KORK ERKER (ERKERK)

A variant of the Wright-Fisher diffusion model coming from the theory of matrix-valued spherical functions

Manuel Domínguez de la Iglesia

Departamento de Análisis Matemático, Universidad de Sevilla

1st Joint Conference of the Belgian, Royal Spanish and Luxembourg Mathematical Societies Liège, Belgium, June 7th, 2012

KORK ERKER (ERKERK)

OUTLINE

¹ [The Wright-Fisher model](#page-2-0)

- [The original problem](#page-3-0)
- [The diffusion approximation](#page-17-0)
- [Spectral methods](#page-22-0)

² [A variant of the Wright-Fisher model](#page-26-0)

- [The coefficients of the hybrid process](#page-27-0)
- **•** [Probabilistic interpretation](#page-39-0)
- **•** [Spectral methods](#page-47-0)

KORK ERKER (ERKERK)

OUTLINE

¹ [The Wright-Fisher model](#page-2-0)

- [The original problem](#page-3-0)
- [The diffusion approximation](#page-17-0)
- [Spectral methods](#page-22-0)

A VARIANT OF THE WRIGHT-FISHER MODEL

- [The coefficients of the hybrid process](#page-27-0)
- **•** [Probabilistic interpretation](#page-39-0)
- • [Spectral methods](#page-47-0)

The Wright-Fisher model

The Wright-Fisher model considers a gene population of constant size M composed of two types A and B. Call $#A = i$.

The next generation is determined by M independent binomial trials: each trial results in A or B with probabilities

$$
p_i = \frac{i}{M}
$$
, $q_i = 1 - p_i = 1 - \frac{i}{M}$

Therefore we generate a discrete-time Markov chain $\{X(n)\}\$ where

$$
X(n) = \{ \#A \text{ in the } n\text{-th generation} \}
$$

with state space $S = \{0, 1, ..., M\}$ and transition probability matrix

$$
\Pr\{X(n+1) = j | X(n) = i\} = \binom{M}{j} p_i^j q_i^{M-j}
$$

A more realistic model takes account of mutation pressures $A \stackrel{a}{\rightarrow} B$, $B \stackrel{b}{\rightarrow} A$, $a, b > 0$

We have the same transition probability matrix but now

$$
p_i = \frac{i}{M}(1-a) + \left(1 - \frac{i}{M}\right)b, \quad q_i = 1 - p_i
$$

റെ

The Wright-Fisher model

The Wright-Fisher model considers a gene population of constant size M composed of two types A and B. Call $#A = i$.

The next generation is determined by M independent binomial trials: each trial results in A or B with probabilities

$$
p_i = \frac{i}{M}, \quad q_i = 1 - p_i = 1 - \frac{i}{M}
$$

Therefore we generate a discrete-time Markov chain $\{X(n)\}\$ where

 $X(n) = \{ \#A \text{ in the } n\text{-th generation} \}$

with state space $S = \{0, 1, ..., M\}$ and transition probability matrix

$$
\Pr\{X(n+1) = j | X(n) = i\} = \binom{M}{j} p_i^j q_i^{M-j}
$$

A more realistic model takes account of mutation pressures $A \stackrel{a}{\rightarrow} B$, $B \stackrel{b}{\rightarrow} A$, $a, b > 0$

We have the same transition probability matrix but now

$$
p_i = \frac{i}{M}(1-a) + \left(1 - \frac{i}{M}\right)b, \quad q_i = 1 - p_i
$$

റെ

The Wright-Fisher model

The Wright-Fisher model considers a gene population of constant size M composed of two types A and B. Call $#A = i$.

The next generation is determined by M independent binomial trials: each trial results in A or B with probabilities

$$
p_i = \frac{i}{M}, \quad q_i = 1 - p_i = 1 - \frac{i}{M}
$$

Therefore we generate a discrete-time Markov chain $\{X(n)\}\;$ where

$$
X(n) = \{ \#A \text{ in the } n\text{-th generation} \}
$$

with state space $S = \{0, 1, ..., M\}$ and transition probability matrix

$$
\Pr\{X(n+1)=j|X(n)=i\}=\binom{M}{j}p_i^j q_i^{M-j}
$$

A more realistic model takes account of mutation pressures $A \stackrel{a}{\rightarrow} B$, $B \stackrel{b}{\rightarrow} A$, $a, b > 0$

We have the same transition probability matrix but now

$$
p_i = \frac{i}{M}(1-a) + \left(1 - \frac{i}{M}\right)b, \quad q_i = 1 - p_i
$$

つへへ

The Wright-Fisher model

The Wright-Fisher model considers a gene population of constant size M composed of two types A and B. Call $#A = i$.

