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Motivation

e Non-autonomous dynamical systems

» V. V. Chepyzhov and M. |. Vishik, Attractors of
non-autonomous dynamical systems and their dimension , J.
Math. Pures Appl. 73 (1994), 279-333.

» V. V. Chepyzhov and M. |. Vishik, Attractors for Equations of
Mathematical Physics, Colloquium Publications 49,
Providence, AMS, 2002.



e Random dynamical systems (unbounded time-dependent terms)

» B. SchmalfuB, Backward cocycles and attractors of stochastic
differential equations, en International Seminar on Applied
Mathematics-Nonlinear Dynamics: Attractor Approximation
and Global Behaviour (V. Reitmann, T. Redrich y N. J. Kosch,
eds.), (Dresden), pp. 185-192, Technische Universitat, 1992.

» H. Crauel and F. Flandoli, Attractors for random dynamical
systems, Probab. Theory Relat. Fields 100 (1994), 365-393.

» H. Crauel, A. Debussche, and F. Flandoli, Random attractors,
J. Dynam. Differential Equations 9 (1997), 307-341.

» |. D. Chueshov, Monotone Random Systems and Applications,
Lecture Notes in Mathematics 1779, Berlin Heidelberg:
Springer-Verlag, 2002.



e Deterministic non-autonomous dynamical systems with the
pullback approach with fixed bounded sets

» P. E. Kloeden and B. SchmalfuB, Nonautonomous systems,
cocycle attractors and variable time-step discretization,
Numer. Algorithms, 14 (1997) 141-152. Dynamical numerical
analysis (Atlanta, GA, 1995).

» P. E. Kloeden and B. SchmalfuB, Asymptotic behaviour of
nonautonomous difference inclusions, Systems & Control
Letters, 33 (1998), 275-280.

» P. E. Kloeden and D. J. Stonier, Cocycle attractors in
nonautonomously perturbed differential equations, Dynam.
Contin. Discrete Impuls. Systems, 4 (1998), 211-226.

» P. E. Kloeden, Pullback attractors in nonautonomous
difference equations, J. Difference Eqns. Applns., 6 (2000),
33-52.



e Deterministic non-autonomous dynamical systems with tempered
universes:

» T. Caraballo, G. Lukaszewicz, and J. Real, Pullback attractors
for asymptotically compact non-autonomous dynamical
systems, Nonlinear Anal. 64 (2006), 484-498.

» T. Caraballo, G. Lukaszewicz, and J. Real, Pullback attractors
for non-autonomous 2D-Navier-Stokes equations in some
unbounded domains, C. R. Math. Acad. Sci. Paris, 342
(2006), 263-268.

* Physical and mathematical questions: big-bang-bang—past,
present, future; dissipative world



Abstract results on attractors theory. Existence of minimal
pullback attractors

Consider given a metric space (X, dx), and let us denote

R2 ={(t,7) eR?: 7 < t}.

A process on X is a mapping U such that

R2 x X 5 (t,7,x) — U(t, 7)x € X with U(7,T)x = x for any
(r,x) € R x X, and U(t, r)(U(r,7)x) = U(t, 7)x for any
7<r<tandall xeX.

Definition

A process U on X is said to be closed if for any 7 < t, and any
sequence {x,} C X with x, = x € X and U(t,7)x, = y € X,
then U(t, 7)x = y.

Remark U continuous
= strong-weak (also known as norm-to weak)
=>closed
This more relaxed concepts are useful in some situations
(e.g., dyn. syst. and attractors for strong sols. for RD eqns).



P(X) the family of all nonempty subsets of X, and

consider a family of nonempty sets Dy = {Do(t) : t € R} C P(X)
[not required compactness or boundedness on these sets]
Definition

U is pullback Dg-asymptotically compact if for any t € R and any
sequences {7,} C (—o0, t] and {x,} C X satisfying 7, — —o0 and
Xp € Do(7,) for all n, the sequence {U(t,Ty)x,} is relatively
compact in X.

Denote

NDo,t) == () |J U(t,7)Do(r)  VteR.

Proposition

U pullback Bo—asymptotically compact = for all t € R, the set
N(Do, t) given by (8) is a nonempty compact subset of X, and
(attracts pullback)

lim distx(U(t, 7)Do(7), A(Do, t)) = 0.

T——00



Let be given D a nonempty class of families parameterized in time
D ={D(t) : t e R} C P(X). The class D will be called a
universe in P(X).

