International Conference-School Infinite-dimensional dynamics, dissipative systems, and attractors Nizhny Novgorod, Russia July 13-17, 2015

Some recent results on tempered pullback attractors for non-autonomous variants of Navier-Stokes equations

Pedro Marín-Rubio ${ }^{1}$

with J. García-Luengo ${ }^{1}$, G. Planas ${ }^{2}$, J. Real ${ }^{1, \dagger}$ \& J. Robinson ${ }^{3}$

${ }^{1}$ Dpto. Ecuaciones Diferenciales y An. Num., Univ. Sevilla, Spain.
${ }^{2}$ IMECC, Universidade Estadual de Campinas, Brazil.
${ }^{3}$ Mathematics Institute, University of Warwick, Coventry, U.K.

Outline of the talk

Motivation
Abstract results on attractors theory
Existence of minimal pullback attractors
Comparison of non-tempered and tempered attractors
Comparison of pullback \mathcal{D}_{i}-attractors
Application to a 2D-Navier-Stokes model
Pullback \mathcal{D}-attractors in H
Pullback \mathcal{D}-attractors in V
Tempered behaviour of the pullback attractors
Flattening property: shorter proof of asymp.compactness for V
Delay terms: "good" and "bad" ones
Navier-Stokes-Voigt

Motivation

- Non-autonomous dynamical systems
- V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279-333.
- V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications 49, Providence, AMS, 2002.
- Random dynamical systems (unbounded time-dependent terms)
- B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, en International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour (V. Reitmann, T. Redrich y N. J. Kosch, eds.), (Dresden), pp. 185-192, Technische Universität, 1992.
- H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields 100 (1994), 365-393.
- H. Crauel, A. Debussche, and F. Flandoli, Random attractors, J. Dynam. Differential Equations 9 (1997), 307-341.
- I. D. Chueshov, Monotone Random Systems and Applications, Lecture Notes in Mathematics 1779, Berlin Heidelberg: Springer-Verlag, 2002.
- Deterministic non-autonomous dynamical systems with the pullback approach with fixed bounded sets
- P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997) 141-152. Dynamical numerical analysis (Atlanta, GA, 1995).
- P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems \& Control Letters, 33 (1998), 275-280.
- P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dynam. Contin. Discrete Impuls. Systems, 4 (1998), 211-226.
- P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Difference Eqns. Applns., 6 (2000), 33-52.
- Deterministic non-autonomous dynamical systems with tempered universes:
- T. Caraballo, G. Łukaszewicz, and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), 484-498.
- T. Caraballo, G. Łukaszewicz, and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
* Physical and mathematical questions: big-bang-bang-past, present, future; dissipative world

Abstract results on attractors theory. Existence of minimal

 pullback attractorsConsider given a metric space $\left(X, d_{X}\right)$, and let us denote $\mathbb{R}_{d}^{2}=\left\{(t, \tau) \in \mathbb{R}^{2}: \tau \leq t\right\}$.
A process on X is a mapping U such that $\mathbb{R}_{d}^{2} \times X \ni(t, \tau, x) \mapsto U(t, \tau) x \in X$ with $U(\tau, \tau) x=x$ for any
$(\tau, x) \in \mathbb{R} \times X$, and $U(t, r)(U(r, \tau) x)=U(t, \tau) x$ for any
$\tau \leq r \leq t$ and all $x \in X$.

Definition

A process U on X is said to be closed if for any $\tau \leq t$, and any sequence $\left\{x_{n}\right\} \subset X$ with $x_{n} \rightarrow x \in X$ and $U(t, \tau) x_{n} \rightarrow y \in X$, then $U(t, \tau) x=y$.

Remark
U continuous
\Rightarrow strong-weak (also known as norm-to weak)
\Rightarrow closed
This more relaxed concepts are useful in some situations (e.g., dyn. syst. and attractors for strong sols. for RD eqns).
$\mathcal{P}(X)$ the family of all nonempty subsets of X, and consider a family of nonempty sets $\widehat{D}_{0}=\left\{D_{0}(t): t \in \mathbb{R}\right\} \subset \mathcal{P}(X)$ [not required compactness or boundedness on these sets]

Definition

U is pullback \widehat{D}_{0}-asymptotically compact if for any $t \in \mathbb{R}$ and any sequences $\left\{\tau_{n}\right\} \subset(-\infty, t]$ and $\left\{x_{n}\right\} \subset X$ satisfying $\tau_{n} \rightarrow-\infty$ and $x_{n} \in D_{0}\left(\tau_{n}\right)$ for all n, the sequence $\left\{U\left(t, \tau_{n}\right) x_{n}\right\}$ is relatively compact in X.
Denote

$$
\Lambda\left(\widehat{D}_{0}, t\right):=\bigcap_{s \leq t} \bigcup_{\bigcup_{\tau \leq s} U(t, \tau) D_{0}(\tau)} x \quad \forall t \in \mathbb{R}
$$

Proposition

U pullback \widehat{D}_{0}-asymptotically compact \Rightarrow for all $t \in \mathbb{R}$, the set $\Lambda\left(\widehat{D}_{0}, t\right)$ given by (8) is a nonempty compact subset of X, and (attracts pullback)

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}_{X}\left(U(t, \tau) D_{0}(\tau), \Lambda\left(\widehat{D}_{0}, t\right)\right)=0
$$

Let be given \mathcal{D} a nonempty class of families parameterized in time $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}(X)$. The class \mathcal{D} will be called a universe in $\mathcal{P}(X)$.

Definition

It is said that $\widehat{D}_{0}=\left\{D_{0}(t): t \in \mathbb{R}\right\} \subset \mathcal{P}(X)$ is pullback
\mathcal{D}-absorbing for the process U on X if for any $t \in \mathbb{R}$ and any
$\widehat{D} \in \mathcal{D}$, there exists a $\tau_{0}(t, \widehat{D}) \leq t$ such that

$$
U(t, \tau) D(\tau) \subset D_{0}(t) \quad \text { for all } \tau \leq \tau_{0}(t, \widehat{D})
$$

Observe that in the definition above \widehat{D}_{0} does not belong necessarily to the class \mathcal{D}.

Definition

U pullback \mathcal{D}-asymptotically compact if it is \widehat{D}-asymptotically compact for any $D \in \mathcal{D}$.

Proposition

$\widehat{D}_{0}=\left\{D_{0}(t): t \in \mathbb{R}\right\} \subset \mathcal{P}(X)$ pullback \mathcal{D}-absorbing for a process U on X, which is pullback \widehat{D}_{0}-asymptotically compact. Then, U is also pullback \mathcal{D}-asymptotically compact.

Proposition

U closed and pullback \mathcal{D}-asymptotically compact \Rightarrow for each $\widehat{D} \in \mathcal{D}$ and any $t \in \mathbb{R}$, the set $\Lambda(\widehat{D}, t)$ is a nonempty compact subset of X, invariant for U, that attracts \widehat{D} in the pullback sense, i.e.

$$
\begin{equation*}
\lim _{\tau \rightarrow-\infty} \operatorname{dist}_{X}(U(t, \tau) D(\tau), \Lambda(\widehat{D}, t))=0 \tag{1}
\end{equation*}
$$

Moreover, it is the minimal family of closed sets satisfying (1).

Theorem

$U: \mathbb{R}_{d}^{2} \times X \rightarrow X$ closed, a universe \mathcal{D} in $\mathcal{P}(X)$, and a family
$\widehat{D}_{0}=\left\{D_{0}(t): t \in \mathbb{R}\right\} \subset \mathcal{P}(X)$ pullback \mathcal{D}-absorbing for U, and
U pullback \widehat{D}_{0}-asymptotically compact.
Then, the family $\mathcal{A}_{\mathcal{D}}=\left\{\mathcal{A}_{\mathcal{D}}(t): t \in \mathbb{R}\right\}$ defined by

$$
\mathcal{A}_{\mathcal{D}}(t)=\bigcup_{\widehat{D} \in \mathcal{D}} \wedge(\widehat{D}, t) \quad \text { } \quad t \in \mathbb{R},
$$

(a) for any $t \in \mathbb{R}, \mathcal{A}_{\mathcal{D}}(t)$ is a nonempty compact subset of X, and $\mathcal{A}_{\mathcal{D}}(t) \subset \Lambda\left(\widehat{D}_{0}, t\right)$,
(b) $\mathcal{A}_{\mathcal{D}}$ is pullback \mathcal{D}-attracting
(c) $\mathcal{A}_{\mathcal{D}}$ is invariant, i.e. $U(t, \tau) \mathcal{A}_{\mathcal{D}}(\tau)=\mathcal{A}_{\mathcal{D}}(t)$ for all $\tau \leq t$,
(d) if $\widehat{D}_{0} \in \mathcal{D}$, then $\mathcal{A}_{\mathcal{D}}(t)=\Lambda\left(\widehat{D}_{0}, t\right) \subset{\overline{D_{0}}(t)^{X}}^{X}$, for all $t \in \mathbb{R}$.

The family $\mathcal{A}_{\mathcal{D}}$ is minimal in the sense that if
$\widehat{C}=\{C(t): t \in \mathbb{R}\} \subset \mathcal{P}(X)$ is a family of closed sets and
\mathcal{D}-attracting, then $\mathcal{A}_{\mathcal{D}}(t) \subset C(t)$.

Remark

Under the assumptions of Theorem 5, the family $\mathcal{A}_{\mathcal{D}}$ is called the minimal pullback \mathcal{D}-attractor for the process U.
If $\mathcal{A}_{\mathcal{D}} \in \mathcal{D}$, then it is the unique family of closed subsets in \mathcal{D} that satisfies (b)-(c).
A sufficient condition for $\mathcal{A}_{\mathcal{D}} \in \mathcal{D}$ is to have that $\widehat{D}_{0} \in \mathcal{D}$, the set $D_{0}(t)$ is closed for all $t \in \mathbb{R}$, and the family \mathcal{D} is inclusion-closed (i.e. if $\widehat{D} \in \mathcal{D}$, and $\widehat{D}^{\prime}=\left\{D^{\prime}(t): t \in \mathbb{R}\right\} \subset \mathcal{P}(X)$ with $D^{\prime}(t) \subset D(t)$ for all t, then $\left.\widehat{D}^{\prime} \in \mathcal{D}\right)$.

Denote \mathcal{D}_{F}^{X} the universe of fixed nonempty bounded subsets of X, i.e. the class of all families \widehat{D} of the form $\widehat{D}=\{D(t)=D: t \in \mathbb{R}\}$ with D a fixed nonempty bounded subset of X.

For \mathcal{D}_{F}^{X}, the corresponding minimal pullback \mathcal{D}_{F}^{X}-attractor $\mathcal{A}_{\mathcal{D}_{F}^{X}}$ is the one defined by Crauel, Debussche, and Flandoli.

Corollary

Under the assumptions of Theorem 5, if the universe \mathcal{D} contains the universe \mathcal{D}_{F}^{X}, then both attractors, $\mathcal{A}_{\mathcal{D}_{F}^{X}}$ and $\mathcal{A}_{\mathcal{D}}$, exist, and the following relation holds:

$$
\mathcal{A}_{\mathcal{D}_{F}^{x}}(t) \subset \mathcal{A}_{\mathcal{D}}(t) \quad \forall t \in \mathbb{R}
$$

Remark

Under the above assumptions, if, moreover, $\widehat{D}_{0} \in \mathcal{D}$, and for some $T \in \mathbb{R}$ the set $\cup_{t \leq T} D_{0}(t)$ is a bounded subset of X, then

$$
\mathcal{A}_{\mathcal{D}_{F}^{x}}(t)=\mathcal{A}_{\mathcal{D}}(t) \quad \forall t \leq T
$$

Comparison of pullback \mathcal{D}_{i}-attractors

Theorem
Let $\left\{\left(X_{i}, d_{X_{i}}\right)\right\}_{i=1,2}$ be metric spaces, $X_{1} \subset X_{2}$ contin. injected, and for $i=1$, 2, let \mathcal{D}_{i} be a universe in $\mathcal{P}\left(X_{i}\right)$, with $\mathcal{D}_{1} \subset \mathcal{D}_{2}$. U acts as a process in both cases, $U: \mathbb{R}_{d}^{2} \times X_{i} \rightarrow X_{i}$ for $i=1,2$.

$$
\mathcal{A}_{i}(t)=\bigcup_{\widehat{D}_{i} \in \mathcal{D}_{i}} \Lambda_{i}\left(\widehat{D}_{i}, t\right) \quad x_{i}, \quad i=1,2 .
$$

Then, $\mathcal{A}_{1}(t) \subset \mathcal{A}_{2}(t) \quad$ for all $t \in \mathbb{R}$.