The next generation is determined by M independent binomial trials: each trial results in A or B with probabilities

$$
p_i = \frac{i}{M}, \quad q_i = 1 - p_i = 1 - \frac{i}{M}
$$

Therefore we generate a discrete-time Markov chain $\{X(n)\}\;$ where

$$
X(n) = \{ \#A \text{ in the } n\text{-th generation} \}
$$

with state space $S = \{0, 1, ..., M\}$ and transition probability matrix

$$
\Pr\{X(n+1)=j|X(n)=i\}=\binom{M}{j}p_i^j q_i^{M-j}
$$

A more realistic model takes account of mutation pressures $A \stackrel{a}{\rightarrow} B$, $B \stackrel{b}{\rightarrow} A$, $a, b > 0$

We have the same transition probability matrix but now

$$
p_i = \frac{i}{M}(1-a) + \left(1 - \frac{i}{M}\right)b, \quad q_i = 1 - p_i
$$

つへへ

The Wright-Fisher model

The Wright-Fisher model considers a gene population of constant size M composed of two types A and B. Call $#A = i$.

The next generation is determined by M independent binomial trials: each trial results in A or B with probabilities

$$
p_i = \frac{i}{M}, \quad q_i = 1 - p_i = 1 - \frac{i}{M}
$$

Therefore we generate a discrete-time Markov chain $\{X(n)\}\;$ where

$$
X(n) = \{ \#A \text{ in the } n\text{-th generation} \}
$$

with state space $S = \{0, 1, ..., M\}$ and transition probability matrix

$$
\Pr\{X(n+1)=j|X(n)=i\}=\binom{M}{j}p_i^j q_i^{M-j}
$$

A more realistic model takes account of mutation pressures $A \stackrel{a}{\rightarrow} B$, $B \stackrel{b}{\rightarrow} A$, $a, b > 0$

We have the same transition probability matrix but now

$$
p_i = \frac{i}{M}(1-a) + \left(1 - \frac{i}{M}\right)b, \quad q_i = 1 - p_i
$$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

K ロ > K @ → K 할 > K 할 > → 할 → K 9 Q @

EXAMPLE $M = 15$

 $X(0) = 8$ $X(1) = 9$ $X(2) = 7$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

EXAMPLE $M = 15$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

EXAMPLE $M = 15$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K 9 Q @

EXAMPLE $M = 15$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K 9 Q @

ADD YEARS ARA YOUR

THE DIFFUSION APPROXIMATION

Consider the process

$$
Y(t) = \lim_{M \to \infty} Y_M(t) = \lim_{M \to \infty} \frac{X([Mt])}{M}
$$

If we call $h = 1/M$ and $x = i/M$, we have that

$$
\tau(x) = \lim_{h \to 0^+} \frac{1}{h} E[Y_M(t+h) - Y_M(t)|Y_M(t) = x] = -\gamma_1 x + (1-x)\gamma_2
$$

$$
\sigma^2(x) = \lim_{h \to 0^+} \frac{1}{h} E\left[(Y_M(t+h) - Y_M(t))^2 |Y_M(t) = x\right] = x(1-x)
$$

where $\gamma_1 = aM$ and $\gamma_2 = bM$ are the intensities of mutation.

Therefore $Y(t)$ is a continuous-time diffusion process with state space $\mathcal{S} = [0,1]$, drift $\tau(\mathsf{x})$ and diffusion coefficient $\sigma^2(\mathsf{x})$. $Y(t) = Y_t$ evolves according to the stochastic differential equation $dY_t = \tau(Y_t) + \sigma(Y_t)dB_t$

ADD YEARS ARA YOUR

THE DIFFUSION APPROXIMATION

Consider the process

$$
Y(t) = \lim_{M \to \infty} Y_M(t) = \lim_{M \to \infty} \frac{X([Mt])}{M}
$$

If we call $h = 1/M$ and $x = i/M$, we have that

$$
\tau(x) = \lim_{h \to 0^+} \frac{1}{h} E\left[Y_M(t+h) - Y_M(t) | Y_M(t) = x \right] = -\gamma_1 x + (1-x)\gamma_2
$$

$$
\sigma^2(x) = \lim_{h \to 0^+} \frac{1}{h} E\left[\left(Y_M(t+h) - Y_M(t) \right)^2 | Y_M(t) = x \right] = x(1-x)
$$

where $\gamma_1 = aM$ and $\gamma_2 = bM$ are the intensities of mutation.