Definition

It is said that Dy = {Do(t) : t € R} C P(X) is pullback
D—absorbing for the process U on X if for any t € R and any
D € D, there exists a 179(t, D) < t such that

U(t,7)D(7) C Do(t) for all 7 < 7o(t, D).

Observe that in the definition above 50 does not belong
necessarily to the class D.

Definition R

U pullback D—asymptotically compact if it is D-asymptotically
compact for any D € D.



Proposition

Do = {Do(t) : t € R} C P(X) pullback D—absorbing for a process
U on X, which is pullback Bo—asymptotica//y compact. Then, U is
also pullback D—asymptotically compact.

Proposition
U closed and pullback D—asymptotically compact = for each
D €D and any t € R, the set /\(5, t) is a nonempty compact
subset of X, invariant for U, that attracts D in the pullback sense,
ie.

lim distx(U(t,7)D(r), (D, t)) = 0. (1)
T——00

Moreover, it is the minimal family of closed sets satisfying (1).



Theorem
U:RZ x X — X closed, a universe D in P(X), and a family

Do = {Do(t) : t € R} C P(X) pullback D—absorbing for U, and
U pullback Dy—asymptotically compact.
Then, the family Ap = {Ap(t) : t € R} defined by

———X
= [JAD,t) teR,

Dep

(a) for any t € R, Ap(t) is a nonempty compact subset of X,
and Ap(t) C N(Dy, t),

(b) Ap is pullback D—attracting

(c) Ap is invariant, i.e. U(t,7)Ap(T) = Ap(t) for all T <'t,

(d) if Do € D, then Ap(t) = A(Do, t) C Do(t) ", for all t € R.

The family Ap is minimal in the sense that if
C={C(t) : teR} CP(X) isa family of closed sets and
D—attracting, then Ap(t) C C(t).




Remark

Under the assumptions of Theorem 5, the family Ap is called the
minimal pullback D—attractor for the process U.

If Ap € D, then it is the unique family of closed subsets in D that
satisfies (b)—(c).

A sufficient condition for Ap € D is to have that 50 € D, the set
Do(t) is closed for all t € R, and the family D is inclusion-closed
(ie. if D€ D, and D' ={D'(t) : t € R} C P(X) with

D'(t) c D(t) for all t, then D' € D).



Denote Df_f the universe of fixed nonempty bounded subsets of X,
i.e. the class of all families D of the form D = {D(t) = D : t € R}
with D a fixed nonempty bounded subset of X.

For Df_f, the corresponding minimal pullback fo—attractor AD>F< is
the one defined by Crauel, Debussche, and Flandoli.
Corollary

Under the assumptions of Theorem 5, if the universe D contains
the universe D% , then both attractors, .ADI); and Ap, exist, and
the following relation holds:

AD);(t) C Ap(t) vVt e R.
Remark

Under the above assumptions, if, moreover, Bo € D, and for some
T € R the set U<7Do(t) is a bounded subset of X, then

.AD>F<(t) = Ap(t) Vi< T.



Comparison of pullback D;—attractors

Theorem
Let {(Xi, dx;)}i=1,2 be metric spaces, X1 C Xo contin. injected,
and for i =1, 2, let D; be a universe in P(X;), with D1 C Ds.
U acts as a process in both cases, U : R% X Xi— X; fori =1, 2.
I —]
Aty = |J N(Dit) , i=1,2.
B,‘ED,‘

Then, A1(t) C Ax(t) forall t € R.



Suppose moreover that the two following conditions are satisfied:
(i) Ax(t) is a compact subset of Xj for all t € R,
(i) for any 52 € D, and any t € R, there exist a famiIAy 51 €D
and a %1 < t (both possibly depending on t and D), such

that U is pullback Bl-asymptotically compact, and for any
s < 1% there exists a 75 < s such that
1

U(s,7)Da(1) C Di(s) forall 7 < 5.

Then, under all the conditions above,
Ai(t) = Aox(t) forall t e R.



Remark
In the preceding theorem, if instead of assumption (ii) we consider

the following condition:

(ii") for any D, € Dy and any sequence T, — —o0 there exist
another family Dy € Dy and another sequence 7/ — —00 with
1) > Ty for all n, such that U is pullback D;-asymptotically
compact, and

U(7h, 72)Da(7n) € Di(7)), for all n, (2)

then, with a similar proof, the equality Ay(t) = A1(t) for all
t € R, also holds.