Suppose moreover that the two following conditions are satisfied:
(i) $\mathcal{A}_{1}(t)$ is a compact subset of X_{1} for all $t \in \mathbb{R}$,
(ii) for any $\widehat{D}_{2} \in \mathcal{D}_{2}$ and any $t \in \mathbb{R}$, there exist a family $\widehat{D}_{1} \in \mathcal{D}_{1}$ and a $t_{\widehat{D}_{1}}^{*} \leq t$ (both possibly depending on t and \widehat{D}_{2}), such that U is pullback \widehat{D}_{1}-asymptotically compact, and for any $s \leq t_{\hat{D}_{1}}^{*}$ there exists a $\tau_{s} \leq s$ such that

$$
U(s, \tau) D_{2}(\tau) \subset D_{1}(s) \quad \text { for all } \tau \leq \tau_{s}
$$

Then, under all the conditions above, $\mathcal{A}_{1}(t)=\mathcal{A}_{2}(t) \quad$ for all $t \in \mathbb{R}$.

Remark

In the preceding theorem, if instead of assumption (ii) we consider the following condition:
(ii') for any $\widehat{D}_{2} \in \mathcal{D}_{2}$ and any sequence $\tau_{n} \rightarrow-\infty$ there exist another family $\widehat{D}_{1} \in \mathcal{D}_{1}$ and another sequence $\tau_{n}^{\prime} \rightarrow-\infty$ with $\tau_{n}^{\prime} \geq \tau_{n}$ for all n, such that U is pullback \widehat{D}_{1}-asymptotically compact, and

$$
\begin{equation*}
U\left(\tau_{n}^{\prime}, \tau_{n}\right) D_{2}\left(\tau_{n}\right) \subset D_{1}\left(\tau_{n}^{\prime}\right), \quad \text { for all } n \tag{2}
\end{equation*}
$$

then, with a similar proof, the equality $\mathcal{A}_{2}(t)=\mathcal{A}_{1}(t)$ for all $t \in \mathbb{R}$, also holds.
Observe that a sufficient condition for (2) is that there exists $T>0$ such that for any $\widehat{D}_{2} \in \mathcal{D}_{2}$, there exists a $\widehat{D}_{1} \in \mathcal{D}_{1}$ satisfying $U(\tau+T, \tau) D_{2}(\tau) \subset D_{1}(\tau+T)$, for all $\tau \in \mathbb{R}$.

Application to a 2D-Navier-Stokes model

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f(t) \text { in }(\tau,+\infty) \times \Omega \\
\operatorname{div} u=0 \operatorname{in}(\tau,+\infty) \times \Omega \\
u=0 \text { on }(\tau,+\infty) \times \partial \Omega \\
u(\tau, x)=u_{\tau}(x), x \in \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{2}$ is open and bounded with smooth enough $\partial \Omega^{1}$, $\nu>0$ is the kinematic viscosity,
u is the velocity field of the fluid,
p is the pressure,
u_{τ} is the initial velocity field, and
f the external force (time-dep.)term (Ex.: Arctic sea, control, etc)
${ }^{1}$ Not for the results in H but in V.

$$
\mathcal{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{2}: \operatorname{div} u=0\right\}
$$

$H=$ the closure of \mathcal{V} in $\left(L^{2}(\Omega)\right)^{2}$ with the norm $|\cdot|$, and inner product (\cdot, \cdot), where for $u, v \in\left(L^{2}(\Omega)\right)^{2}$,

$$
(u, v)=\sum_{j=1}^{2} \int_{\Omega} u_{j}(x) v_{j}(x) \mathrm{d} x
$$

$V=$ the closure of \mathcal{V} in $\left(H_{0}^{1}(\Omega)\right)^{2}$ with the norm $\|\cdot\|$ associated to the inner product $((\cdot, \cdot))$, where for $u, v \in\left(H_{0}^{1}(\Omega)\right)^{2}$,

$$
((u, v))=\sum_{i, j=1}^{2} \int_{\Omega} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial v_{j}}{\partial x_{i}} \mathrm{~d} x
$$

Definition (Weak solution)

A weak solution is a function u that belongs to $L^{2}(\tau, T ; V) \cap$ $L^{\infty}(\tau, T ; H)$ for all $T>\tau$, with $u(\tau)=u_{\tau}$, such that for all $v \in V$,

$$
\frac{d}{d t}(u(t), v)+\nu\langle A u(t), v\rangle+b(u(t), u(t), v)=\langle f(t), v\rangle
$$

where the equation must be understood in the sense of $\mathcal{D}^{\prime}(\tau,+\infty)$.

Remark

If u is a weak solution, then we deduce that for any $T>\tau$, one has $u^{\prime} \in L^{2}\left(\tau, T ; V^{\prime}\right)$, and so $u \in C([\tau,+\infty) ; H)$, whence the initial datum has full sense. Moreover, in this case the following energy equality holds for all $\tau \leq s \leq t$:

$$
|u(t)|^{2}+2 \nu \int_{s}^{t}\langle A u(r), u(r)\rangle d r=|u(s)|^{2}+2 \int_{s}^{t}\langle f(r), u(r)\rangle d r
$$

Definition (Strong solution)

A strong solution is a weak solution u of (17) such that $u \in L^{2}(\tau, T ; D(A)) \cap L^{\infty}(\tau, T ; V)$ for all $T>\tau$.

Remark
If $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$ and u is a strong solution, then $u^{\prime} \in L^{2}(\tau, T ; H)$ for all $T>\tau$, and so $u \in C([\tau,+\infty)$; $V)$. In this case the following energy equality holds:

$$
\begin{aligned}
& \|u(t)\|^{2}+2 \nu \int_{s}^{t}|A u(r)|^{2} d r+2 \int_{s}^{t} b(u(r), u(r), A u(r)) d r \\
= & \|u(s)\|^{2}+2 \int_{s}^{t}(f(r), A u(r)) d r, \quad \forall \tau \leq s \leq t .
\end{aligned}
$$

Theorem (Weak and strong solutions)
$f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $u_{\tau} \in H \Rightarrow \exists$! weak solution $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$.
$f \in L_{\text {loc }}^{2}(\mathbb{R} ; H) \Rightarrow u \in C((\tau, T] ; V) \cap L^{2}\left(\tau+\varepsilon, T ;\left(H^{2}(\Omega)\right)^{2}\right)$ for every $\varepsilon>0$ and $T>\tau+\varepsilon$.
If $u_{\tau} \in V$, then $u \in C([\tau, T] ; V) \cap L^{2}\left(\tau, T ;\left(H^{2}(\Omega)\right)^{2}\right)$ for every
$T>\tau$, i.e. u is a strong solution.

Theorem (Weak and strong solutions)
$f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $u_{\tau} \in H \Rightarrow \exists$! weak solution $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$.
$f \in L_{\text {loc }}^{2}(\mathbb{R} ; H) \Rightarrow u \in C((\tau, T] ; V) \cap L^{2}\left(\tau+\varepsilon, T ;\left(H^{2}(\Omega)\right)^{2}\right)$ for every $\varepsilon>0$ and $T>\tau+\varepsilon$.
If $u_{\tau} \in V$, then $u \in C([\tau, T] ; V) \cap L^{2}\left(\tau, T ;\left(H^{2}(\Omega)\right)^{2}\right)$ for every
$T>\tau$, i.e. u is a strong solution.

Therefore, when $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$, we can define a process $U: \mathbb{R}_{d}^{2} \times H \rightarrow H$ as

$$
U(t, \tau) u_{\tau}=u\left(t ; \tau, u_{\tau}\right) \quad \forall u_{\tau} \in H, \quad \forall \tau \leq t
$$

and if $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$, the restriction of this process to $\mathbb{R}_{d}^{2} \times V$ is a process in V.

Pullback \mathcal{D}-attractors in H

Proposition (Continuity of the process)

If $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$, for any pair $(t, \tau) \in \mathbb{R}_{d}^{2}$, the $\operatorname{map} U(t, \tau)$ is continuous from H into H.

Moreover, if $f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H)$, then $U(t, \tau)$ is also continuous from V into V.

Pullback \mathcal{D}-attractors in H

Proposition (Continuity of the process)

If $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$, for any pair $(t, \tau) \in \mathbb{R}_{d}^{2}$, the $\operatorname{map} U(t, \tau)$ is continuous from H into H.

Moreover, if $f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H)$, then $U(t, \tau)$ is also continuous from V into V.

Lemma
Assume that $f \in L_{\mathrm{loc}}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $u_{\tau} \in H$. Consider any $\mu \in\left(0,2 \nu \lambda_{1}\right)$ fixed. Then, the solution u satisfies for all $t \geq \tau$:

$$
|u(t)|^{2} \leq e^{-\mu(t-\tau)}\left|u_{\tau}\right|^{2}+\frac{e^{-\mu t}}{2 \nu-\mu \lambda_{1}^{-1}} \int_{\tau}^{t} e^{\mu s}\|f(s)\|_{*}^{2} d s
$$

Lemma
Assume that $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $u_{\tau} \in H$. Consider any $\mu \in\left(0,2 \nu \lambda_{1}\right)$ fixed. Then, the solution u satisfies for all $t \geq \tau$:

$$
|u(t)|^{2} \leq e^{-\mu(t-\tau)}\left|u_{\tau}\right|^{2}+\frac{e^{-\mu t}}{2 \nu-\mu \lambda_{1}^{-1}} \int_{\tau}^{t} e^{\mu s}\|f(s)\|_{*}^{2} d s
$$

Definition (Universe)
We will denote by \mathcal{D}_{μ}^{H} the class of all families of nonempty subsets $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}(H)$ such that

$$
\lim _{\tau \rightarrow-\infty}\left(e^{\mu \tau} \sup _{v \in D(\tau)}|v|^{2}\right)=0
$$

Remark

$\mathcal{D}_{F}^{H} \subset \mathcal{D}_{\mu}^{H}$ and that \mathcal{D}_{μ}^{H} is inclusion-closed (tempered condition).

Corollary $\left(\mathcal{D}_{\mu}^{H}\right.$-absorbing family)
Assume that there exists some $\mu \in\left(0,2 \nu \lambda_{1}\right)$ such that

$$
\int_{-\infty}^{0} e^{\mu s}\|f(s)\|_{*}^{2} d s<+\infty
$$

Then, $\widehat{D}_{0}=\left\{D_{0}(t): t \in \mathbb{R}\right\}$ defined by $D_{0}(t)=\bar{B}_{H}\left(0, R_{H}^{1 / 2}(t)\right)$,

$$
R_{H}(t)=1+\frac{e^{-\mu t}}{2 \nu-\mu \lambda_{1}^{-1}} \int_{-\infty}^{t} e^{\mu s}\|f(s)\|_{*}^{2} d s
$$

is pullback \mathcal{D}_{μ}^{H}-absorbing for the process $U: \mathbb{R}_{d}^{2} \times H \rightarrow H$ (and therefore \mathcal{D}_{F}^{H}-absorbing too), and $\widehat{D}_{0} \in \mathcal{D}_{\mu}^{H}$.

Lemma (\mathcal{D}_{μ}^{H}-asymptotic compactness)
The process U is pullback \mathcal{D}_{μ}^{H}-asymptotically compact.

Corollary $\left(\mathcal{D}_{\mu}^{H}\right.$-absorbing family)
Assume that there exists some $\mu \in\left(0,2 \nu \lambda_{1}\right)$ such that

$$
\int_{-\infty}^{0} e^{\mu s}\|f(s)\|_{*}^{2} d s<+\infty
$$

Then, $\widehat{D}_{0}=\left\{D_{0}(t): t \in \mathbb{R}\right\}$ defined by $D_{0}(t)=\bar{B}_{H}\left(0, R_{H}^{1 / 2}(t)\right)$,

$$
R_{H}(t)=1+\frac{e^{-\mu t}}{2 \nu-\mu \lambda_{1}^{-1}} \int_{-\infty}^{t} e^{\mu s}\|f(s)\|_{*}^{2} d s
$$

is pullback \mathcal{D}_{μ}^{H}-absorbing for the process $U: \mathbb{R}_{d}^{2} \times H \rightarrow H$ (and therefore \mathcal{D}_{F}^{H}-absorbing too), and $\widehat{D}_{0} \in \mathcal{D}_{\mu}^{H}$.

