y \quad \forall \mathbf{F} \in L^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)
$$

where we denoted

CD kernels and Riemann-Hilbert problems

The Christoffel-Darboux kernel in both cases can be written as
$\mathbf{K}_{n}(x, y)=\frac{2}{(2 \pi i)^{2}} \mathrm{e}^{\frac{x^{2}-y^{2}}{2}} \int_{\mathcal{I}} d w \oint_{\gamma} d z \mathcal{B}_{n}(z) \hat{\mathcal{B}}_{n}(w) \frac{\mathrm{e}^{w^{2}-2 x w-z^{2}+2 z y+n \log (w / z)}}{w-z}$
where \mathcal{B}_{n} is $(N \times p)$ and $\hat{\mathcal{B}}_{n}$ is $(p \times N)$ such that $\mathcal{B}_{n}(z) \hat{\mathcal{B}}_{n}(z)=\mathbf{I}_{N}$. Consider \mathbb{K}_{n} the integral operator with kernel $\mathbf{K}_{n}(x, y)$

$$
\left[\mathbb{K}_{n} \mathbf{F}\right](x)=\int_{\mathbb{R}} \mathbf{F}(y) \mathbf{K}_{n}(x, y) d y \quad \forall \mathbf{F} \in L^{2}\left(\mathbb{R}, \mathbb{C}^{N \times N}\right)
$$

Its-Izergin-Korepin-Slavnov (IIKS) THEORY

The Fredholm determinant $\operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)$ is equal to the Jimbo-Miwa-Ueno tau function $\tau_{\text {JMU }}$. In particular

$$
\partial_{s} \log \operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)=\frac{1}{2 \pi i} \int_{\gamma \cup \mathcal{I}} \operatorname{Tr}\left(\boldsymbol{\Gamma}_{-}^{-1}(\lambda)\left(\partial_{\lambda} \boldsymbol{\Gamma}_{-}\right)(\lambda) \boldsymbol{\Xi}(\lambda)\right) d \lambda
$$

where we denoted

$$
\boldsymbol{\Xi}(\lambda)=\partial_{\boldsymbol{s}}(\mathbf{I}-\mathbf{G}(\lambda))(\mathbf{I}-\mathbf{G}(\lambda))^{-1}=-\partial_{\boldsymbol{s}} \mathbf{G}(\lambda)(\mathbf{I}+\mathbf{G}(\lambda))
$$

CD kernels and Riemann-Hilbert problems

$\Gamma(\lambda)$ solves the following

Riemann-Hilbert problem

Find $\Gamma(\lambda) \in G L(N+p, \mathbb{C})$ analytic on $\mathbb{C} \backslash\{\gamma \cup \mathcal{I}\}$ such that

$$
\begin{cases}\boldsymbol{\Gamma}_{+}(\lambda)=\boldsymbol{\Gamma}_{-}(\lambda)(\mathbf{I}-\mathbf{G}(\lambda)), & \lambda \in \eta \cup \gamma \\ \boldsymbol{\Gamma}(\lambda)=\mathbf{I}+\frac{\boldsymbol{\Gamma}_{1}}{\lambda}+\frac{\boldsymbol{\Gamma}_{2}}{\lambda^{2}}+\cdots, & \lambda \rightarrow \infty\end{cases}
$$

with
$\mathbf{G}(\lambda)=\left[\begin{array}{cc}\mathbf{0} & \mathrm{e}^{\theta_{n}(\lambda, s)} \hat{\mathcal{B}}_{n}^{*}(\lambda) \\ \mathbf{0} & \mathbf{0}\end{array}\right] \chi_{\mathcal{I}}(\lambda)+\left[\begin{array}{cc}\mathbf{0} & \mathbf{0} \\ -\mathrm{e}^{-\theta_{n}(\lambda, s)} \mathcal{B}_{n}^{*}(\lambda) & \mathbf{0}\end{array}\right] \chi_{\gamma}(\lambda)$
and $\theta_{n}(\lambda, s)=\lambda^{2}-2 \lambda s+n \log (\lambda)$.

The first example $(N=2)$

Theorem (Cafasso-MdI, 2013)

Let $\boldsymbol{\Gamma}(\lambda)$ be the solution of the previous Riemann-Hilbert problem with $\mathcal{B}_{n}(z)=z^{\boldsymbol{J}_{2}} \mathbf{B}_{n} z^{-\boldsymbol{J}_{2}}$ and $\hat{\mathcal{B}}_{n}(w)=\left(\mathcal{B}_{n}(w)\right)^{-1}$ where

$$
\begin{gathered}
\mathbf{B}_{n}=\left(\begin{array}{cc}
1 & -\nu \\
\frac{n \nu}{2} & 1
\end{array}\right) \\
\Rightarrow \partial_{s} \log \operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)=\operatorname{Tr}\left(\left(\boldsymbol{\Gamma}_{1}\right)_{22}-\left(\boldsymbol{\Gamma}_{1}\right)_{11}\right)
\end{gathered}
$$

Consider the transformation $\boldsymbol{\Psi}(\lambda)=\boldsymbol{\Gamma}(\lambda) \mathrm{e}^{\boldsymbol{T}_{\mathrm{A}}(\lambda)}$ where

$$
\mathbf{T}_{\mathbf{A}}(\lambda)=\left(\begin{array}{cc}
\frac{\theta_{n}(\lambda, s)}{2} \mathbf{I}_{2}-\mathbf{J}_{2} \log (\lambda) & \mathbf{0} \\
\mathbf{0} & -\frac{\theta_{n}(\lambda, s)}{2} \mathbf{I}_{2}-\mathbf{J}_{2} \log (\lambda)
\end{array}\right)
$$

This transformation allows $\boldsymbol{\Psi}(\lambda)$ to satisfy a Riemann-Hilbert problem like the previous one but with constant jump.