Observe that a sufficient condition for (2) is that there exists
T > 0 such that for any 52 € D,, there exists a 51 € D;
satisfying U(T + T,7)Do(7) C Di(7+ T), for all T € R.



Application to a 2D-Navier-Stokes model

thI—VAU—I—(U'V)U-f-Vp: f(t) in (7, 400) x Q,

divu =0in (7,+00) X Q,
u=0on (7,400) x 09,
u(t, x) = ur(x), x € Q,

where Q C R? is open and bounded with smooth enough o0t

v > 0 is the kinematic viscosity,

u is the velocity field of the fluid,

p is the pressure,

u; is the initial velocity field, and

f the external force (time-dep.)term (Ex.: Arctic sea, control, etc)

'Not for the results in H but in V.



V= {u € (CC()?: divy = o},

H = the closure of V in (L?(2))? with the norm |-|, and inner
product (-,-), where for u,v € (L?(Q))?,

(u,v) = J;/Q uj(x)vj(x)dx,

V = the closure of V in (H}(£2))? with the norm ||-|| associated to
the inner product ((-,)), where for u,v € (H}(Q))?,

Z/ Ou; 6\/1
Ox; 8x,

ij=1




Definition (Weak solution)

A weak solution is a function u that belongs to L?(7, T; V) N
Lo°(7, T; H) for all T > 7, with u(7) = u,, such that for all v € V,

%(U(t% v) +v(Au(t), v) + b(u(t), u(t), v) = (£(t),v),

where the equation must be understood in the sense of D'(7, +00).

Remark

If u is a weak solution, then we deduce that for any T > T, one
has u' € L?(7, T; V'), and so u € C([r,+0c0); H), whence the
initial datum has full sense. Moreover, in this case the following
energy equality holds for all T < s < t:

lu(t)> + 2v /:<Au(r), u(r))dr = |u(s)|? + 2/st<)‘(r)7 u(r))dr.



Definition (Strong solution)

A strong solution is a weak solution u of (17) such that
uc L®(r, T;D(A)NL®(r, T; V) forall T >r.

Remark

If f € L2 (R; H) and u is a strong solution, then u' € L?(r, T; H)
for all T > 7, and so u € C([r,+00); V). In this case the following
energy equality holds:

[lu( )]24—21// |Au(r)|? dr+2/t b(u(r), u(r), Au(r)) dr

= ||2+2/(f ), Au(r))dr, V7 <s<t.



Theorem (Weak and strong solutions)
fe L%OC(R. V,) and u € H = 3! weak solution U( ) = u( 0T, UT)‘

e L3R H) = ue C((r, TL V)N (7 +&, T; (H2 (Q)?) for
everye >0and T > 7 +e¢.

Ifu, € V, then u € C([r, T); V)N L2(7, T; (H? (R))?) for every
T > 7, ie uis a strong solution.



Theorem (Weak and strong solutions)
fel? (R; V') and u; € H= 3! weak solution u(-) = u(-; 7, ur).
fel (RiH)= ue C((r,T; V)N L2t +¢, T;(H?(Q))?) for

everye >0and T > 7 +e¢.

Ifu, € V, then u € C([r, T); V)N L2(7, T; (H? (R))?) for every
T > 7, ie uis a strong solution.

Therefore, when f € L2 (IR; V'), we can define a process

U:R%xH— Has
ut,m)ur = u(t;7,ur) Yur € H, V71 <t,

and if f € L2 _(IR; H), the restriction of this process to R2 x V is a
process in V.



Pullback D-attractors in H

Proposition (Continuity of the process)
Iff € L2 (R; V'), for any pair (t,7) € R2, the map U(t,T) is

loc
continuous from H into H.

Moreover, if f € L2 (R; H), then U(t, ) is also continuous from
V into V.



Pullback D-attractors in H

Proposition (Continuity of the process)
Iff € L2 (R; V'), for any pair (t,7) € R2, the map U(t,T) is

loc
continuous from H into H.

Moreover, if f € L2 (R; H), then U(t, ) is also continuous from
V into V.