Lemma (\mathcal{D}_{μ}^{H}-asymptotic compactness)
The process U is pullback \mathcal{D}_{μ}^{H}-asymptotically compact.
Proof (energy method based on non-increasing
continuous functionals) omitted, see V case below.

Theorem (Pullback \mathcal{D}_{μ}^{H}-attractor)
Assume that $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ satisfies for some $\mu \in\left(0,2 \nu \lambda_{1}\right)$ the above condition. Then, \exists the minimal pullback \mathcal{D}_{F}^{H}-attractor

$$
\mathcal{A}_{\mathcal{D}_{F}^{H}}=\left\{\mathcal{A}_{\mathcal{D}_{F}^{H}}(t): t \in \mathbb{R}\right\}
$$

and the minimal pullback \mathcal{D}_{μ}^{H}-attractor

$$
\mathcal{A}_{\mathcal{D}_{\mu}^{H}}=\left\{\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t): t \in \mathbb{R}\right\},
$$

for the process U. The family $\mathcal{A}_{\mathcal{D}_{\mu}^{H}}$ belongs to \mathcal{D}_{μ}^{H}, and the following relation holds:

$$
\mathcal{A}_{\mathcal{D}_{F}^{H}}(t) \subset \mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t) \subset \bar{B}_{H}\left(0, R_{H}^{1 / 2}(t)\right) \quad \forall t \in \mathbb{R} .
$$

Remark

Useful in unbounded "Poincaré"-domains to obtain $\mathcal{A}_{\mathcal{D}_{F}^{H}}$.

Regularity: pullback \mathcal{D}-attractors in V

From now on we assume that $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$, and satisfies

$$
\int_{-\infty}^{0} e^{\mu \boldsymbol{s}}|f(s)|^{2} d s<+\infty, \quad \text { for some } \mu \in\left(0,2 \nu \lambda_{1}\right) .
$$

Lemma
For any $t \in \mathbb{R}$ and $\widehat{D} \in \mathcal{D}_{\mu}^{H}$, there exists $\tau_{1}(\widehat{D}, t)<t-3$, such that for any $\tau \leq \tau_{1}(\widehat{D}, t)$ and any $u_{\tau} \in D(\tau)$, it holds

$$
\left\{\begin{aligned}
\left|u\left(r ; \tau, u_{\tau}\right)\right|^{2} \leq \rho_{1}(t) & \text { for all } r \in[t-3, t], \\
\left\|u\left(r ; \tau, u_{\tau}\right)\right\|^{2} \leq \rho_{2}(t) & \text { for all } r \in[t-2, t], \\
\int_{r-1}^{r}\left|A u\left(\theta ; \tau, u_{\tau}\right)\right|^{2} d \theta \leq \rho_{3}(t) & \text { for all } r \in[t-1, t], \\
\int_{r-1}^{r}\left|u^{\prime}\left(\theta ; \tau, u_{\tau}\right)\right|^{2} d \theta \leq \rho_{4}(t) & \text { for all } r \in[t-1, t],
\end{aligned}\right.
$$

where

$$
\begin{gathered}
\rho_{1}(t)=1+\frac{e^{\mu(3-t)}}{2 \nu \lambda_{1}-\mu} \int_{-\infty}^{t} e^{\mu \theta}|f(\theta)|^{2} d \theta \\
\rho_{2}(t)=\max _{r \in[t-2, t]}\left\{\left(\frac{1}{\nu} \rho_{1}(r)+\left(\frac{1}{\nu^{2} \lambda_{1}}+\frac{2}{\nu}\right) \int_{r-1}^{r}|f(\theta)|^{2} d \theta\right)\right. \\
\left.\quad \times \exp \left[2 C^{(\nu)} \rho_{1}(r)\left(\frac{1}{\nu} \rho_{1}(r)+\frac{1}{\nu^{2} \lambda_{1}} \int_{r-1}^{r}|f(\theta)|^{2} d \theta\right)\right]\right\} \\
\rho_{3}(t)=\frac{1}{\nu}\left(\rho_{2}(t)+\frac{2}{\nu} \int_{t-2}^{t}|f(\theta)|^{2} d \theta+2 C^{(\nu)} \rho_{1}(t) \rho_{2}^{2}(t)\right) \\
\rho_{4}(t)=\nu \rho_{2}(t)+2 \int_{t-2}^{t}|f(\theta)|^{2} d \theta+2 C_{1}^{2} \rho_{2}(t) \rho_{3}(t)
\end{gathered}
$$

Remark

$$
\lim _{t \rightarrow-\infty} e^{\mu t} \rho_{1}(t)=0
$$

So $\left\{\bar{B}_{H}\left(0, \rho_{1}^{1 / 2}(t)\right): t \in \mathbb{R}\right\} \in \mathcal{D}_{\mu}^{H}$.
We will denote by \mathcal{D}_{μ}^{H}, V the class of all families \widehat{D}_{V} of elements of $\mathcal{P}(V)$ of the form $\widehat{D}_{V}=\{D(t) \cap V: t \in \mathbb{R}\}$, where $\widehat{D}=\{D(t): t \in \mathbb{R}\} \in \mathcal{D}_{\mu}^{H}$.
\mathcal{D}_{F}^{V} the universe of families (parameterized in time but constant for all $t \in \mathbb{R}$) of nonempty fixed bounded subsets of V. $\mathcal{D}_{\mu}^{H, V} \subset \mathcal{P}(V)$ is inclusion-closed, and evidently $\mathcal{D}_{F}^{V} \subset \mathcal{D}_{\mu}^{H, V}$.

Corollary (Absorbing in $\mathrm{H}+$ regularizing+tempered)

The family

$$
\widehat{D}_{0, V}=\left\{\bar{B}_{H}\left(0, \rho_{1}^{1 / 2}(t)\right) \cap V: t \in \mathbb{R}\right\}
$$

belongs to $\mathcal{D}_{\mu}^{H, V}$ and satisfies that for any $t \in \mathbb{R}$ and any $\widehat{D} \in \mathcal{D}_{\mu}^{H}$, there exists a $\tau(\widehat{D}, t)<t$ such that

$$
U(t, \tau) D(\tau) \subset D_{0, V}(t) \quad \text { for all } \tau \leq \tau(\widehat{D}, t)
$$

In particular, the family $\widehat{D}_{0, V}$ is pullback $\mathcal{D}_{\mu}^{H, V}$-absorbing for the process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$.

Lemma (Asymptotic compactness in V norm)
The process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$ is pullback $\mathcal{D}_{\mu}^{H, V}-$ asymptotically compact.
Sketch of the proof:

$$
\begin{cases}u^{n} \stackrel{*}{\rightharpoonup} u & \text { weak-star in } L^{\infty}(t-2, t ; V), \\ u^{n} \rightharpoonup u & \text { weakly in } L^{2}(t-2, t ; D(A)), \\ \left(u^{n}\right)^{\prime} \rightharpoonup u^{\prime} & \text { weakly in } L^{2}(t-2, t ; H), \\ u^{n} \rightarrow u & \text { strongly in } L^{2}(t-2, t ; V), \\ u^{n}(s) \rightarrow u(s) & \text { strongly in } V, \text { a.e. } s \in(t-2, t)\end{cases}
$$

Lemma (Asymptotic compactness in V norm)
The process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$ is pullback $\mathcal{D}_{\mu}^{H, V}-$ asymptotically compact.
Sketch of the proof:

$$
\begin{cases}u^{n} \stackrel{*}{\rightharpoonup} u & \text { weak-star in } L^{\infty}(t-2, t ; V), \\ u^{n} \rightharpoonup u & \text { weakly in } L^{2}(t-2, t ; D(A)), \\ \left(u^{n}\right)^{\prime} \rightharpoonup u^{\prime} & \text { weakly in } L^{2}(t-2, t ; H), \\ u^{n} \rightarrow u & \text { strongly in } L^{2}(t-2, t ; V), \\ u^{n}(s) \rightarrow u(s) & \text { strongly in } V, \text { a.e. } s \in(t-2, t)\end{cases}
$$

From above $u \in C([t-2, t] ; V)$ and u satisfies the eqn in $(t-2, t)$.

Lemma (Asymptotic compactness in V norm)
The process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$ is pullback $\mathcal{D}_{\mu}^{H, V}-$ asymptotically compact.
Sketch of the proof:

$$
\begin{cases}u^{n} \stackrel{*}{\rightharpoonup} u & \text { weak-star in } L^{\infty}(t-2, t ; V), \\ u^{n} \rightharpoonup u & \text { weakly in } L^{2}(t-2, t ; D(A)), \\ \left(u^{n}\right)^{\prime} \rightharpoonup u^{\prime} & \text { weakly in } L^{2}(t-2, t ; H), \\ u^{n} \rightarrow u & \text { strongly in } L^{2}(t-2, t ; V), \\ u^{n}(s) \rightarrow u(s) & \text { strongly in } V, \text { a.e. } s \in(t-2, t)\end{cases}
$$

From above $u \in C([t-2, t] ; V)$ and u satisfies the eqn in $(t-2, t)$.
$\left\{u^{n}\right\}$ is equi-continuous in H, on $[t-2, t]$.

Lemma (Asymptotic compactness in V norm)
The process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$ is pullback $\mathcal{D}_{\mu}^{H, V}-$ asymptotically compact.
Sketch of the proof:

$$
\begin{cases}u^{n} \stackrel{*}{\rightharpoonup} u & \text { weak-star in } L^{\infty}(t-2, t ; V), \\ u^{n} \rightharpoonup u & \text { weakly in } L^{2}(t-2, t ; D(A)), \\ \left(u^{n}\right)^{\prime} \rightharpoonup u^{\prime} & \text { weakly in } L^{2}(t-2, t ; H), \\ u^{n} \rightarrow u & \text { strongly in } L^{2}(t-2, t ; V), \\ u^{n}(s) \rightarrow u(s) & \text { strongly in } V, \text { a.e. } s \in(t-2, t)\end{cases}
$$

From above $u \in C([t-2, t] ; V)$ and u satisfies the eqn in $(t-2, t)$.
$\left\{u^{n}\right\}$ is equi-continuous in H, on $[t-2, t]$. Since $\left\{u^{n}\right\}$ is bounded in $C([t-2, t] ; V)$,

Lemma (Asymptotic compactness in V norm)
The process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$ is pullback $\mathcal{D}_{\mu}^{H, V}-$ asymptotically compact.

Sketch of the proof:

$$
\begin{cases}u^{n} \stackrel{*}{\rightharpoonup} u & \text { weak-star in } L^{\infty}(t-2, t ; V), \\ u^{n} \rightharpoonup u & \text { weakly in } L^{2}(t-2, t ; D(A)), \\ \left(u^{n}\right)^{\prime} \rightharpoonup u^{\prime} & \text { weakly in } L^{2}(t-2, t ; H), \\ u^{n} \rightarrow u & \text { strongly in } L^{2}(t-2, t ; V), \\ u^{n}(s) \rightarrow u(s) & \text { strongly in } V, \text { a.e. } s \in(t-2, t)\end{cases}
$$

From above $u \in C([t-2, t] ; V)$ and u satisfies the eqn in $(t-2, t)$.
$\left\{u^{n}\right\}$ is equi-continuous in H, on $[t-2, t]$. Since $\left\{u^{n}\right\}$ is bounded in $C([t-2, t] ; V)$, by $V \subset \subset H+$ Ascoli-Arzelà Th.,

Lemma (Asymptotic compactness in V norm)
The process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$ is pullback $\mathcal{D}_{\mu}^{H, V}-$ asymptotically compact.