Therefore $Y(t)$ is a continuous-time diffusion process with state space $\mathcal{S} = [0,1]$, drift $\tau(\mathsf{x})$ and diffusion coefficient $\sigma^2(\mathsf{x})$. $Y(t) = Y_t$ evolves according to the stochastic differential equation $dY_t = \tau(Y_t) + \sigma(Y_t)dB_t$

ADD YEARS ARA YOUR

THE DIFFUSION APPROXIMATION

Consider the process

$$
Y(t) = \lim_{M \to \infty} Y_M(t) = \lim_{M \to \infty} \frac{X([Mt])}{M}
$$

If we call $h = 1/M$ and $x = i/M$, we have that

$$
\tau(x) = \lim_{h \to 0^+} \frac{1}{h} E \left[Y_M(t+h) - Y_M(t) | Y_M(t) = x \right] = -\gamma_1 x + (1-x)\gamma_2
$$

$$
\sigma^2(x) = \lim_{h \to 0^+} \frac{1}{h} E \left[(Y_M(t+h) - Y_M(t))^2 | Y_M(t) = x \right] = x(1-x)
$$

where $\gamma_1 = aM$ and $\gamma_2 = bM$ are the intensities of mutation.

Therefore $Y(t)$ is a continuous-time diffusion process with state space $\mathcal{S} = [0,1]$, drift $\tau(x)$ and diffusion coefficient $\sigma^2(x)$. $Y(t) = Y_t$ evolves according to the stochastic differential equation $dY_t = \tau(Y_t) + \sigma(Y_t)dB_t$

A O A G A 4 O A G A G A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A

THE DIFFUSION APPROXIMATION

Consider the process

$$
Y(t) = \lim_{M \to \infty} Y_M(t) = \lim_{M \to \infty} \frac{X([Mt])}{M}
$$

If we call $h = 1/M$ and $x = i/M$, we have that

$$
\tau(x) = \lim_{h \to 0^+} \frac{1}{h} E \left[Y_M(t+h) - Y_M(t) | Y_M(t) = x \right] = -\gamma_1 x + (1-x)\gamma_2
$$

$$
\sigma^2(x) = \lim_{h \to 0^+} \frac{1}{h} E \left[(Y_M(t+h) - Y_M(t))^2 | Y_M(t) = x \right] = x(1-x)
$$

where $\gamma_1 = aM$ and $\gamma_2 = bM$ are the intensities of mutation.

Therefore $Y(t)$ is a continuous-time diffusion process with state space $\mathcal{S} = [0,1]$, drift $\tau(x)$ and diffusion coefficient $\sigma^2(x)$. $Y(t) = Y_t$ evolves according to the stochastic differential equation $dY_t = \tau(Y_t) + \sigma(Y_t)dB_t$

Boundary behavior

The boundaries 1,0 are absorbing if $0 < \gamma_1, \gamma_2 < 1/2$ and reflecting if $\gamma_1, \gamma_2 \geq 1/2$.

 QQ Ξ

Spectral methods

Write $\gamma_1 = \frac{1+\beta}{2}$ and $\gamma_2 = \frac{1+\alpha}{2}$. The infinitesimal operator ${\cal A}$ of the process Y_t is

$$
\mathcal{A} = x(1-x)\frac{d^2}{dx^2} + (1+\alpha-x(\alpha+\beta+2))\frac{d}{dx}, \quad \alpha, \beta > -1
$$

The orthonormal Jacobi polynomials $P_n^{\alpha,\beta}(\mathsf{x})$ (orthogonal w.r.t $\omega(x)=x^{\alpha}(1-x)^{\beta})$ are eigenfunctions of ${\cal A}$, i.e.

$$
\mathcal{A}P_n^{\alpha,\beta}(x) = \lambda_n P_n^{\alpha,\beta}(x), \quad \lambda_n = -n(n+\alpha+\beta+1)
$$

We have two important properties:

$$
p(t; x, y) = \sum_{n=0}^{\infty} e^{\lambda_n t} P_n^{\alpha, \beta}(x) P_n^{\alpha, \beta}(y) y^{\alpha} (1-y)^{\beta}
$$

$$
\psi(y) = \lim_{t \to \infty} \rho(t; x, y) = \frac{\Gamma(\alpha + 1)\Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 2)} y^{\alpha} (1 - y)^{\beta}
$$

Spectral methods

Write $\gamma_1 = \frac{1+\beta}{2}$ and $\gamma_2 = \frac{1+\alpha}{2}$. The infinitesimal operator ${\cal A}$ of the process Y_t is

$$
\mathcal{A} = x(1-x)\frac{d^2}{dx^2} + (1+\alpha-x(\alpha+\beta+2))\frac{d}{dx}, \quad \alpha, \beta > -1
$$

The orthonormal Jacobi polynomials $P_n^{\alpha,\beta}(x)$ (orthogonal w.r.t $\omega(x)=x^{\alpha}(1-x)^{\beta})$ are eigenfunctions of ${\cal A}$, i.e.