Lemma
Assume that f € L2 (R; V') and u,; € H. Consider any

loc

w € (0,2vA1) fixed. Then, the solution u satisfies for all t > T :

—pt t
u(£)2 < e Py 24— [ ens|£(s)|2ds.
2V — [IA] 1 - *



Lemma
Assume that f € L2 (R; V') and u, € H. Consider any

loc

p € (0,2v)\1) fixed. Then, the solution u satisfies for all t > 7 :

e Mt

2 —p(t—7) 2 s
u(t <e M u +
| ( )| o ‘ T‘ 21/—u)\1_1

t
/ | £(s)|2ds.

Definition (Universe)
We will denote by D;Ij the class of all families of nonempty subsets
D = {D(t) : t € R} C P(H) such that

lim e sup |v|?]| =0.
T——00 veD(T)

Remark
DH C Dﬁ and that DZ’ is inclusion-closed (tempered condition).



Corollary (D} —absorbing family)

Assume that there exists some ;. € (0,2v A1) such that

0
/ e"s||f(s)||2ds < +oc.

Then, Do = {Do(t) : t € R} defined by Do(t) = Bu(0, R/ (1)),
e Kt

t
Ry(t =1+/ es||f(s)||2ds,
M) =1+ [ eIl

is pullback DZ’ —absorbing for the process U : Rg x H— H (and
therefore DH —absorbing too), and Dy € D/!.

Lemma (D} —asymptotic compactness)

The process U is pullback D;Ij —asymptotically compact.



Corollary (D} —absorbing family)

Assume that there exists some ;. € (0,2v A1) such that

0
/ e"s||f(s)||2ds < +oc.

Then, Do = {Do(t) : t € R} defined by Do(t) = Bu(0, R/ (1)),
e Kt

t
Ry(t =1+/ es||f(s)||2ds,
M) =1+ [ eIl

is pullback DZ’ —absorbing for the process U : R?j x H— H (and
therefore DH —absorbing too), and Dy € D/!.

Lemma (D} —asymptotic compactness)

The process U is pullback D;Ij —asymptotically compact.



Theorem (Pullback Df-attractor)
Assume that f € L2 _(R; V') satisfies for some pu € (0,2v)\1) the

loc
above condition. Then, 3 the minimal pullback DH-attractor

AD? = {ADﬁ(t) :t € R}
and the minimal pullback Dﬁ—attractor
Apn = {Apn(t) : t € R},

for the process U. The family ADﬁ belongs to Dl’;’, and the
following relation holds:

Api(t) € Aps(t) € Bu(0, R}/*(t)) VteR.

Remark
Useful in unbounded “Poincaré”-domains to obtain AD?'



Regularity: pullback D-attractors in V

From now on we assume that , and satisfies
0
/ e'® ds < +o00, for some 1 € (0,2v)\).
— 00
Lemma

For any t € R and De Dl’j, there exists 7'1(5, t) < t—3, such
that for any 7 < 71(D, t) and any u, € D(7), it holds

lu(r; T, ur)|? < p1(t) forall r €[t —3,1],

lu(r; T, u)||? < pa(t) forall r €t —2,1],

/ |Au(0; 7, u)|2d6 < p3(t) forallr €[t —1,t],
r—1

/ | (0; 7, u)2dO < pa(t) forall r € [t —1,t],
\ r—1



where

n(3—t) t
pi(t) =1+ e/ e |F(0) d),

B 1 12\ [ )
) = gy Gt (G +0) [ o )

<ep |20 (2 + i [ 102 a0) ||

() =2 (02 [ 1FO)F a0+ 2¢O ).

v

puld) = voale) +2 [ A0 00+ 2Cpa(0al),

t

and C) = 27CH(4r%) L.



Remark

lim e"py(t) = 0.

t——0o0

So {Bu(0,py?(t)) : t e R} € DH.

We will denote by the class of all families of elements of
P(V) of the form Dy = {D(t)1V : t € R}, where
D={D(t):t R} €Dl

D,‘E/ the universe of families (parameterized in time but constant
for all t € R) of nonempty fixed bounded subsets of V.

DZ”V C P(V) is inclusion-closed, and evidently DY C DZ”V.



Corollary (Absorbing in H-+regularizing+tempered)
The family

Do.v = {B(0,p{?(t) NV : t e R}

belongs to DZ”V and satisfies that for any t € R and any D e DH,
there exists a 7(D, t) < t such that

U(t,7)D(7) C Do y(t) forall T < 7(D,1).

In particular, the family 50’\/ is pullback D/’;’ ’V—absorbing for the
process U :R% x V — V.