Sketch of the proof:

$$
\begin{cases}u^{n} \stackrel{*}{\rightharpoonup} u & \text { weak-star in } L^{\infty}(t-2, t ; V), \\ u^{n} \rightharpoonup u & \text { weakly in } L^{2}(t-2, t ; D(A)), \\ \left(u^{n}\right)^{\prime} \rightharpoonup u^{\prime} & \text { weakly in } L^{2}(t-2, t ; H), \\ u^{n} \rightarrow u & \text { strongly in } L^{2}(t-2, t ; V) \\ u^{n}(s) \rightarrow u(s) & \text { strongly in } V, \text { a.e. } s \in(t-2, t)\end{cases}
$$

From above $u \in C([t-2, t] ; V)$ and u satisfies the eqn in $(t-2, t)$.
$\left\{u^{n}\right\}$ is equi-continuous in H, on $[t-2, t]$. Since $\left\{u^{n}\right\}$ is bounded in $C([t-2, t] ; V)$, by $V \subset \subset H+$ Ascoli-Arzelà Th., \exists subseq.

$$
u^{n} \rightarrow u \quad \text { strongly in } \quad C([t-2, t] ; H)
$$

For all sequence $\left\{s_{n}\right\} \subset[t-2, t]$ with $s_{n} \rightarrow s_{*}$, it holds that

$$
u^{n}\left(s_{n}\right) \rightharpoonup u\left(s_{*}\right) \quad \text { weakly in } V
$$

Claim:

$$
u^{n} \rightarrow u \quad \text { strongly in } C([t-1, t] ; V)
$$

If not, $\left\{t_{n}\right\} \subset[t-1, t], t_{n} \rightarrow t_{*} \geq t-1$

$$
\left\|u^{n}\left(t_{n}\right)-u\left(t_{*}\right)\right\| \geq \varepsilon \quad \forall n \geq 1
$$

For all sequence $\left\{s_{n}\right\} \subset[t-2, t]$ with $s_{n} \rightarrow s_{*}$, it holds that

$$
u^{n}\left(s_{n}\right) \rightharpoonup u\left(s_{*}\right) \quad \text { weakly in } V
$$

Claim:

$$
u^{n} \rightarrow u \quad \text { strongly in } C([t-1, t] ; V)
$$

If not, $\left\{t_{n}\right\} \subset[t-1, t], t_{n} \rightarrow t_{*} \geq t-1$

$$
\left\|u^{n}\left(t_{n}\right)-u\left(t_{*}\right)\right\| \geq \varepsilon \quad \forall n \geq 1
$$

$$
\left\|u\left(t_{*}\right)\right\| \leq \liminf _{n \rightarrow \infty}\left\|u^{n}\left(t_{n}\right)\right\|
$$

for all $t-2 \leq s_{1} \leq s_{2} \leq t$

$$
\begin{aligned}
& \left\|u^{n}\left(s_{2}\right)\right\|^{2}+\nu \int_{s_{1}}^{s_{2}}\left|A u^{n}(r)\right|^{2} d r \\
\leq & \left\|u^{n}\left(s_{1}\right)\right\|^{2}+2 C^{(\nu)} \int_{s_{1}}^{s_{2}}\left|u^{n}(r)\right|^{2}\left\|u^{n}(r)\right\|^{4} d r+\frac{2}{\nu} \int_{s_{1}}^{s_{2}}|f(r)|^{2} d r
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|u\left(s_{2}\right)\right\|^{2}+\nu \int_{s_{1}}^{s_{2}}|A u(r)|^{2} d r \\
\leq & \left\|u\left(s_{1}\right)\right\|^{2}+2 C^{(\nu)} \int_{s_{1}}^{s_{2}}|u(r)|^{2}\|u(r)\|^{4} d r+\frac{2}{\nu} \int_{s_{1}}^{s_{2}}|f(r)|^{2} d r .
\end{aligned}
$$

for all $t-2 \leq s_{1} \leq s_{2} \leq t$

$$
\begin{aligned}
& \left\|u^{n}\left(s_{2}\right)\right\|^{2}+\nu \int_{s_{1}}^{s_{2}}\left|A u^{n}(r)\right|^{2} d r \\
\leq & \left\|u^{n}\left(s_{1}\right)\right\|^{2}+2 C^{(\nu)} \int_{s_{1}}^{s_{2}}\left|u^{n}(r)\right|^{2}\left\|u^{n}(r)\right\|^{4} d r+\frac{2}{\nu} \int_{s_{1}}^{s_{2}}|f(r)|^{2} d r
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|u\left(s_{2}\right)\right\|^{2}+\nu \int_{s_{1}}^{s_{2}}|A u(r)|^{2} d r \\
\leq & \left\|u\left(s_{1}\right)\right\|^{2}+2 C^{(\nu)} \int_{s_{1}}^{s_{2}}|u(r)|^{2}\|u(r)\|^{4} d r+\frac{2}{\nu} \int_{s_{1}}^{s_{2}}|f(r)|^{2} d r .
\end{aligned}
$$

In particular we can define the functions

$$
\begin{aligned}
J_{n}(s) & =\left\|u^{n}(s)\right\|^{2}-2 C^{(\nu)} \int_{t-2}^{s}\left|u^{n}(r)\right|^{2}\left\|u^{n}(r)\right\|^{4} d r-\frac{2}{\nu} \int_{t-2}^{s}|f(r)|^{2} d r \\
J(s) & =\|u(s)\|^{2}-2 C^{(\nu)} \int_{t-2}^{s}|u(r)|^{2}\|u(r)\|^{4} d r-\frac{2}{\nu} \int_{t-2}^{s}|f(r)|^{2} d r
\end{aligned}
$$

$$
J_{n}(s) \rightarrow J(s) \quad \text { a.e. } s \in(t-2, t) .
$$

$$
J_{n}(s) \rightarrow J(s) \quad \text { a.e. } s \in(t-2, t) .
$$

$\exists\left\{\tilde{t}_{k}\right\} \subset\left(t-2, t_{*}\right)$ such that $\tilde{t}_{k} \rightarrow t_{*}$, and

$$
\lim _{n \rightarrow+\infty} J_{n}\left(\tilde{t}_{k}\right)=J\left(\tilde{t}_{k}\right) \quad \text { for all } k .
$$

$$
J_{n}(s) \rightarrow J(s) \quad \text { a.e. } s \in(t-2, t) .
$$

$\exists\left\{\tilde{t}_{k}\right\} \subset\left(t-2, t_{*}\right)$ such that $\tilde{t}_{k} \rightarrow t_{*}$, and

$$
\lim _{n \rightarrow+\infty} J_{n}\left(\tilde{t}_{k}\right)=J\left(\tilde{t}_{k}\right) \quad \text { for all } k .
$$

J_{n} are non-increasing, so

$$
\begin{aligned}
J_{n}\left(t_{n}\right)-J\left(t_{*}\right) & \leq J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right) \\
& \leq\left|J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right)\right| \\
& \leq\left|J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(\tilde{t}_{k_{\delta}}\right)\right|+\left|J\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right)\right|<\delta .
\end{aligned}
$$

$$
J_{n}(s) \rightarrow J(s) \quad \text { a.e. } s \in(t-2, t) .
$$

$\exists\left\{\tilde{t}_{k}\right\} \subset\left(t-2, t_{*}\right)$ such that $\tilde{t}_{k} \rightarrow t_{*}$, and

$$
\lim _{n \rightarrow+\infty} J_{n}\left(\tilde{t}_{k}\right)=J\left(\tilde{t}_{k}\right) \quad \text { for all } k
$$

J_{n} are non-increasing, so

$$
\begin{aligned}
J_{n}\left(t_{n}\right)-J\left(t_{*}\right) & \leq J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right) \\
& \leq\left|J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right)\right| \\
& \leq\left|J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(\tilde{t}_{k_{\delta}}\right)\right|+\left|J\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right)\right|<\delta .
\end{aligned}
$$

This yields that

$$
\lim \sup J_{n}\left(t_{n}\right) \leq J\left(t_{*}\right),
$$

$$
n \rightarrow \infty
$$

$$
J_{n}(s) \rightarrow J(s) \quad \text { a.e. } s \in(t-2, t)
$$

$\exists\left\{\tilde{t}_{k}\right\} \subset\left(t-2, t_{*}\right)$ such that $\tilde{t}_{k} \rightarrow t_{*}$, and

$$
\lim _{n \rightarrow+\infty} J_{n}\left(\tilde{t}_{k}\right)=J\left(\tilde{t}_{k}\right) \quad \text { for all } k
$$

J_{n} are non-increasing, so

$$
\begin{aligned}
J_{n}\left(t_{n}\right)-J\left(t_{*}\right) & \leq J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right) \\
& \leq\left|J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right)\right| \\
& \leq\left|J_{n}\left(\tilde{t}_{k_{\delta}}\right)-J\left(\tilde{t}_{k_{\delta}}\right)\right|+\left|J\left(\tilde{t}_{k_{\delta}}\right)-J\left(t_{*}\right)\right|<\delta .
\end{aligned}
$$

This yields that

$$
\limsup J_{n}\left(t_{n}\right) \leq J\left(t_{*}\right),
$$

$$
n \rightarrow \infty
$$

and therefore,

$$
\limsup _{n \rightarrow \infty}\left\|u^{n}\left(t_{n}\right)\right\| \leq\left\|u\left(t_{*}\right)\right\| .
$$

Thus, $u^{n}\left(t_{n}\right) \rightarrow u\left(t_{*}\right)$ strongly in V.

Theorem

There exist the minimal pullback \mathcal{D}_{F}^{V}-attractor

$$
\mathcal{A}_{\mathcal{D}_{F}^{v}}=\left\{\mathcal{A}_{\mathcal{D}_{F}^{v}}(t): t \in \mathbb{R}\right\},
$$

and the minimal pullback $\mathcal{D}_{\mu}^{H, V}$-attractor

$$
\mathcal{A}_{\mathcal{D}_{\mu}^{H}, v}=\left\{\mathcal{A}_{\mathcal{D}_{\mu}^{H}, v}(t): t \in \mathbb{R}\right\}
$$

for the process $U: \mathbb{R}_{d}^{2} \times V \rightarrow V$, and

$$
\mathcal{A}_{\mathcal{D}_{F}^{v}}(t) \subset \mathcal{A}_{\mathcal{D}_{F}^{H}}(t) \subset \mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H, v}}(t) \quad \text { for all } t \in \mathbb{R},
$$

In particular, the following pullback attraction result in V holds:
$\lim _{\tau \rightarrow-\infty} \operatorname{dist}_{v}\left(U(t, \tau) D(\tau), \mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)\right)=0 \quad$ for all $t \in \mathbb{R}$ and any $\widehat{D} \in \mathcal{D}_{\mu}^{H}$.

Finally, if moreover f satisfies

$$
\sup _{s \leq 0}\left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta}|f(\theta)|^{2} d \theta\right)<+\infty
$$

then (from $\left.\rho_{i}, i=1,2\right)$

$$
\mathcal{A}_{\mathcal{D}_{F}^{V}}(t)=\mathcal{A}_{\mathcal{D}_{F}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H}, v}(t) \quad \text { for all } t \in \mathbb{R},
$$

and for any bounded subset B of H

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}_{V}\left(U(t, \tau) B, \mathcal{A}_{\mathcal{D}_{F}^{H}}(t)\right)=0 \quad \text { for all } t \in \mathbb{R}
$$

Remark (Infinitely many bigger universes) If $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$ satisfies $\int_{-\infty}^{0} e^{\mu s}|f(s)|^{2} d s<+\infty$, then

$$
\int_{-\infty}^{0} e^{\sigma s}|f(s)|^{2} d s<+\infty, \quad \text { for all } \sigma \in\left(\mu, 2 \nu \lambda_{1}\right)
$$

Thus, for any $\sigma \in\left(\mu, 2 \nu \lambda_{1}\right), \exists \mathcal{D}_{\sigma}^{H}$-pullback attractor, $\mathcal{A}_{\mathcal{D}_{\sigma}^{H}}$.