$$
\mathcal{A}P_n^{\alpha,\beta}(x) = \lambda_n P_n^{\alpha,\beta}(x), \quad \lambda_n = -n(n+\alpha+\beta+1)
$$

We have two important properties:

$$
p(t; x, y) = \sum_{n=0}^{\infty} e^{\lambda_n t} P_n^{\alpha, \beta}(x) P_n^{\alpha, \beta}(y) y^{\alpha} (1-y)^{\beta}
$$

$$
\psi(y) = \lim_{t \to \infty} \rho(t; x, y) = \frac{\Gamma(\alpha + 1)\Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 2)} y^{\alpha} (1 - y)^{\beta}
$$

Spectral methods

Write $\gamma_1=\frac{1+\beta}{2}$ and $\gamma_2=\frac{1+\alpha}{2}.$ The infinitesimal operator \hat{A} of the process Y_t is

$$
\mathcal{A} = x(1-x)\frac{d^2}{dx^2} + (1+\alpha-x(\alpha+\beta+2))\frac{d}{dx}, \quad \alpha, \beta > -1
$$

The orthonormal Jacobi polynomials $P_n^{\alpha,\beta}(x)$ (orthogonal w.r.t $\omega(x)=x^{\alpha}(1-x)^{\beta})$ are eigenfunctions of ${\cal A}$, i.e.

$$
\mathcal{A}P_n^{\alpha,\beta}(x) = \lambda_n P_n^{\alpha,\beta}(x), \quad \lambda_n = -n(n+\alpha+\beta+1)
$$

We have two important properties:

Spectral representation of the probability density

$$
p(t;x,y)=\sum_{n=0}^{\infty}e^{\lambda_n t}P_n^{\alpha,\beta}(x)P_n^{\alpha,\beta}(y)y^{\alpha}(1-y)^{\beta}
$$

$$
\psi(y) = \lim_{t \to \infty} \rho(t; x, y) = \frac{\Gamma(\alpha + 1)\Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 2)} y^{\alpha} (1 - y)^{\beta}
$$

Spectral methods

Write $\gamma_1 = \frac{1+\beta}{2}$ and $\gamma_2 = \frac{1+\alpha}{2}$. The infinitesimal operator ${\cal A}$ of the process Y_t is

$$
\mathcal{A} = x(1-x)\frac{d^2}{dx^2} + (1+\alpha-x(\alpha+\beta+2))\frac{d}{dx}, \quad \alpha, \beta > -1
$$

The orthonormal Jacobi polynomials $P_n^{\alpha,\beta}(x)$ (orthogonal w.r.t $\omega(x)=x^{\alpha}(1-x)^{\beta})$ are eigenfunctions of ${\cal A}$, i.e.

$$
\mathcal{A}P_n^{\alpha,\beta}(x) = \lambda_n P_n^{\alpha,\beta}(x), \quad \lambda_n = -n(n+\alpha+\beta+1)
$$

We have two important properties:

Spectral representation of the probability density

$$
p(t;x,y)=\sum_{n=0}^{\infty}e^{\lambda_n t}P_n^{\alpha,\beta}(x)P_n^{\alpha,\beta}(y)y^{\alpha}(1-y)^{\beta}
$$

INVARIANT DISTRIBUTION $(\alpha, \beta > 0)$

$$
\psi(y) = \lim_{t \to \infty} \rho(t; x, y) = \frac{\Gamma(\alpha + 1)\Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 2)} y^{\alpha} (1 - y)^{\beta}
$$

KORK ERKER KEN (B)

OUTLINE

THE WRIGHT-FISHER MODEL

- [The original problem](#page-3-0)
- [The diffusion approximation](#page-17-0)
- [Spectral methods](#page-22-0)

² [A variant of the Wright-Fisher model](#page-26-0)

- [The coefficients of the hybrid process](#page-27-0)
- **•** [Probabilistic interpretation](#page-39-0)
- **•** [Spectral methods](#page-47-0)

 Ω

THE COEFFICIENTS OF THE HYBRID PROCESS

We consider now a hybrid process of the form

 $\{(Y_t, R_t): t \in [0, +\infty)\}\$

where $Y_t \in [0, 1]$ is a Wright-Fisher type diffusion process and $R_t \in \{1, 2, \ldots, N\}$ is a continuous-time Markov chain representing N different phases for which the coefficients of the process Y_t may change. These processes are also known as diffusions with Markovian switching. Our process evolves according to the stochastic differential equation

 $dY_t = \tau_{R_t}(Y_t) + \sigma_{R_t}(Y_t)dB_t$

 $\tau_i(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \sigma_i^2(x) = 2x(1 - x)$