Lemma (Asymptotic compactness in V' norm)

The process U Rf, X V — V is pullback DZ’ V_ asymptotically
compact.

Sketch of the proof:

u" oy weak-star in L°(t — 2, t; V),
u" —u weakly in L2(t — 2,t; D(A)),
(u"Y = weakly in L2(t — 2, t; H),

u" = u strongly in L2(t — 2, t; V),

u"(s) — u(s) strongly in V, a.e.s € (t—2,t).



Lemma (Asymptotic compactness in V' norm)

The process U Rf, X V — V is pullback DZ’ V_ asymptotically
compact.

Sketch of the proof:

u" oy weak-star in L°(t — 2, t; V),
u" —u weakly in L2(t — 2,t; D(A)),
(u"Y = weakly in L2(t — 2, t; H),

u" = u strongly in L2(t — 2, t; V),

u"(s) — u(s) strongly in V, a.e.s € (t—2,t).

From above u € C([t—2,t]; V) and u satisfies the eqn in (t —2, t).



Lemma (Asymptotic compactness in V' norm)

The process U Rf, X V — V is pullback DZ’ V_ asymptotically
compact.

Sketch of the proof:

u" oy weak-star in L°(t — 2, t; V),
u" —u weakly in L2(t — 2, t; D(A)),
(u"Y = weakly in L2(t — 2, t; H),

u" = u strongly in L2(t — 2, t; V),

u"(s) — u(s) strongly in V, a.e.s € (t—2,t).

From above u € C([t—2,t]; V) and u satisfies the eqn in (t —2, t).

{u"} is equi-continuous in H, on [t — 2, t].



Lemma (Asymptotic compactness in V' norm)

The process U Rf, X V — V is pullback DZ’ V_ asymptotically
compact.

Sketch of the proof:

u" oy weak-star in L°(t — 2, t; V),
u" —u weakly in L2(t — 2, t; D(A)),
(u"Y = weakly in L2(t — 2, t; H),

u" = u strongly in L2(t — 2, t; V),

u"(s) — u(s) strongly in V, a.e.s € (t—2,t).

From above u € C([t—2,t]; V) and u satisfies the eqn in (t —2, t).

{u"} is equi-continuous in H, on [t — 2, t]. Since {u"} is bounded
in C([t —2,t]; V),



Lemma (Asymptotic compactness in V' norm)

The process U Rf, X V — V is pullback DZ’ V_ asymptotically
compact.

Sketch of the proof:

u" oy weak-star in L°(t — 2, t; V),
u" —u weakly in L2(t — 2, t; D(A)),
(u"Y = weakly in L2(t — 2, t; H),

u" = u strongly in L2(t — 2, t; V),

u"(s) — u(s) strongly in V, a.e.s € (t—2,t).

From above u € C([t—2,t]; V) and u satisfies the eqn in (t —2, t).

{u"} is equi-continuous in H, on [t — 2, t]. Since {u"} is bounded
in C([t —2,t]; V), by V CC H+ Ascoli-Arzela Th.,



Lemma (Asymptotic compactness in V' norm)

The process U Rf, X V — V is pullback DZ’ V_ asymptotically
compact.

Sketch of the proof:

u" oy weak-star in L°(t — 2, t; V),
u" —u weakly in L2(t — 2, t; D(A)),
(u"Y = weakly in L2(t — 2, t; H),

u" = u strongly in L2(t — 2, t; V),

u"(s) — u(s) strongly in V, a.e.s € (t—2,t).

From above u € C([t—2,t]; V) and u satisfies the eqn in (t —2, t).

{u"} is equi-continuous in H, on [t — 2, t]. Since {u"} is bounded
in C([t —2,t]; V), by V CC H+ Ascoli-Arzela Th., 3 subseq.

u" — u strongly in  C([t — 2, t]; H).



For all sequence {s,} C [t — 2, t] with s, — s,, it holds that
u"(sp) — u(sy) weakly in V,

Claim:
u" — u strongly in C([t —1,t¢]; V),

If not, {tp} C[t—1,t], th >t >t—1

|u"(tn) —u(t)|| > Vn>1.