The first example $(N=2)$

Theorem (Continuation)

$\Psi(\lambda)$ satisfies the Lax equations

$$
\partial_{\lambda} \boldsymbol{\Psi}=\left(\lambda \mathcal{A}_{1}+\mathcal{A}_{0}+\lambda^{-1} \mathcal{A}_{-1}\right) \boldsymbol{\Psi}, \quad \partial_{s} \boldsymbol{\Psi}=\left(\lambda \mathcal{U}_{1}+\mathcal{U}_{0}\right) \boldsymbol{\Psi}
$$

The compatibility conditions give the following coupled system of ODEs:

$$
\left\{\begin{array}{llc}
\mathbf{u}^{\prime} & = & -\mathbf{u}^{2}+2 s \mathbf{u}+4 \mathbf{z}-2 n \mathbf{l}_{2}+\mathbf{V}_{\mathbf{A}} \\
\mathbf{z}^{\prime \prime} & = & 2 \mathbf{u}^{\prime} \mathbf{z}+2 \mathbf{u} \mathbf{z}^{\prime}-2 s \mathbf{z}^{\prime}
\end{array}\right.
$$

where $\mathbf{V}_{\mathbf{A}}=2\left[\mathbf{J}_{2}, \mathbf{y}\right] \mathbf{y}^{-1}([\mathbf{x}, \mathbf{y}]=\mathbf{x y}-\mathbf{y x})$ and

$$
\mathbf{z}=-\left(\boldsymbol{\Gamma}_{1}\right)_{11}^{\prime}, \quad \mathbf{y}=-2\left(\boldsymbol{\Gamma}_{1}\right)_{12}, \quad \mathbf{u}=\left(\boldsymbol{\Gamma}_{1}\right)_{12}^{\prime}\left(\boldsymbol{\Gamma}_{1}\right)_{12}^{-1}+2 s \mathbf{I}_{2}
$$

Combining these two equations we obtain a non-commutative version of the derived Painlevé IV equation $(\{\mathbf{x}, \mathbf{y}\}=\mathbf{x y}+\mathbf{y x})$

$$
\begin{aligned}
\mathbf{u}^{\prime \prime \prime}+ & {\left[\mathbf{u}^{\prime \prime}, \mathbf{u}\right]-4\left(n+1+s^{2}\right) \mathbf{u}^{\prime}-2\left(\left\{\mathbf{u}^{\prime}, \mathbf{u}^{2}\right\}+\mathbf{u} \mathbf{u}^{\prime} \mathbf{u}\right) } \\
& +6 s\left\{\mathbf{u}^{\prime}, \mathbf{u}\right\}+4 \mathbf{u}\left(\mathbf{u}-s \mathbf{I}_{2}\right)+\left(\mathbf{V}_{\mathbf{A}}^{\prime}-2\left(\mathbf{u} \mathbf{V}_{\mathbf{A}}\right)\right)^{\prime}+2 s \mathbf{V}_{\mathbf{A}}^{\prime}=\mathbf{0}
\end{aligned}
$$

The Painlevé IV equation

The reason why we claim that the previous equation is a non-commutative version of the derived Painlevé IV is that if we assume that all the variables commute, we get the equation

Derived PIV equation

$$
u^{\prime \prime \prime}-4 u^{\prime}-6 u^{2} u^{\prime}+12 u^{\prime} u-4 n u^{\prime}+4 u^{2}-4 s u-4 s^{2} u^{\prime}=0
$$

an this equation is the derivative of the Painleve IV equation
PIV EQUATION

$$
u^{\prime \prime}=\frac{\left(u^{\prime}\right)^{2}}{2 u}+\frac{3}{2} u^{3}-4 s u^{2}+2\left(s^{2}+1+n\right) u-\frac{2 n^{2}}{u}
$$

The second example $(N=2)$

Theorem (Cafasso-MdI, 2013)