We consider now a hybrid process of the form

 $\{(Y_t, R_t): t \in [0, +\infty)\}\$

where $Y_t \in [0, 1]$ is a Wright-Fisher type diffusion process and $R_t \in \{1, 2, \ldots, N\}$ is a continuous-time Markov chain representing N different phases for which the coefficients of the process Y_t may change. These processes are also known as diffusions with Markovian switching. Our process evolves according to the stochastic differential equation

$$
dY_t = \tau_{R_t}(Y_t) + \sigma_{R_t}(Y_t)dB_t
$$

 $\tau_i(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \sigma_i^2(x) = 2x(1 - x)$

Observe that the intensities of mutations depend on the phase so

$$
A \xrightarrow{\frac{\beta+1}{2}} B \quad \text{and} \quad B \xrightarrow{\frac{\alpha+N-i+1}{2}} A, \quad i = 1, 2, \dots, N
$$

• At phase N we recover the original Wright-Fisher model.

We consider now a *hybrid process* of the form

 $\{(Y_t, R_t): t \in [0, +\infty)\}\$

where $Y_t \in [0, 1]$ is a Wright-Fisher type diffusion process and $R_t \in \{1, 2, \ldots, N\}$ is a continuous-time Markov chain representing N different phases for which the coefficients of the process Y_t may change. These processes are also known as diffusions with Markovian switching. Our process evolves according to the stochastic differential equation

$$
dY_t = \tau_{R_t}(Y_t) + \sigma_{R_t}(Y_t)dB_t
$$

$$
\tau_i(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \sigma_i^2(x) = 2x(1 - x)
$$

Observe that the intensities of mutations depend on the phase so

$$
A \xrightarrow{\frac{\beta+1}{2}} B \quad \text{and} \quad B \xrightarrow{\frac{\alpha+N-i+1}{2}} A, \quad i=1,2,\ldots,N
$$

• At phase N we recover the original Wright-Fisher model.

We consider now a *hybrid process* of the form

 $\{(Y_t, R_t): t \in [0, +\infty)\}\$

where $Y_t \in [0, 1]$ is a Wright-Fisher type diffusion process and $R_t \in \{1, 2, \ldots, N\}$ is a continuous-time Markov chain representing N different phases for which the coefficients of the process Y_t may change. These processes are also known as diffusions with Markovian switching. Our process evolves according to the stochastic differential equation

$$
dY_t = \tau_{R_t}(Y_t) + \sigma_{R_t}(Y_t)dB_t
$$

$$
\tau_i(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \sigma_i^2(x) = 2x(1 - x)
$$

Observe that the intensities of mutations depend on the phase so

$$
A \xrightarrow{\frac{\beta+1}{2}} B \quad \text{and} \quad B \xrightarrow{\frac{\alpha+N-i+1}{2}} A, \quad i=1,2,\ldots,N
$$

● At phase N we recover the original Wright-Fisher model.

We consider now a *hybrid process* of the form

 $\{(Y_t, R_t): t \in [0, +\infty)\}\$

where $Y_t \in [0, 1]$ is a Wright-Fisher type diffusion process and $R_t \in \{1, 2, \ldots, N\}$ is a continuous-time Markov chain representing N different phases for which the coefficients of the process Y_t may change. These processes are also known as diffusions with Markovian switching. Our process evolves according to the stochastic differential equation

$$
dY_t = \tau_{R_t}(Y_t) + \sigma_{R_t}(Y_t)dB_t
$$

$$
\tau_i(x) = \alpha + 1 + N - i - x(\alpha + \beta + 2 + N - i), \quad \sigma_i^2(x) = 2x(1 - x)
$$

Observe that the intensities of mutations depend on the phase so

$$
A \xrightarrow{\frac{\beta+1}{2}} B \quad \text{and} \quad B \xrightarrow{\frac{\alpha+N-i+1}{2}} A, \quad i=1,2,\ldots,N
$$

● At phase N we recover the original Wright-Fisher model.

 \bullet $B \rightarrow A$ grows as we get closer to the first [pha](#page-30-0)[se](#page-32-0)[s.](#page-26-0)

KORK ERKER ADAM DE SORA

THE TRANSITION OF PHASES

The continuous-time process R_t (depending also on the position Y_t) evolves according to a birth-and-death process whose infinitesimal operator is given by an $N \times N$ tridiagonal matrix $Q(x)$ where

$$
\mathbf{Q}_{i,i-1}(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mathbf{Q}_{i,i+1}(x) = \frac{x}{1-x}(i-1)(N-i+k)
$$

$$
\mathbf{Q}_{i,i}(x) = -(\mathbf{Q}_{i,i-1}(x) + \mathbf{Q}_{i,i+1}(x)), \quad 0 < k < \beta+1
$$

 $\mathbf{Q}(x)$ only depends on β and a new parameter k.