For all sequence {s,} C [t — 2, t] with s, — s,, it holds that
u"(sp) — u(sy) weakly in V,

Claim:
u" — u strongly in C([t —1,t¢]; V),

If not, {tp} C[t—1,t], th >t >t—1

|u"(tn) —u(t)|| > Vn>1.

lu(e)| < timinf [[4"(2,)]].



forallt —2<s <s <t

s
w%mW+u/ Au"(r) 2dr

S1

n v %2 n n 2 %2
< (I +2¢9) [Pl + 2 [ 1),

S1 S1

and

$
u(@m2+u/ |Au(r)|2dr
2 2 2 2
S||au+xw/ APl dr + 2 /\m»w

S1



forallt —2<s <s <t

s
w%mW+u/ Au"(r) 2dr
5
1 .

52 2
< (I +2¢9) [Pl + 2 [ 1),

s1 51
and

$
u(am2+u/ |Au(r)|2dr
2 2 2 2
< o) 426 [ uPluter+ 2 [ 7R

S1

In particular we can define the functions

2 s
) = I =260 [ Pl olar -2 [ e

) = @) =269 [ jute)Platolier -2 [ ()P



Jn(s) = J(s) ae. se(t—2,1).



Jn(s) = J(s) ae. se(t—2,1).

3 {t} C (t — 2,t,) such that # — t., and

lim Jo(t) = J(&) for all k.

n—-+o00



Jn(s) = J(s) ae. se(t—2,1).
3 {t} C (t — 2,t,) such that # — t., and

lim Jo(t) = J(&) for all k.

n—-+o00

J are non-increasing, so

In(tn) = J(t) In(tis) — J(t:)
[ n(tis) — J(t)]

[ n(tis) = J(Es) | + () — J(8)] < 0.

INIAN A



Jn(s) = J(s) ae. se(t—2,1).
3 {t} C (t — 2,t,) such that # — t., and

lim Jo(t) = J(&) for all k.

n—-+o00

J are non-increasing, so

In(tn) = J(t) < Jn(te;) — ()
< n(tis) = J(8)]
< nltes) = HEes)l + [J(E) = J(t)] <o
This yields that
limsup Jp(tn) < J(ts),

n—oo



Jn(s) = J(s) ae. se(t—2,1).

3 {t} C (t — 2,t,) such that # — t., and

lim Jo(t) = J(&) for all k.

n—-+o00

J are non-increasing, so

In(tn) = J(t) < Jn(tks) — (L)
< () — J()]
<

[ n(tis) = J(Es) | + () — J(8)] < 0.

This yields that
limsup Jp(tn) < J(ts),

n—oo
and therefore,
lim sup [|u"(tn)|| < [Ju(t)]l-

n—oo

Thus, u"(t,) — u(t,) strongly in V.



Theorem
There exist the minimal pullback D‘F/ -attractor

Apy = {Apy(t): t € R},
and the minimal pullback Dﬁ’v—attractor
ADg,v = {ADZI,v(t) :t e R}
for the process U : R% x V =V, and
Apg(t) C ADg(t) C ADﬁ(t) = AD;;l,v(t) for all t € R,
In particular, the following pullback attraction result in V' holds:

lim disty (U(t, T)D(’T),.ADZ/(I’.')) =0 forallt€R andany D e Dl':’.

T——00



Finally, if moreover f satisfies

s
sup <e“5/ e"?|£(0))? d0> < +o0,

s<0 —00
then (from p;, i =1,2)
AD\F/(t) = AD,’;’(t) = .ADZI(t) = ADZl,v(t) for all t € R,
and for any bounded subset B of H

lim distV(U(tm)B,ADg(t)) =0 forall teR.

T——00



Remark (Infinitely many bigger universes)
If f € L2 (R; H) satisfies fi)oo e"s|f(s)|2 ds < 4o, then

0
/ e%|f(s)|? ds < 400, for all o € (i, 2v\1).

—00

Thus, for any o € (u,2vA1), 3 DY -pullback attractor, Ap.



Remark (Infinitely many bigger universes)
If f € L2 (R; H) satisfies fi)oo e"s|f(s)|2 ds < 4o, then

0
/ e%|f(s)|? ds < 400, for all o € (i, 2v\1).

—0o0
Thus, for any o € (u,2vA1), 3 DY -pullback attractor, Ap.
Since Dﬁ C DH, by comparison, for any t € R,
ADZI(t) C Apu(t) forall o € (u1,2vA1).
Moreover, if f satisfies sup,g (e**‘S [2.e"f(0) d0> < 400,
then, comparing with the

= ADg(t) = Apn(t) forallt € R, and any o € (u1,2vA1).