Remark (Infinitely many bigger universes)

If $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$ satisfies $\int_{-\infty}^{0} e^{\mu s}|f(s)|^{2} d s<+\infty$, then

$$
\int_{-\infty}^{0} e^{\sigma s}|f(s)|^{2} d s<+\infty, \quad \text { for all } \sigma \in\left(\mu, 2 \nu \lambda_{1}\right)
$$

Thus, for any $\sigma \in\left(\mu, 2 \nu \lambda_{1}\right), \exists \mathcal{D}_{\sigma}^{H}$-pullback attractor, $\mathcal{A}_{\mathcal{D}_{\sigma}^{H}}$.
Since $\mathcal{D}_{\mu}^{H} \subset \mathcal{D}_{\sigma}^{H}$, by comparison, for any $t \in \mathbb{R}$,

$$
\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t) \subset \mathcal{A}_{\mathcal{D}_{\sigma}^{H}}(t) \quad \text { for all } \sigma \in\left(\mu, 2 \nu \lambda_{1}\right) .
$$

Moreover, if f satisfies $\sup _{s \leq 0}\left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta}|f(\theta)|^{2} d \theta\right)<+\infty$, then, comparing with the \mathcal{D}_{F}^{H} attractor,
$\mathcal{A}_{\mathcal{D}_{F}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\sigma}^{H}}(t) \quad$ for all $t \in \mathbb{R}$, and any $\sigma \in\left(\mu, 2 \nu \lambda_{1}\right)$.

Tempered behaviour of the pullback attractors

The pullback attractor $\mathcal{A}_{\mathcal{D}_{\mu}^{H}} \in \mathcal{D}_{\mu}^{H}$, i.e. one has that

$$
\lim _{t \rightarrow-\infty}\left(e^{\mu t} \sup _{v \in \mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)}|v|^{2}\right)=0 .
$$

Proposition
$f \in L_{\text {loc }}^{2}(\mathbb{R} ; H): \sup _{s \leq 0}\left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta}|f(\theta)|^{2} d \theta\right)<+\infty$,
$\widehat{D} \in \mathcal{D}_{\mu}^{H}$ invariant w.r.t. $U: D(t)=U(t, \tau) D(\tau)$ for all $\tau \leq t$.
Then,

$$
\lim _{t \rightarrow-\infty}\left(e^{\mu t} \sup _{v \in D(t)}\|v\|^{2}\right)=0
$$

Proposition (More a-priori + derivating eqn.)
$f \in W_{\text {loc }}^{1,2}(\mathbb{R} ; H): \int_{-\infty}^{0} e^{\mu s}|f(s)|^{2} d s<+\infty$, then for each $t \in \mathbb{R}$ and $\widehat{D} \in \mathcal{D}_{\mu}^{H}$ there exists $\tau_{1}(\widehat{D}, t)<t-3$ such that
$\left|A U(r, \tau) u_{\tau}\right|^{2} \leq \rho_{6}(t) \quad$ for all $r \in[t-1, t], \tau \leq \tau_{1}(\widehat{D}, t), u_{\tau} \in D(\tau)$,
where

$$
\rho_{6}(t)=\frac{4}{\nu^{2}}\left(\rho_{5}(t)+\max _{r \in[t-1, t]}|f(r)|^{2}\right)+\frac{2 C^{(\nu)}}{\nu} \rho_{1}(t) \rho_{2}(t)^{2},
$$

with $\rho_{5}(t)$ defined by

$$
\rho_{5}(t)=\left(\rho_{4}(t)+\frac{1}{\nu \lambda_{1}} \int_{t-2}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right) \exp \left(\frac{C_{1}^{2}}{\nu} \rho_{2}(t)\right)
$$

Proposition (Above result + estimating f)
$f \in W_{\text {loc }}^{1,2}(\mathbb{R} ; H): \quad \sup _{s \leq 0}\left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta}|f(\theta)|^{2} d \theta\right)<+\infty$,

$$
\lim _{t \rightarrow-\infty}\left(e^{\mu t} \int_{t-1}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right)=0, \quad \lim _{t \rightarrow-\infty}\left(e^{\mu t}|f(t)|^{2}\right)=0
$$

Then, for every invariant family $\widehat{D} \in \mathcal{D}_{\mu}^{H}$:

$$
\lim _{t \rightarrow-\infty}\left(e^{\mu t} \sup _{v \in D(t)}\|v\|_{\left(H^{2}(\Omega)\right)^{2}}^{2}\right)=0
$$

Proposition (Above result + estimating f)
$f \in W_{\text {loc }}^{1,2}(\mathbb{R} ; H): \quad \sup _{s \leq 0}\left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta}|f(\theta)|^{2} d \theta\right)<+\infty$,

$$
\lim _{t \rightarrow-\infty}\left(e^{\mu t} \int_{t-1}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right)=0, \quad \lim _{t \rightarrow-\infty}\left(e^{\mu t}|f(t)|^{2}\right)=0
$$

Then, for every invariant family $\widehat{D} \in \mathcal{D}_{\mu}^{H}$:

$$
\lim _{t \rightarrow-\infty}\left(e^{\mu t} \sup _{v \in D(t)}\|v\|_{\left(H^{2}(\Omega)\right)^{2}}^{2}\right)=0
$$

Proof: $|f(r)| \leq|f(t-1)|+\left(\int_{t-1}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right)^{1 / 2} \forall r \in[t-1, t]$.

Flattening property: shorter proof of asymp.compact in V
A splitting of the solutions into high and low components
A very common technique in the study of the qualitative behaviour of solutions for PDE problems (long-time dynamics):

Flattening property: shorter proof of asymp.compact in V

A splitting of the solutions into high and low components
A very common technique in the study of the qualitative behaviour of solutions for PDE problems (long-time dynamics):

- In the construction of invariant manifolds:
- S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations 74 (1988), 285-317.
- D. Henry, " Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathe- matics 840, Springer-Verlag, Berlin-New York, 1981.

Flattening property: shorter proof of asymp.compact in V

A splitting of the solutions into high and low components
A very common technique in the study of the qualitative behaviour of solutions for PDE problems (long-time dynamics):

- In the construction of invariant manifolds:
- S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations 74 (1988), 285-317.
- D. Henry, " Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathe- matics 840, Springer-Verlag, Berlin-New York, 1981.
- Inertial manifolds:
- C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), 309-353.
- S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl. 169 (1992), 283-312.
- The squeezing property:
- C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, RAIRO Modl. Math. Anal. Numr. 22 (1988), 93-118.
- R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
- The squeezing property:
- C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, RAIRO Modl. Math. Anal. Numr. 22 (1988), 93-118.
- R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
- Determining modes:
- C. Foias, O. P. Manley, R. Temam and Y. M. Trve, Asymptotic analysis of the Navier-Stokes equations, Phys. D 9 (1983), 157-188.
- D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier?Stokes equations, Indiana Univ. Math. J. 42 (1993), 875-887.
- Existence of attractors
- 'Condition (C)' Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J. 51 (2002), 1541-1559.
- Existence of attractors
- 'Condition (C)' Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J. 51 (2002), 1541-1559.
- 'Flattening property' P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), 163-181.
- Existence of attractors
- 'Condition (C)' Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J. 51 (2002), 1541-1559.
- 'Flattening property' P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), 163-181.

Definition (Pullback \widehat{D}_{0}-flattening property)

U satisfies the pullback \widehat{D}_{0}-flattening property if for any $t \in \mathbb{R}$ and $\varepsilon>0$, there exist $\tau_{\varepsilon}<t$, a finite dimensional subspace X_{ε} of X, and a mapping $P_{\varepsilon}: X \rightarrow X_{\varepsilon}$ such that

$$
\begin{gathered}
\bigcup_{\tau \leq \tau_{\varepsilon}} P_{\varepsilon} U(t, \tau) D_{0}(\tau) \text { is bounded in } X \\
\left\|\left(I d_{X}-P_{\varepsilon}\right) U(t, \tau) u^{\tau}\right\| x<\varepsilon \quad \text { for any } \tau \leq \tau_{\varepsilon}, u^{\tau} \in D_{0}(\tau)
\end{gathered}
$$

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Proof. Fix $k \geq 1$ (integer), $\exists P_{k}: X \rightarrow X_{k}$ (fin.dim.subspace of X)
$\left\{P_{k} U\left(t, \tau_{n}\right) x_{n}\right\}_{n \geq N_{k}}$ bounded in X_{k} (therefore relatively compact)

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Proof. Fix $k \geq 1$ (integer), $\exists P_{k}: X \rightarrow X_{k}$ (fin.dim.subspace of X) $\left\{P_{k} U\left(t, \tau_{n}\right) x_{n}\right\}_{n \geq N_{k}}$ bounded in X_{k} (therefore relatively compact) $\left\|\left(I-P_{k}\right) U\left(t, \tau_{n}\right) x_{n}\right\|_{x} \leq 1 /(3 k)$ for all $n \geq N_{k}$.

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Proof. Fix $k \geq 1$ (integer), $\exists P_{k}: X \rightarrow X_{k}$ (fin.dim.subspace of X) $\left\{P_{k} U\left(t, \tau_{n}\right) x_{n}\right\}_{n \geq N_{k}}$ bounded in X_{k} (therefore relatively compact) $\left\|\left(I-P_{k}\right) U\left(t, \tau_{n}\right) x_{n}\right\|_{x} \leq 1 /(3 k)$ for all $n \geq N_{k}$.

Thus, $\left\{P U x_{n}\right\} \subset \cup_{i=1}^{M} B X_{k}\left(P U x_{i}, 1 /(3 k)\right) \quad$ (reordering)

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Proof. Fix $k \geq 1$ (integer), $\exists P_{k}: X \rightarrow X_{k}$ (fin.dim.subspace of X)
$\left\{P_{k} U\left(t, \tau_{n}\right) x_{n}\right\}_{n \geq N_{k}}$ bounded in X_{k} (therefore relatively compact) $\left\|\left(I-P_{k}\right) U\left(t, \tau_{n}\right) x_{n}\right\|_{x} \leq 1 /(3 k)$ for all $n \geq N_{k}$.

Thus, $\left\{P U x_{n}\right\} \subset \cup_{i=1}^{M} B_{X_{k}}\left(P U x_{i}, 1 /(3 k)\right) \quad$ (reordering)
$\Rightarrow\left\|U x_{n}-U x_{i}\right\| \leq\left\|P U x_{n}-P U x_{i}\right\|+\left\|Q U x_{n}\right\|+\left\|Q U x_{i}\right\| \leq 1 / k$

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Proof. Fix $k \geq 1$ (integer), $\exists P_{k}: X \rightarrow X_{k}$ (fin.dim.subspace of X) $\left\{P_{k} U\left(t, \tau_{n}\right) x_{n}\right\}_{n \geq N_{k}}$ bounded in X_{k} (therefore relatively compact) $\left\|\left(I-P_{k}\right) U\left(t, \tau_{n}\right) x_{n}\right\|_{x} \leq 1 /(3 k)$ for all $n \geq N_{k}$.

Thus, $\left\{P U x_{n}\right\} \subset \cup_{i=1}^{M} B_{X_{k}}\left(P U x_{i}, 1 /(3 k)\right) \quad$ (reordering)
$\Rightarrow\left\|U x_{n}-U x_{i}\right\| \leq\left\|P U x_{n}-P U x_{i}\right\|+\left\|Q U x_{n}\right\|+\left\|Q U x_{i}\right\| \leq 1 / k$
$\left\{U x_{n}\right\} \subset \cup_{i=1}^{M} B_{X}\left(U x_{i}, 1 / k\right)$ (get a ball with infinite elements)

Pullback \widehat{D}_{0}-flattening \Rightarrow pullback \widehat{D}_{0}-asymptotic compact

Proposition (Flattening implies asymp.compact)
$t \in \mathbb{R}$, sequences $(t \geq) \tau_{n} \rightarrow-\infty, x_{n} \in D_{0}\left(\tau_{n}\right)$. Then
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ is relatively compact in X (Banach space).

Proof. Fix $k \geq 1$ (integer), $\exists P_{k}: X \rightarrow X_{k}$ (fin.dim.subspace of X) $\left\{P_{k} U\left(t, \tau_{n}\right) x_{n}\right\}_{n \geq N_{k}}$ bounded in X_{k} (therefore relatively compact) $\left\|\left(I-P_{k}\right) U\left(t, \tau_{n}\right) x_{n}\right\|_{x} \leq 1 /(3 k)$ for all $n \geq N_{k}$.