For example: $N = 3$ phases, $\beta = 1, k = 3/2$:

$$
\mathbf{Q}(x) = \begin{pmatrix} -\frac{1}{1-x} & \frac{1}{1-x} & 0\\ \frac{5x}{2(1-x)} & \frac{-3-5x}{2(1-x)} & \frac{3}{2(1-x)}\\ 0 & \frac{3x}{1-x} & -\frac{3x}{1-x} \end{pmatrix}, \quad x \in (0,1)
$$

THE TRANSITION OF PHASES

The continuous-time process R_t (depending also on the position Y_t) evolves according to a birth-and-death process whose infinitesimal operator is given by an $N \times N$ tridiagonal matrix $Q(x)$ where

$$
\mathbf{Q}_{i,i-1}(x) = \frac{1}{1-x}(N-i)(i+\beta-k), \quad \mathbf{Q}_{i,i+1}(x) = \frac{x}{1-x}(i-1)(N-i+k)
$$

$$
\mathbf{Q}_{i,i}(x) = -(\mathbf{Q}_{i,i-1}(x) + \mathbf{Q}_{i,i+1}(x)), \quad 0 < k < \beta+1
$$

 $\mathbf{Q}(x)$ only depends on β and a new parameter k.

For example: $N = 3$ phases, $\beta = 1, k = 3/2$:

$$
\mathbf{Q}(x) = \begin{pmatrix} -\frac{1}{1-x} & \frac{1}{1-x} & 0\\ \frac{5x}{2(1-x)} & \frac{-3-5x}{2(1-x)} & \frac{3}{2(1-x)}\\ 0 & \frac{3x}{1-x} & -\frac{3x}{1-x} \end{pmatrix}, \quad x \in (0,1)
$$

KORK ERKER ADAM DE SORA

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

STOCHASTIC REPRESENTATION

Example: $N = 3$ phases, $\alpha = 0, \beta = 1, k = 3/2$, allowing 4 changes

STOCHASTIC REPRESENTATION

Example: $N = 3$ phases, $\alpha = 0, \beta = 1, k = 3/2$, allowing 4 changes Phase 1: $\sigma^2(x) = 2x(1-x), \tau_1(x) = 3 - 5x, \mathbf{Q}_{1,1}(x) = -\frac{1}{1-x}$

イロト イ伊 トイヨ トイヨト Þ $2Q$

STOCHASTIC REPRESENTATION

Example: $N = 3$ phases, $\alpha = 0, \beta = 1, k = 3/2$, allowing 4 changes Phase 2: $\sigma^2(x) = 2x(1-x), \tau_2(x) = 2 - 4x, \mathbf{Q}_{2,2}(x) = \frac{-3-5x}{2(1-x)}$

イロト イ伊 トイヨ トイヨト Þ QQ

イロト イ伊 トイヨ トイヨト

 QQ

∍

STOCHASTIC REPRESENTATION

Example: $N = 3$ phases, $\alpha = 0, \beta = 1, k = 3/2$, allowing 4 changes Phase 3: $\sigma^2(x) = 2x(1-x), \tau_3(x) = 1 - 3x, \mathbf{Q}_{3,3}(x) = \frac{-3x}{1-x}$

イロト イ伊 トイヨ トイヨト

 QQ

STOCHASTIC REPRESENTATION

Example: $N = 3$ phases, $\alpha = 0, \beta = 1, k = 3/2$, allowing 4 changes Phase 2: $\sigma^2(x) = 2x(1-x), \tau_2(x) = 2 - 4x, \mathbf{Q}_{2,2}(x) = \frac{-3-5x}{2(1-x)}$

Boundary behavior

KORK ERKER KEN (B)

WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the *diagonal entries* of $Q(x)$:

$$
\mathbf{Q}_{ii}(x) = -\frac{1}{1-x}[(N-i)(i+\beta-k)+x(i-1)(N-i+k)]
$$

If $x \to 1^ \Rightarrow$ all phases are *instantaneous*.

If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.

If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the *diagonal entries* of $Q(x)$:

$$
\mathbf{Q}_{ii}(x) = -\frac{1}{1-x}[(N-i)(i+\beta-k)+x(i-1)(N-i+k)]
$$

- If $x \to 1^ \Rightarrow$ all phases are *instantaneous*.
- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- **If** $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the *diagonal entries* of $Q(x)$:

$$
\mathbf{Q}_{ii}(x) = -\frac{1}{1-x}[(N-i)(i+\beta-k)+x(i-1)(N-i+k)]
$$

If $x \to 1^ \Rightarrow$ all phases are *instantaneous*.