Tempered behaviour of the pullback attractors

The pullback attractor .Apg € D;‘;’, i.e. one has that

lim [e** sup |v|°| =0.
t=—00 veAH(t)
i

Proposition
f e 12 _(R; H): supycq <e‘“5 7 e ()2 de) < +oo,

loc

D € D! invariant w.r.t. U: D(t) = U(t,7)D(r) for all 7 < t.

Then,
lim (e" sup |v|?] =0.
t=—00 veD(t)



Proposition (More a-priori + derivating eqn.)
fe le(]R H): f /Ls\f( )2 ds < +o0, then for each t € R

loc

and D € DH there exists 7-1(D t) < t — 3 such that
|AU(r, 7)u? < pe(t) forall re[t—1,t, 7 <7(D,t), ur € D(7),

where

2c()
p1(t)pa(t)?,

— 4 2
po(t) = z(ps(t) + max [F(N)+

with ps(t) defined by

ps(0)= (0 + = [ 17O 60) e (SLpatt)).



Proposition (Above result + estimating f)
f e W22(R; H): SUPs<o (e ns 2 etf|f(0)|? d0) < o0,

loc

o0

J@wGMK:“%mFM>:Q lim_(eF(1)) = 0.

Then, for every invariant family De DZ’ :

. ut 2 —
J&(eé%ﬂmwmg—a



Proposition (Above result 4 estimating f)
f e WEA(R; H): SUPs<o (e ns 2 etf|f(0)|? d0) < 400,

loc

jim <e"t /ti1|f’(9)|2d«9> —0. lim_(e*IF(8)P) =0.

t——00 —00

Then, for every invariant family De DZ’ :

lim | et sup ||v|? =0.
H_oo< 2o Vil

. 1/2
Proof: |f(r)| < |f(t— 1)+ (ft_l IF(0)2 dé’) Vrelt—1,1.
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Definition (Pullback Bo—flattening property)

U satisfies the pullback Bo—ﬂattening property if for any t € R and
€ > 0, there exist 7. < t, a finite dimensional subspace X, of X,
and a mapping P. : X — X such that

|J P-U(t,7)Do(7) is bounded in X

T<T¢

T T
—Te ) = ley .
|(ldx — P-)U(t,7)u"||x <& forany 7 < 7., u” € Do(7)



Pullback Eo—ﬂattening = pullback Bo—asymptotic compact

Proposition (Flattening implies asymp.compact)
t € R, sequences (t >)1, — —00, xn € Do(7s). Then
{U(t, Tn)xn : n > 1} is relatively compact in X (Banach space).
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Pullback Eo—ﬂattening = pullback Bo—asymptotic compact

Proposition (Flattening implies asymp.compact)
t € R, sequences (t >)1, — —00, xn € Do(7s). Then
{U(t, Tn)xn : n > 1} is relatively compact in X (Banach space).

Proof. Fix k > 1 (integer), 3Py : X — X (fin.dim.subspace of X)
{PxU(t, Tn)Xn}n>n, bounded in Xj (therefore relatively compact)
(I — P)U(t, Tn)xnllx < 1/(3k) for all n > N.

Thus, {PUx,} C UM, Bx,(PUx;,1/(3k)) (reordering)
= || Uxn — Uxi|| < ||PUxn — PUx;|| + || QUxnl| + ||QUxX;|| < 1/k

{Uxy} € UM, Bx(Ux;,1/k) (get a ball with infinite elements)

{U(t,Tp)xn : n > 1} possesses a Cauchy subseq. in X (Banach)



If f € L2 (R; H) satisfies ff’oo e"s|f(s)|2ds < oo for some

loc

€ (0,2v)A1), then, for any t € R,

t
lim ept/ e”®|f(s)|? ds = 0.

p—>00 00

Proposition
For any e > 0 and t € R, there exists m = m(e, t) € N such that
for any D € ’DZ’, the projection P, : V — Vp, := span[wi, . .., Wp]

satisfies the following properties:
{PnU(t,7)D(7) : 7 < 71(D, t)} is bounded in V,
and

(1 = Pm)U(t,T)ur|| <& forany T < m(D,t), uy € D(7),

Proof: Recall the strong estimates we had...



VteR, D e D, 3n(D,t) < t-2s. t. ¥r < 71(D, 1), ur € D(1)

lu(r;mu)|> < R¥t) VYre[t—2,1],
I?