Thus, $\left\{P U x_{n}\right\} \subset \cup_{i=1}^{M} B_{X_{k}}\left(P U x_{i}, 1 /(3 k)\right) \quad$ (reordering)
$\Rightarrow\left\|U x_{n}-U x_{i}\right\| \leq\left\|P U x_{n}-P U x_{i}\right\|+\left\|Q U x_{n}\right\|+\left\|Q U x_{i}\right\| \leq 1 / k$
$\left\{U x_{n}\right\} \subset \cup_{i=1}^{M} B_{X}\left(U x_{i}, 1 / k\right)$ (get a ball with infinite elements)
$\left\{U\left(t, \tau_{n}\right) x_{n}: n \geq 1\right\}$ possesses a Cauchy subseq. in X (Banach)

If $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$ satisfies $\int_{-\infty}^{0} e^{\mu s}|f(s)|^{2} d s<\infty$ for some $\mu \in\left(0,2 \nu \lambda_{1}\right)$, then, for any $t \in \mathbb{R}$,

$$
\lim _{\rho \rightarrow \infty} e^{-\rho t} \int_{-\infty}^{t} e^{\rho s}|f(s)|^{2} d s=0
$$

Proposition

For any $\varepsilon>0$ and $t \in \mathbb{R}$, there exists $m=m(\varepsilon, t) \in \mathbb{N}$ such that for any $\widehat{D} \in \mathcal{D}_{\mu}^{H}$, the projection $P_{m}: V \rightarrow V_{m}:=\operatorname{span}\left[w_{1}, \ldots, w_{m}\right]$ satisfies the following properties:

$$
\left\{P_{m} U(t, \tau) D(\tau): \tau \leq \tau_{1}(\widehat{D}, t)\right\} \text { is bounded in } V
$$

and

$$
\left\|\left(I-P_{m}\right) U(t, \tau) u_{\tau}\right\|<\varepsilon \quad \text { for any } \tau \leq \tau_{1}(\widehat{D}, t), u_{\tau} \in D(\tau)
$$

Proof: Recall the strong estimates we had...
$\forall t \in \mathbb{R}, \widehat{D} \in \mathcal{D}_{\mu}^{H}, \exists \tau_{1}(\widehat{D}, t)<t-2$ s. t. $\forall \tau \leq \tau_{1}(\widehat{D}, t), u_{\tau} \in D(\tau)$

$$
\begin{aligned}
\left|u\left(r ; \tau, u_{\tau}\right)\right|^{2} & \leq R_{1}^{2}(t) \quad \forall r \in[t-2, t], \\
\left\|u\left(r ; \tau, u_{\tau}\right)\right\|^{2} & \leq R_{2}^{2}(t) \quad \forall r \in[t-1, t], \\
\nu \int_{t-1}^{t}\left|A u\left(\theta ; \tau, u_{\tau}\right)\right|^{2} d \theta & \leq R_{3}^{2}(t),
\end{aligned}
$$

$\forall t \in \mathbb{R}, \widehat{D} \in \mathcal{D}_{\mu}^{H}, \exists \tau_{1}(\widehat{D}, t)<t-2$ s. t. $\forall \tau \leq \tau_{1}(\widehat{D}, t), u_{\tau} \in D(\tau)$

$$
\begin{aligned}
\left|u\left(r ; \tau, u_{\tau}\right)\right|^{2} & \leq R_{1}^{2}(t) \quad \forall r \in[t-2, t], \\
\left\|u\left(r ; \tau, u_{\tau}\right)\right\|^{2} & \leq R_{2}^{2}(t) \quad \forall r \in[t-1, t], \\
\nu \int_{t-1}^{t}\left|A u\left(\theta ; \tau, u_{\tau}\right)\right|^{2} d \theta & \leq R_{3}^{2}(t),
\end{aligned}
$$

where

$$
\begin{aligned}
R_{1}^{2}(t)= & 1+e^{-\mu(t-2)}\left(2 \nu \lambda_{1}-\mu\right)^{-1} \int_{-\infty}^{t} e^{\mu \theta}|f(\theta)|^{2} d \theta, \\
R_{2}^{2}(t)= & \nu^{-1}\left(R_{1}^{2}(t)+\left(\nu^{-1} \lambda_{1}^{-1}+2\right) \int_{t-2}^{t}|f(\theta)|^{2} d \theta\right) \\
& \times \exp \left[2 \nu^{-1} C^{(\nu)} R_{1}^{2}(t)\left(R_{1}^{2}(t)+\nu^{-1} \lambda_{1}^{-1} \int_{t-2}^{t}|f(\theta)|^{2} d \theta\right)\right],
\end{aligned}
$$

$$
R_{3}^{2}(t)=R_{2}^{2}(t)+2 \nu^{-1} \int_{t-1}^{t}|f(\theta)|^{2} d \theta+2 C^{(\nu)} R_{1}^{2}(t) R_{2}^{4}(t) .
$$

$\left\{w_{j}\right\}_{j \geq 1}$ special basis $\Rightarrow P_{m}$ non-expansive in V
$\Rightarrow\left\{P_{m} U(t, \tau) D(\tau): \tau \leq \tau_{1}(\widehat{D}, t)\right\}$ bounded in $V \forall m \geq 1$.
$\left\{w_{j}\right\}_{j \geq 1}$ special basis $\Rightarrow P_{m}$ non-expansive in V
$\Rightarrow\left\{P_{m} U(t, \tau) D(\tau): \tau \leq \tau_{1}(\widehat{D}, t)\right\}$ bounded in $V \forall m \geq 1$.
$q_{m}(r)=u(r)-P_{m} u(r) \quad$ and the second energy equality
$\frac{1}{2} \frac{d}{d r}\left\|q_{m}(r)\right\|^{2}+\nu\left|A q_{m}(r)\right|^{2}=-b\left(u(r), u(r), A q_{m}(r)\right)+\left(f(r), A q_{m}(r)\right)$
$\leq \frac{\nu}{2}\left|A q_{m}(r)\right|^{2}+\frac{1}{\nu}|f(r)|^{2}+\frac{C_{1}^{2}}{\nu} R_{1}(t) R_{2}^{2}(t)|A u(r)|$ a.e. $t-1<r<t$.
$\left\{w_{j}\right\}_{j \geq 1}$ special basis $\Rightarrow P_{m}$ non-expansive in V
$\Rightarrow\left\{P_{m} U(t, \tau) D(\tau): \tau \leq \tau_{1}(\widehat{D}, t)\right\}$ bounded in $V \forall m \geq 1$.
$q_{m}(r)=u(r)-P_{m} u(r) \quad$ and the second energy equality
$\frac{1}{2} \frac{d}{d r}\left\|q_{m}(r)\right\|^{2}+\nu\left|A q_{m}(r)\right|^{2}=-b\left(u(r), u(r), A q_{m}(r)\right)+\left(f(r), A q_{m}(r)\right)$
$\leq \frac{\nu}{2}\left|A q_{m}(r)\right|^{2}+\frac{1}{\nu}|f(r)|^{2}+\frac{C_{1}^{2}}{\nu} R_{1}(t) R_{2}^{2}(t)|A u(r)|$ a.e. $t-1<r<t$.
$\left|A q_{m}(r)\right|^{2} \geq \lambda_{m+1}\left\|q_{m}(r)\right\|^{2}$, implies that (a.e. $t-1<r<t$)
$\frac{d}{d r}\left\|q_{m}(r)\right\|^{2}+\nu \lambda_{m+1}\left\|q_{m}(r)\right\|^{2} \leq 2 \nu^{-1}|f(r)|^{2}+2 C_{1}^{2} \nu^{-1} R_{1}(t) R_{2}^{2}(t)|A u(r)|$

Multiplying by $e^{\nu \lambda_{m+1} r}$, integrating from $t-1$ to t,

Multiplying by $e^{\nu \lambda_{m+1} r}$, integrating from $t-1$ to t,

$$
\begin{aligned}
& e^{\nu \lambda_{m+1} t}\left\|q_{m}(t)\right\|^{2} \\
\leq & e^{\nu \lambda_{m+1}(t-1)}\left\|q_{m}(t-1)\right\|^{2}+2 \nu^{-1} \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|f(r)|^{2} d r \\
& +2 C_{1}^{2} \nu^{-1} R_{1}(t) R_{2}^{2}(t) \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|A u(r)| d r \\
\leq & e^{\nu \lambda_{m+1}(t-1)}\|u(t-1)\|^{2}+2 \nu^{-1} \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|f(r)|^{2} d r \\
& +2 C_{1}^{2} \nu^{-1} R_{1}(t) R_{2}^{2}(t)\left(\int_{t-1}^{t} e^{2 \nu \lambda_{m+1} r} d r\right)^{1 / 2}\left(\int_{t-1}^{t}|A u(r)|^{2} d r\right)^{1 / 2} \\
\leq & e^{\nu \lambda_{m+1}(t-1)} R_{2}^{2}(t)+2 \nu^{-1} \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|f(r)|^{2} d r \\
& +2 C_{1}^{2} \nu^{-3 / 2} R_{1}(t) R_{2}^{2}(t) R_{3}(t)\left(2 \nu \lambda_{m+1}\right)^{-1 / 2} e^{\nu \lambda_{m+1} t} .
\end{aligned}
$$

Multiplying by $e^{\nu \lambda_{m+1} r}$, integrating from $t-1$ to t,

$$
\begin{aligned}
& e^{\nu \lambda_{m+1} t}\left\|q_{m}(t)\right\|^{2} \\
\leq & e^{\nu \lambda_{m+1}(t-1)}\left\|q_{m}(t-1)\right\|^{2}+2 \nu^{-1} \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|f(r)|^{2} d r \\
& +2 C_{1}^{2} \nu^{-1} R_{1}(t) R_{2}^{2}(t) \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|A u(r)| d r \\
\leq & e^{\nu \lambda_{m+1}(t-1)}\|u(t-1)\|^{2}+2 \nu^{-1} \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|f(r)|^{2} d r \\
& +2 C_{1}^{2} \nu^{-1} R_{1}(t) R_{2}^{2}(t)\left(\int_{t-1}^{t} e^{2 \nu \lambda_{m+1} r} d r\right)^{1 / 2}\left(\int_{t-1}^{t}|A u(r)|^{2} d r\right)^{1 / 2} \\
\leq & e^{\nu \lambda_{m+1}(t-1)} R_{2}^{2}(t)+2 \nu^{-1} \int_{t-1}^{t} e^{\nu \lambda_{m+1} r}|f(r)|^{2} d r \\
& +2 C_{1}^{2} \nu^{-3 / 2} R_{1}(t) R_{2}^{2}(t) R_{3}(t)\left(2 \nu \lambda_{m+1}\right)^{-1 / 2} e^{\nu \lambda_{m+1} t} .
\end{aligned}
$$

Since $\lambda_{m} \rightarrow \infty$ as $m \rightarrow \infty, \exists m=m(\varepsilon, t) \in \mathbb{N}$ s.t. $\left\|\left(I-P_{m}\right) U(t, \tau) u_{\tau}\right\|<\varepsilon \forall \tau \leq \tau_{1}(\widehat{D}, t), u_{\tau} \in D(\tau)$.

Navier-Stokes eqns with delay terms

- T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2441-2453.
- T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), 3181-3194.
- T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations 205 (2004), 271-297.