• If
$$
x \to 0^+
$$
 or $k \to 0^+ \Rightarrow$ phase N is absorbing.

If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the *diagonal entries* of $Q(x)$:

$$
\mathbf{Q}_{ii}(x) = -\frac{1}{1-x}[(N-i)(i+\beta-k)+x(i-1)(N-i+k)]
$$

If $x \to 1^ \Rightarrow$ all phases are *instantaneous*.

- If $x \to 0^+$ or $k \to 0^+ \Rightarrow$ phase N is absorbing.
- If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the *diagonal entries* of $Q(x)$:

$$
\mathbf{Q}_{ii}(x) = -\frac{1}{1-x}[(N-i)(i+\beta-k)+x(i-1)(N-i+k)]
$$

If $x \to 1^ \Rightarrow$ all phases are *instantaneous*.

• If
$$
x \to 0^+
$$
 or $k \to 0^+ \Rightarrow$ phase *N* is absorbing.

• If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

TENDENCY

• If $k \to \beta + 1 \Rightarrow$ Backward tendency

Meaning: The parameter k helps the population of A 's to survive against the population of B 's.

If $k \to 0^+ \Rightarrow$ Forward tendency Meaning: Both populations A and B 'fight[' in](#page-43-0) [th](#page-45-0)[e](#page-39-0) [s](#page-45-0)[a](#page-46-0)[m](#page-38-0)[e](#page-39-0) [c](#page-46-0)[o](#page-47-0)[n](#page-25-0)[d](#page-26-0)[itio](#page-52-0)[ns](#page-0-0)[.](#page-52-0)

WAITING TIMES AND TENDENCY

WAITING TIMES

We have to take a look to the *diagonal entries* of $Q(x)$:

$$
\mathbf{Q}_{ii}(x) = -\frac{1}{1-x}[(N-i)(i+\beta-k)+x(i-1)(N-i+k)]
$$

If $x \to 1^ \Rightarrow$ all phases are *instantaneous*.

• If
$$
x \to 0^+
$$
 or $k \to 0^+ \Rightarrow$ phase *N* is absorbing.

• If $k \to \beta + 1 \Rightarrow$ phase 1 is absorbing.

TENDENCY

• If $k \to \beta + 1 \Rightarrow$ Backward tendency

Meaning: The parameter k helps the population of A 's to survive against the population of B 's.

If $k \to 0^+ \Rightarrow$ Forward tendency M[e](#page-39-0)[a](#page-46-0)ning: B[o](#page-47-0)th populatio[n](#page-25-0)s A an[d](#page-26-0) B 'fight[' in](#page-44-0) [th](#page-46-0)e [s](#page-45-0)a[m](#page-38-0)e [c](#page-46-0)ond[itio](#page-52-0)[ns](#page-0-0)[.](#page-52-0)

Example of tendency

 299 **K ロ ト K 何 ト K ヨ ト**

SPECTRAL METHODS

The infinitesimal operator A is now matrix-valued

$$
\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d}{dx} + \mathbf{Q}(x)\frac{d^0}{dx^0}
$$

$$
\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}_{ii}(x) = \tau_i(x)
$$

We already know (Grünbaum-Pacharoni-Tirao, 2002) a family of matrix-valued orthonormal eigenfunctions $\Phi_n(x)$ of A:

$$
\mathcal{A}\Phi_n(x) = \Phi_n(x)\Gamma_n, \quad \Gamma_n \quad \text{diagonal}
$$

They are called the matrix-valued spherical functions associated with the complex projective space.

The corresponding weight matrix $W(x)$ is diagonal with entries

$$
\mathbf{W}_{ii}(x) = x^{\alpha}(1-x)^{\beta} \begin{pmatrix} \beta - k + i - 1 \\ i - 1 \end{pmatrix} \begin{pmatrix} N + k - i - 1 \\ N - i \end{pmatrix} x^{N - i}
$$

$$
\mathsf{P}(t; x, y) = \sum_{n=0}^{\infty} \Phi_n(x) e^{\Gamma_n t} \Phi_n^*(y) \mathsf{W}(y)
$$

SPECTRAL METHODS

The infinitesimal operator $\mathcal A$ is now matrix-valued

$$
\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d}{dx} + \mathbf{Q}(x)\frac{d^0}{dx^0}
$$

$$
\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}_{ii}(x) = \tau_i(x)
$$

We already know (Grünbaum-Pacharoni-Tirao, 2002) a family of matrix-valued orthonormal eigenfunctions $\Phi_n(x)$ of A:

$$
\mathcal{A}\Phi_n(x) = \Phi_n(x)\Gamma_n, \quad \Gamma_n \quad \text{diagonal}
$$

They are called the matrix-valued spherical functions associated with the complex projective space.