Let $\boldsymbol{\Gamma}(\lambda)$ be the solution of the previous Riemann-Hilbert problem with $\mathcal{B}_{n}(z)=z^{2 \boldsymbol{J}_{2}} \mathbf{B}_{n} z^{-\boldsymbol{J}_{3}}$ and $\hat{\boldsymbol{\mathcal { B }}}_{n}(w)=w^{\boldsymbol{J}_{3}} \hat{\mathbf{B}}_{n} w^{-2 \boldsymbol{J}_{2}}$, where

$$
\begin{aligned}
\mathbf{B}_{n}= & \left(\begin{array}{ccc}
\frac{1}{\delta_{n+1}^{2}} & \frac{n n^{2}}{2 \delta_{n+1}^{\nu_{n}^{2}}} & -\nu \\
\frac{\nu n(n+1)}{4 \delta_{n+1}^{2}} & -\frac{n \nu}{2 \delta_{n+1}^{2} \delta_{n}^{2}} & 1
\end{array}\right), \quad \hat{\mathbf{B}}_{n}=\left(\begin{array}{cc}
1 & \nu \\
1 & \nu \\
-\frac{\nu n(n-1)}{4 \delta_{n}^{2}} & \frac{1}{\delta_{n}^{2}}
\end{array}\right) \\
& \Rightarrow \partial_{s} \log \operatorname{det}\left(\operatorname{Id}-\chi_{s} \mathbb{K}_{n}\right)=\operatorname{Tr}\left(\left(\boldsymbol{\Gamma}_{1}\right)_{22}-\left(\boldsymbol{\Gamma}_{1}\right)_{11}\right)
\end{aligned}
$$

Consider the transformation $\boldsymbol{\Psi}(\lambda)=\boldsymbol{\Gamma}(\lambda) \mathrm{e}^{\boldsymbol{T}_{\mathbf{A}}(\lambda)}$ where

$$
\mathbf{T}_{\mathbf{B}}(\lambda)=\left(\begin{array}{cc}
\frac{\theta_{n}(\lambda, s)}{2} \mathbf{I}_{2}-2 \mathbf{J}_{2} \log (\lambda) & \mathbf{0} \\
\mathbf{0} & -\frac{\theta_{n}(\lambda)}{2} \mathbf{I}_{3}-\mathbf{J}_{3} \log (\lambda)
\end{array}\right)
$$

This transformation allows $\boldsymbol{\Psi}(\lambda)$ to satisfy a Riemann-Hilbert problem like the previous one but with constant jump.

The first example $(N=2)$

Theorem (Continuation)

$\Psi(\lambda)$ satisfies the Lax equations

$$
\partial_{\lambda} \boldsymbol{\Psi}=\left(\lambda \mathcal{A}_{1}+\mathcal{A}_{0}+\lambda^{-1} \mathcal{A}_{-1}\right) \boldsymbol{\Psi}, \quad \partial_{s} \boldsymbol{\Psi}=\left(\lambda \mathcal{U}_{1}+\mathcal{U}_{0}\right) \boldsymbol{\Psi}
$$

The compatibility conditions give the following coupled system of ODEs:

$$
\left\{\begin{array}{lcc}
\mathbf{u}^{\prime} & = & -\mathbf{u}^{2}+2 \mathbf{s u}+4 \mathbf{z}-2 n \mathbf{I}_{2}+\mathbf{V}_{\mathbf{B}} \\
\mathbf{z}^{\prime \prime} & = & 2 \mathbf{u}^{\prime} \mathbf{z}+2 \mathbf{u} \mathbf{z}^{\prime}-2 s \mathbf{z}^{\prime}
\end{array}\right.
$$

where $\mathbf{V}_{\mathbf{B}}=4 \mathbf{J}_{2}-2 \mathbf{y} \mathbf{J}_{3} \mathbf{y}^{\dagger}\left(\mathbf{y}^{\dagger}\right.$ is a right inverse of \mathbf{y}, i.e. $\left.\mathbf{y} \mathbf{y}^{\dagger}=\mathbf{I}\right)$ and

$$
\mathbf{z}=-\left(\boldsymbol{\Gamma}_{1}\right)_{11}^{\prime}, \quad \mathbf{y}=-2\left(\boldsymbol{\Gamma}_{1}\right)_{12}, \quad \mathbf{u}=\left(\boldsymbol{\Gamma}_{1}\right)_{12}^{\prime}\left(\boldsymbol{\Gamma}_{1}\right)_{12}^{\dagger}+2 s \mathbf{I}_{2}
$$

Combining these two equations we obtain a non-commutative version of the derived Painlevé IV equation

$$
\begin{aligned}
\mathbf{u}^{\prime \prime \prime}+ & {\left[\mathbf{u}^{\prime \prime}, \mathbf{u}\right]-4\left(n+1+s^{2}\right) \mathbf{u}^{\prime}-2\left(\left\{\mathbf{u}^{\prime}, \mathbf{u}^{2}\right\}+\mathbf{u} \mathbf{u}^{\prime} \mathbf{u}\right) } \\
& +6 s\left\{\mathbf{u}^{\prime}, \mathbf{u}\right\}+4 \mathbf{u}\left(\mathbf{u}-s \boldsymbol{I}_{2}\right)+\left(\mathbf{V}_{\mathbf{B}}^{\prime}-2\left(\mathbf{u} \mathbf{V}_{\mathbf{B}}\right)\right)^{\prime}+2 s \mathbf{V}_{\mathbf{B}}^{\prime}=\mathbf{0}
\end{aligned}
$$