The functional Navier-Stokes problem:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f(t)+g\left(t, u_{t}\right) \quad \text { in } \Omega \times(\tau, \infty) \\
\operatorname{div} u=0 \text { in } \Omega \times(\tau, \infty) \\
u=0 \text { on } \partial \Omega \times(\tau, \infty) \\
u(x, \tau)=u^{\tau}(x), \quad x \in \Omega \\
u(x, \tau+s)=\phi(x, s), \quad x \in \Omega, s \in(-h, 0)
\end{array}\right.
$$

u_{t} the function defined a.e. on $(-h, 0)$ by the relation $u_{t}(s)=u(t+s)$, a.e. $s \in(-h, 0)$.
$C_{H}=C([-h, 0] ; H)$ with norm $|\varphi|_{C_{H}}=\max _{s \in[-h, 0]}|\varphi(s)|$, $L_{X}^{2}=L^{2}(-h, 0 ; X)$ for $X=H, V$.
$g: \mathbb{R} \times C_{H} \rightarrow\left(L^{2}(\Omega)\right)^{2}$ satisfies
(I) $\forall \xi \in C_{H}, \mathbb{R} \ni t \mapsto g(t, \xi) \in\left(L^{2}(\Omega)\right)^{2}$ is measurable,
(II) $g(t, 0)=0$, for all $t \in \mathbb{R}$,
(III) $\exists L_{g}>0$ s.t. $\forall t \in \mathbb{R}, \xi, \eta \in C_{H}$,

$$
|g(t, \xi)-g(t, \eta)| \leq L_{g}|\xi-\eta| c_{H}
$$

(IV) $\exists C_{g}>0$ s.t. $\forall \tau \leq t, u, v \in C([\tau-h, t] ; H)$,

$$
\int_{\tau}^{t}\left|g\left(s, u_{s}\right)-g\left(s, v_{s}\right)\right|^{2} d s \leq C_{g}^{2} \int_{\tau-h}^{t}|u(s)-v(s)|^{2} d s
$$

Observe that $(I)-(I I I)$ imply that given $T>\tau$ and $u \in C([\tau-h, T] ; H)$, the function $g_{u}:[\tau, T] \rightarrow\left(L^{2}(\Omega)\right)^{2}$ defined by $g_{u}(t)=g\left(t, u_{t}\right)$ for all $t \in[\tau, T]$, is measurable and, in fact, belongs to $L^{\infty}\left(\tau, T ;\left(L^{2}(\Omega)\right)^{2}\right)$.

Observe that $(I)-(I I I)$ imply that given $T>\tau$ and $u \in C([\tau-h, T] ; H)$, the function $g_{u}:[\tau, T] \rightarrow\left(L^{2}(\Omega)\right)^{2}$ defined by $g_{u}(t)=g\left(t, u_{t}\right)$ for all $t \in[\tau, T]$, is measurable and, in fact, belongs to $L^{\infty}\left(\tau, T ;\left(L^{2}(\Omega)\right)^{2}\right)$.

Then, thanks to (IV), the mapping

$$
\mathcal{G}: u \in C([\tau-h, T] ; H) \rightarrow g_{u} \in L^{2}\left(\tau, T ;\left(L^{2}(\Omega)\right)^{2}\right)
$$

has a unique extension to a mapping $\widetilde{\mathcal{G}}$ which is uniformly continuous from $L^{2}(\tau-h, T ; H)$ into $L^{2}\left(\tau, T ;\left(L^{2}(\Omega)\right)^{2}\right)$. From now on, we will denote $g\left(t, u_{t}\right)=\widetilde{\mathcal{G}}(u)(t)$ for each $u \in L^{2}(\tau-h, T ; H)$, and thus property (IV) will also hold for all u, $v \in L^{2}(\tau-h, T ; H)$.

Definition

A weak solution $u \in L^{2}(\tau-h, T ; H) \cap L^{2}(\tau, T ; V) \cap L^{\infty}(\tau, T ; H)$ for all $T>\tau$, with $u(\tau)=u^{\tau}, u(t)=\phi(t-\tau)$ a.e.
$t \in(\tau-h, \tau)$,

Definition

A weak solution $u \in L^{2}(\tau-h, T ; H) \cap L^{2}(\tau, T ; V) \cap L^{\infty}(\tau, T ; H)$ for all $T>\tau$, with $u(\tau)=u^{\tau}, u(t)=\phi(t-\tau)$ a.e.
$t \in(\tau-h, \tau)$, and $\forall v \in V$, it holds (in $\mathcal{D}^{\prime}(\tau, \infty)$)
$\frac{d}{d t}(u(t), v)+\nu\langle A u(t), v\rangle+b(u(t), u(t), v)=\langle f(t), v\rangle+\left(g\left(t, u_{t}\right), v\right)$.

Remark
u weak solution, then $u^{\prime} \in L^{2}\left(\tau, T ; V^{\prime}\right)$, so $u \in C([\tau, \infty) ; H)$.
Energy equality:
$|u(t)|^{2}+2 \nu \int_{s}^{t}\|u(r)\|^{2} d r=|u(s)|^{2}+2 \int_{s}^{t}\left[\langle f(r), u(r)\rangle+\left(g\left(r, u_{r}\right), u(r)\right)\right] d r$
for all $\tau \leq s \leq t$.

Definition

A strong solution is a weak solution u such that $u \in L^{2}(\tau, T ; D(A)) \cap L^{\infty}(\tau, T ; V)$ for all $T>\tau$.

Remark
If $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ;\left(L^{2}(\Omega)\right)^{2}\right)$ and u is a strong solution, then
$u^{\prime} \in L^{2}(\tau, T ; H)$ for all $T>\tau$, and so $u \in C([\tau, \infty) ; V)$.
Second energy equality:

$$
\begin{aligned}
& \|u(t)\|^{2}+2 \nu \int_{s}^{t}|A u(r)|^{2} d r+2 \int_{s}^{t} b(u(r), u(r), A u(r)) d r \\
= & \|u(s)\|^{2}+2 \int_{s}^{t}\left(f(r)+g\left(r, u_{r}\right), A u(r)\right) d r \quad \forall \tau \leq s \leq t
\end{aligned}
$$

Theorem
Let us consider $u^{\tau} \in H, \phi \in L_{H}^{2}, f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$, and $g: \mathbb{R} \times C_{H} \rightarrow\left(L^{2}(\Omega)\right)^{2}$ satisfying (I)-(IV).

Then, for each $\tau \in \mathbb{R}$, there exists a unique weak solution u.
Moreover, if $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ;\left(L^{2}(\Omega)\right)^{2}\right)$, then
(a) $u \in C([\tau+\varepsilon, T] ; V) \cap L^{2}(\tau+\varepsilon, T ; D(A))$ for all $T>\tau+\varepsilon>\tau$.
(b) If $u^{\tau} \in V, u$ is in fact a strong solution.

We may consider the Banach space C_{H}, and the Hilbert space $M_{H}^{2}=H \times L_{H}^{2}$ with associated norm

$$
\left\|\left(u^{\tau}, \phi\right)\right\|_{M_{H}^{2}}^{2}=\left|u^{\tau}\right|^{2}+\int_{-h}^{0}|\phi(s)|^{2} d s \quad \text { for }\left(u^{\tau}, \phi\right) \in M_{H}^{2} .
$$

A fifth assumption on g and f for asymptotic estimates:
(V) Assume that $\nu \lambda_{1}>C_{g}$, and $\exists \eta \in\left(0,2\left(\nu \lambda_{1}-C_{g}\right)\right)$ s.t. for any $u \in L^{2}(\tau-h, t ; H)$,

$$
\begin{aligned}
& \int_{\tau}^{t} e^{\eta s}\left|g\left(s, u_{s}\right)\right|^{2} d s \leq C_{g}^{2} \int_{\tau-h}^{t} e^{\eta s}|u(s)|^{2} d s \quad \forall \tau \leq t \\
& \int_{-\infty}^{0} e^{\eta s}\|f(s)\|_{*}^{2} d s<\infty
\end{aligned}
$$

Definition

For any $\eta>0$, we will denote by $\mathcal{D}_{\eta}\left(C_{H}\right)$ the class of all families of nonempty subsets $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}\left(C_{H}\right)$ such that

$$
\lim _{\tau \rightarrow-\infty}\left(e^{\eta \tau} \sup _{\varphi \in D(\tau)}|\varphi|_{C_{H}}^{2}\right)=0
$$

Analogously, we will denote by $\mathcal{D}_{\eta}\left(M_{H}^{2}\right)$ the class of all families of nonempty subsets $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}\left(M_{H}^{2}\right)$ such that

$$
\lim _{\tau \rightarrow-\infty}\left(e^{\eta \tau} \sup _{(w, \varphi) \in D(\tau)}\|(w, \varphi)\|_{M_{H}^{2}}^{2}\right)=0
$$

Theorem
$f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $g: \mathbb{R} \times C_{H} \rightarrow\left(L^{2}(\Omega)\right)^{2}$ satisfy $(I)-(V)$.
Then, $\exists\left\{\mathcal{A}_{\mathcal{D}_{F}\left(C_{H}\right)}(t)\right\}_{t \in \mathbb{R}},\left\{\mathcal{A}_{\mathcal{D}_{\eta}\left(C_{H}\right)}(t)\right\}_{t \in \mathbb{R}},\left\{\mathcal{A}_{\mathcal{D}_{F}\left(M_{H}^{2}\right)}(t)\right\}_{t \in \mathbb{R}}$, and $\left\{\mathcal{A}_{\mathcal{D}_{\eta}\left(M_{H}^{2}\right)}(t)\right\}_{t \in \mathbb{R}}$, in C_{H} and M_{H}^{2} respectively.

Theorem
$f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $g: \mathbb{R} \times C_{H} \rightarrow\left(L^{2}(\Omega)\right)^{2}$ satisfy $(I)-(V)$.
Then, $\exists\left\{\mathcal{A}_{\mathcal{D}_{F}\left(C_{H}\right)}(t)\right\}_{t \in \mathbb{R}},\left\{\mathcal{A}_{\mathcal{D}_{\eta}\left(C_{H}\right)}(t)\right\}_{t \in \mathbb{R}},\left\{\mathcal{A}_{\mathcal{D}_{F}\left(M_{H}^{2}\right)}(t)\right\}_{t \in \mathbb{R}}$, and $\left\{\mathcal{A}_{\mathcal{D}_{\eta}\left(M_{H}^{2}\right)}(t)\right\}_{t \in \mathbb{R}}$, in C_{H} and M_{H}^{2} respectively.
$\mathcal{A}_{\mathcal{D}_{F}\left(C_{H}\right)}(t) \subset \mathcal{A}_{\mathcal{D}_{\eta}\left(C_{H}\right)}(t)$, and $\mathcal{A}_{\mathcal{D}_{F}\left(M_{H}^{2}\right)}(t) \subset \mathcal{A}_{\mathcal{D}_{\eta}\left(M_{H}^{2}\right)}(t) \forall t \in \mathbb{R}$,
$j\left(\mathcal{A}_{\mathcal{D}_{F}\left(C_{H}\right)}(t)\right) \subset \mathcal{A}_{\mathcal{D}_{F}\left(M_{H}^{2}\right)}(t) \quad \forall t \in \mathbb{R}, \quad$ and $j\left(\mathcal{A}_{\mathcal{D}_{\eta}\left(C_{H}\right)}(t)\right)=\mathcal{A}_{\mathcal{D}_{\eta}\left(M_{H}^{2}\right)}(t) \quad \forall t \in \mathbb{R}$,
[j the canonical injection of C_{H} into $M_{H}^{2}: j(\varphi)=(\varphi(0), \varphi)$.] If f also satisfies $\sup _{s \leq 0}\left(e^{-\eta s} \int_{-\infty}^{s} e^{\eta \theta}\|f(\theta)\|_{*}^{2} d \theta\right)<\infty$, the inclusions are in fact equalities.

A modification of Navier-Stokes eqns:

W. Liu, Discrete Contin. Dyn. Syst. Ser. B 2 (2002), 47-56.

A time-delayed term in the Burgers' equation was considered
G. Planas and E. Hernández, Discrete Contin. Dyn. Syst. Ser. B 21 (2008), 1245-1258.

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+(u(t-\rho(t)) \cdot \nabla) u+\nabla p=f(t)+g\left(t, u_{t}\right) \text { in } \Omega \times(\tau, \infty \\
\operatorname{div} u=0 \text { in } \Omega \times(\tau, \infty) \\
u=0 \text { on } \partial \Omega \times(\tau, \infty) \\
u(x, \tau)=u^{\tau}(x) \text { in } \Omega \\
u(x, \tau+s)=\phi(x, s) \text { in } \Omega \times(-h, 0),
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{2}, \quad \tau \in \mathbb{R}, h>0$
u_{t} denotes the delay function $u_{t}(s)=u(t+s)$
$\rho \in C^{1}(\mathbb{R} ;[0, h])$ with $\rho^{\prime}(t) \leq \rho^{*}<1 \forall t \in \mathbb{R}$.