The corresponding weight matrix $W(x)$ is diagonal with entries

$$
\mathbf{W}_{ii}(x) = x^{\alpha}(1-x)^{\beta} \begin{pmatrix} \beta - k + i - 1 \\ i - 1 \end{pmatrix} \begin{pmatrix} N + k - i - 1 \\ N - i \end{pmatrix} x^{N - i}
$$

$$
\mathbf{P}(t;x,y)=\sum_{n=0}^{\infty}\Phi_n(x)e^{\Gamma_nt}\Phi_n^*(y)\mathbf{W}(y)
$$

SPECTRAL METHODS

The infinitesimal operator $\mathcal A$ is now matrix-valued

$$
\mathcal{A} = \frac{1}{2}\mathbf{A}(x)\frac{d^2}{dx^2} + \mathbf{B}(x)\frac{d}{dx} + \mathbf{Q}(x)\frac{d^0}{dx^0}
$$

$$
\mathbf{A}(x) = 2x(1-x)\mathbf{I}, \quad \mathbf{B}_{ii}(x) = \tau_i(x)
$$

We already know (Grünbaum-Pacharoni-Tirao, 2002) a family of matrix-valued orthonormal eigenfunctions $\Phi_n(x)$ of A:

$$
\mathcal{A}\Phi_n(x) = \Phi_n(x)\Gamma_n, \quad \Gamma_n \quad \text{diagonal}
$$

They are called the matrix-valued spherical functions associated with the complex projective space.

The corresponding weight matrix $W(x)$ is diagonal with entries

$$
\mathbf{W}_{ii}(x) = x^{\alpha}(1-x)^{\beta} \begin{pmatrix} \beta - k + i - 1 \\ i - 1 \end{pmatrix} \begin{pmatrix} N + k - i - 1 \\ N - i \end{pmatrix} x^{N - i}
$$

Spectral representation of the probability density

$$
\mathsf{P}(t;x,y)=\sum_{n=0}^{\infty}\Phi_n(x)e^{\Gamma_n t}\Phi_n^*(y)\mathsf{W}(y)
$$

െ പ

Invariant distribution

The invariant distribution $\psi(y)$ $(\alpha, \beta \ge 0)$ comes from the study of

 $\lim_{t\to\infty}$ **P**(t; x, y)

This should be independent of the initial state and phase. Therefore we should expect a row vector invariant distribution

$$
\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))
$$

with $0 \leq \psi_i(y) \leq 1$ and

$$
\sum_{j=1}^N \int_0^1 \psi_j(y)dy = 1
$$

$$
\Rightarrow \psi(y) = \left(\int_0^1 e_N^T \mathbf{W}(x) e_N dx\right)^{-1} e_N^T \mathbf{W}(y)
$$

where $\mathbf{e}^\mathcal{T} = (1, 1, \dots, 1).$ In particular

$$
\psi_j(y) = y^{\alpha+N-j} (1-y)^{\beta} {N-1 \choose j-1} {\alpha+\beta+N \choose \alpha} \frac{(\beta+N)(k)_{N-j} (\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}
$$

Invariant distribution

The invariant distribution $\psi(y)$ $(\alpha, \beta \ge 0)$ comes from the study of

 $\lim_{t\to\infty}$ **P**(t; x, y)

This should be independent of the initial state and phase. Therefore we should expect a row vector invariant distribution

$$
\psi(y)=(\psi_1(y),\psi_2(y),\ldots,\psi_N(y))
$$

with $0 \leq \psi_i(y) \leq 1$ and

$$
\sum_{j=1}^N \int_0^1 \psi_j(y)dy = 1
$$

EXPLICIT FORMULA (MDI, 2012)

$$
\Rightarrow \psi(y) = \left(\int_0^1 \mathbf{e}_N^T \mathbf{W}(x) \mathbf{e}_N dx \right)^{-1} \mathbf{e}_N^T \mathbf{W}(y)
$$

where $\mathbf{e}^\mathcal{T} = (1, 1, \dots, 1).$ In particular

$$
\psi_j(y) = y^{\alpha+N-j} (1-y)^{\beta} {N-1 \choose j-1} {\alpha+\beta+N \choose \alpha} \frac{(\beta+N)(k)_{N-j} (\beta-k+1)_{j-1}}{(\alpha+\beta-k+2)_{N-1}}
$$

STUDY OF THE INVARIANT DISTRIBUTION

イロメ イ部メ イミメ イモメ È. 299