Interesting features and goal:

("Small delays don't matter" ... unless in the nonlinearity)

- $u^{\prime} \in L^{4 / 3}\left(V^{\prime}\right)$ even in 2D
- Lack of uniqueness and more troubles for dynamical systems: see Ball (1997), Kapustyan \& Valero (2007), MR \& Robinson (2003)...
- Goal here: under slightly better conditions, uniqueness, and (pullback) attractors
- Remarkable fact: special type of (tempered) universes

TRILINEAR TERM AND WEAK SOLUTION:

$$
|b(u, v, w)| \leq C|u|^{1 / 2}\|u\|^{1 / 2}\|v\||w|^{1 / 2}\|w\|^{1 / 2} \quad \forall u, v, w \in V
$$

Suppose that $u^{\tau} \in H, \phi \in L_{V}^{2}$, and $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$.
Remark

$$
\begin{aligned}
& |b(u(t-\rho(t)), u(t), v)| \leq \widetilde{C}\|u(t-\rho(t))\|\|u(t)\|^{1 / 2}|u(t)|^{1 / 2}\|v\|, \forall v \in V \\
& \quad 1 / 2+1 / 4=3 / 4 \Rightarrow B(u(\cdot-\rho(\cdot)), u(\cdot)) \in L^{4 / 3}\left(\tau, T ; V^{\prime}\right) \\
& u^{\prime} \in L^{4 / 3}\left(\tau, T ; V^{\prime}\right) \Rightarrow \\
& u \in C\left([\tau, T] ; V^{\prime}\right) \text { and } \quad u \in C_{w}([\tau, T] ; H) \forall T>\tau \\
& \text { (whence initial datum } u^{\tau} \in H \text { meaningful). }
\end{aligned}
$$

Existence and uniqueness:

Theorem
(Existence of weak solution by compactness method) $u^{\tau} \in H$, $\phi \in L_{V}^{2}, f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$, and $g: \mathbb{R} \times C_{H} \rightarrow\left(L^{2}(\Omega)\right)^{2}$ satisfying assumptions (H1)-(H4). Then, there exists at least one weak solution $u\left(\cdot ; \tau, u^{\tau}, \phi\right)$.

Existence and uniqueness:

Theorem
(Existence of weak solution by compactness method) $u^{\tau} \in H$, $\phi \in L_{V}^{2}, f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$, and $g: \mathbb{R} \times C_{H} \rightarrow\left(L^{2}(\Omega)\right)^{2}$ satisfying assumptions (H1)-(H4). Then, there exists at least one weak solution $u\left(\cdot ; \tau, u^{\tau}, \phi\right)$.

Remark
(Uniqueness improving the initial data) $u^{\tau} \in H$ and $\phi \in L_{V}^{2} \cap L_{H}^{\infty}$.
Then

$$
\begin{aligned}
& \quad|b(u(t-\rho(t)), u(t), v)| \leq C|u(t-\rho(t))|^{1 / 2}\|u(t-\rho(t))\|^{1 / 2}\|v\| \\
& \quad \times|u(t)|^{1 / 2}\|u(t)\|^{1 / 2} \Rightarrow \\
& \begin{array}{l}
B(u(\cdot-\rho(\cdot)), u(\cdot)) \in L^{2}\left(\tau, T ; V^{\prime}\right) \text { for all } T>\tau \text {, and so } \\
u^{\prime} \in L^{2}\left(\tau, T ; V^{\prime}\right) \\
\Rightarrow \text { uniqueness }+ \text { energy equality }
\end{array}
\end{aligned}
$$

An appropriate concept of (tempered) universe

Definition
We will denote by $\mathcal{D}_{\eta}^{H, L_{H}^{2}}\left(H \times\left(L_{V}^{2} \cap L_{H}^{\infty}\right)\right)$ the class of all families of nonempty subsets $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}\left(H \times\left(L_{V}^{2} \cap L_{H}^{\infty}\right)\right)$
such that

$$
\lim _{\tau \rightarrow-\infty}\left(e^{\eta \tau} \sup _{(\zeta, \varphi) \in D(\tau)}\left(|\zeta|^{2}+\|\varphi\|_{L_{H}^{2}}^{2}\right)\right)=0
$$

Observe that the above definition does not make the most use of the natural norm of (ζ, φ) in $H \times\left(L_{V}^{2} \cap L_{H}^{\infty}\right)$, but just in $H \times L_{H}^{2}$.

Navier-Stokes-Voigt

$\Omega \subset \mathbb{R}^{3}$ bounded domain with smooth (e.g., C^{2}) $\partial \Omega$.

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(u-\alpha^{2} \Delta u\right)-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f(t) \text { in } \Omega \times(\tau, \infty) \\
\operatorname{div} u=0 \text { in } \Omega \times(\tau, \infty) \\
u=0 \text { on } \partial \Omega \times(\tau, \infty) \\
u(x, \tau)=u_{\tau}(x), \quad x \in \Omega
\end{array}\right.
$$

a length scale parameter $\alpha>0$, characterizing the elasticity of the fluid (in the sense that the ratio α^{2} / ν describes the reaction time that is required for the fluid to respond to the applied force)

Motivation NSV

-The Navier-Stokes-Voigt (NSV) model of viscoelastic incompresible fluid was introduced by Oskolkov [LOMI 1973] -gives an approximate description of the Kelvin-Voigt fluid, [Oskolkov, 1985]
-proposed as a regularization of the 3D-Navier-Stokes with purpose of direct numerical simulations [Cao, Lunasin, Titi, 2006]
-The extra regularizing term $-\alpha^{2} \Delta u_{t}$ changes the parabolic character of the equation, which makes it so that in 3D the problem is well-posed (forward and backward), but one does not observe any immediate smoothing of the solution
-the inviscid equation is the simplified Bardina subgrid scale model of turbulence (relation studied in [Cao, Lunasin, Titi, 2006] -global compact attractor and estimates on fractal and Hausdorff dim by Kalantarov and Titi [LOMI, 1988; J. Nonlinear Sci. 2009] -uniform attractors by Yue and Zhong [DCDS-B, 2011]

The autonomous equation $u+\alpha^{2} A u=g$

For $g \in V^{\prime}, \exists$! solution u_{g} (Lax-Milgram)
The mapping $\mathcal{C}: u \in V \mapsto u+\alpha^{2} A u \in V^{\prime}$ is linear and bijective. $\mathcal{C}^{-1}(H)=D(A)$
Definition
u is a weak solution if u belongs to $L^{2}(\tau, T ; V)$ for all $T>\tau$, and

$$
\begin{gathered}
\frac{d}{d t}\left(u(t)+\alpha^{2} A u(t)\right)+\nu A u(t)+B(u(t))=f(t), \quad \text { in } \mathcal{D}^{\prime}\left(\tau, \infty ; V^{\prime}\right), \\
u(\tau)=u_{\tau}
\end{gathered}
$$

Remark

If $u \in L^{2}(\tau, T ; V)$ for all $T>\tau$ and satisfies the eqn, then
$v(\cdot)=u(\cdot)+\alpha^{2} A u(\cdot) \in L^{2}\left(\tau, T ; V^{\prime}\right)$ and $v^{\prime}=\frac{d v}{d t} \in L^{1}\left(\tau, T ; V^{\prime}\right)$.
So, $v \in C\left([\tau, \infty) ; V^{\prime}\right)$, and $u \in C([\tau, \infty) ; V)$.
In particular, $u(\tau)=u_{\tau}$ has a sense.
Moreover, then, $v^{\prime} \in L^{2}\left(\tau, T ; V^{\prime}\right)$, and $u^{\prime} \in L^{2}(\tau, T ; V)$.
Thus, u is a weak solution iff $u \in C([\tau, \infty) ; V), u^{\prime} \in L^{2}(\tau, T ; V)$ for all $T>\tau$, and
$u(t)+\alpha^{2} A u(t)+\int_{\tau}^{t}(\nu A u(s)+B(u(s))) d s=u_{\tau}+\alpha^{2} A u_{\tau}+\int_{\tau}^{t} f(s) d s$.

Lemma
If u is a weak solution, then
$\frac{1}{2} \frac{d}{d t}\left(|u(t)|^{2}+\alpha^{2}\|u(t)\|^{2}\right)+\nu\|u(t)\|^{2}=\langle f(t), u(t)\rangle, \quad$ a.e. $t>\tau$.

Theorem
Let $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ be given. Then, for each $\tau \in \mathbb{R}$ and $u_{\tau} \in V$, there exists a unique weak solution.
Moreover, if $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$ and $u_{\tau} \in D(A)$, then

$$
u \in C([\tau, \infty) ; D(A)), \quad u^{\prime} \in L^{2}(\tau, T ; D(A)) \text { for all } T>\tau
$$

and
$\frac{1}{2} \frac{d}{d t}\left(\|u(t)\|^{2}+\alpha^{2}|A u(t)|^{2}\right)+\nu|A u(t)|^{2}+(B(u(t)), A u(t))=(f(t), A u(t))$,

Existence of minimal pullback attractors in V norm

Lemma
Assume that $f \in L_{l o c}^{2}\left(\mathbb{R} ; V^{\prime}\right)$ and $u_{\tau} \in V$. Then, for any

$$
\begin{gathered}
0<\sigma<2 \nu\left(\lambda_{1}^{-1}+\alpha^{2}\right)^{-1}, \\
\|u(t)\|^{2}+\varepsilon \alpha^{-2} \int_{\tau}^{t} e^{\sigma(s-t)}\|u(s)\|^{2} d s \\
\leq\left(1+\alpha^{-2} \lambda_{1}^{-1}\right) e^{\sigma(\tau-t)}\left\|u_{\tau}\right\|^{2}+\alpha^{-2} \varepsilon^{-1} \int_{\tau}^{t} e^{\sigma(s-t)}\|f(s)\|_{*}^{2} d s
\end{gathered}
$$

for all $t \geq \tau$, where $\varepsilon=\nu-\frac{\sigma}{2}\left(\lambda_{1}^{-1}+\alpha^{2}\right)$.
Definition
For $\sigma \in\left(0,2 \nu\left(\lambda_{1}^{-1}+\alpha^{2}\right)^{-1}\right)$ s.t. $\int_{-\infty}^{0} \mathrm{e}^{\sigma s}\|f(s)\|_{*}^{2} d s<\infty$, we will denote by \mathcal{D}_{σ}^{V} the class of all families of nonempty subsets $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}(V)$ s.t. $\lim _{\tau \rightarrow-\infty}\left(e^{\sigma \tau} \sup _{v \in D(\tau)}\|v\|^{2}\right)=0$.

Attraction in $D(A)$ norm

Lemma
Assume that $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$ s.t. $\sup _{r \leq 0} \int_{r-1}^{r}\|f(s)\|_{*}^{2} d s$. Then, if

$$
\begin{gathered}
0<\sigma<2 \nu\left(\lambda_{1}^{-1}+\alpha^{2}\right)^{-1}, \quad \text { and } \quad 0<\underline{\sigma}<\sigma / 3, \\
\|u(t)\|^{2}+\alpha^{2}|A u(t)|^{2} \leq e^{\sigma(\tau-t)}\left(\left\|u_{\tau}\right\|^{2}+\alpha^{2}\left|A u_{\tau}\right|^{2}\right)+2 \varepsilon^{-1} \\
\times \int_{\tau}^{t} e^{\sigma(s-t)}|f(s)|^{2} d s+4 C_{\varepsilon} \varepsilon_{\underline{\sigma}}^{3}(\sigma-3 \underline{\sigma})^{-1}\left(e^{-3 \underline{\sigma}(t-\tau)}\left\|u_{\tau}\right\|^{6}+M_{t, \underline{\sigma}}^{3}\right)
\end{gathered}
$$

for all $t \geq \tau$, where $M_{t, \underline{\sigma}}=\sup _{r \leq t} \int_{-\infty}^{r} e^{\sigma(s-r)}\|f(s)\|_{*}^{2} d s$.
Definition
For any $\sigma, \underline{\sigma}>0$, consider the universe $\mathcal{D}_{\sigma}^{D(A)} \cap \mathcal{D}_{\underline{\sigma}}^{V}$ formed by $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}(D(A))$ such that

$$
\lim _{\tau \rightarrow-\infty}\left(e^{\sigma \tau} \sup _{v \in D(\tau)}|A v|^{2}\right)=\lim _{\tau \rightarrow-\infty}\left(e^{\underline{\sigma} \tau} \sup _{v \in D(\tau)}\|v\|^{2}\right)=0 .
$$