N

lu(r; T, ur) R3(t) Vre[t—1,t],

IN

t
y/ Au(0:7,u)Pd0 < R2(L),
t—1



VteR, D e D, 3n(D,t) < t-2s. t. ¥r < 71(D, 1), ur € D(1)

lu(r;T,ur)|? < R3(t) Vrelt—2,t,

lu(riT,un)lI? < RE(t) Yrelt—11],

V/t1|Au(0;T,uT)|2d9 < RY(1),

t,

where

RY(t) = 1+e—/‘(f—2>(2m1,,,)—1/‘t e’ |F(0)[* o,

R3(t) = vt (Rf(t)+(z/_1/\11+2)/t2\f(9)2d9>
.

ot
X exp [2V‘1C(”)R12(t) <R12(t) + v I\ /
Jt—-2

vwn?wﬂ

R2(t) = R22(t)+21/_1/ 1|f(9)\2d9+2C(“)R12(t)R§(t).
t_



{w;}j>1 special basis = Py, non-expansive in V
= {PnU(t,7)D(7) : 7 < 11(D, t)} bounded in V Vm > 1.
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= {PnU(t,7)D(7) : 7 < 11(D, t)} bounded in V Vm > 1.
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—Nlam(NIP+v|Agm(r)|? = =b(u(r), u(r), Aqm(r))+(F(r), Aqm(r))

1 ;
yAqm(r)y2+;yf(r)y2+71R1(t)R22(t)]Au(r)] ae t—1l<r<t.



{w;}j>1 special basis = Py, non-expansive in V
= {PnU(t,7)D(7) : 7 < 11(D, t)} bounded in V Vm > 1.

am(r) = u(r) — Pnu(r) and the second energy equality

2 am(r) P+ Adm(r) P = —b(u(r), u(r), Agn(r)+(£(r), Aqin(r)
v 2 1 2, G 2

< 5yAq,,,(r)y +;yf(r)y +7R1(t)R2(t)]Au(r)] ae t—1<r<t.

|AGm(r)|? > Am+1llgm(r)||?, implies that (a.e. t —1<r < t)

d - -
arllam(D P Amallam(n)[* < 207HF ()42 Ra(£)RE(£)] Au(r)|



Multiplying by e”*m+1" integrating from t — 1 to t,



Multiplying by e”*m+1" integrating from t — 1 to t,
e i1t gm(2) 2

t
ge”)"”“(tI)qu(t—l)|]2+2u1/ e |F(r)|2 dr
t—1
t
+ 22 RU(E)R2(E) / e"Amiar| Au(r)| dr
t—1
t
Se”)""“(tl)Hu(t—l)H2+2u1/ e Am il |£(r)|? dr
t—1

t 1/2 t 1/2
+ 2C27 Ry (t)R3(t) (/ g2V Am+1r dr) (/ |Au(r)|? dr)
t—1 t—1

t
<e"Am1 (D R(¢) + 207 / e Am il |£(r)|? dr
t—1

+2C2 32 R (1) R2(t) Ra(t) (Qumy1) "L/ 26" mt,



Multiplying by e”*m+1" integrating from t — 1 to t,
e i1t gm(2) 2
t
<D gp(e — 1)+ 207t [ () o
t—1

t
+ 22 RU(E)R2(E) / e"Amiar| Au(r)| dr
t—1

t
Se”)""“(tl)Hu(t—l)\|2—|—2u1/ e T |f(r)|? dr
t—1

t 1/2 t 1/2
+ 2C27 Ry (t)R3(t) (/ g2V Am+1r dr) (/ |Au(r)|? dr)
t—1 t—1

t
<e"Am1 (D R(¢) + 207 / e Am il |£(r)|? dr
t—1
+ 2C2U 32 Ry (£) R2(t) R3(t) Qv my 1) ~H2 e mit,

Since Ay — 00 as m — 00, 3Im = m(e, t) € Nsit.
(I — Pm)U(t, T)u || < eVT <7m(D,t), ur € D(7).



Navier-Stokes eqns with delay terms

» T. Caraballo and J. Real, Navier-Stokes equations with delays,
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457
(2001), 2441-2453.

» T. Caraballo and J. Real, Asymptotic behaviour of
two-dimensional Navier-Stokes equations with delays, R. Soc.
Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003),
3181-3194.

» T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes
models with delays, J. Differential Equations 205 (2004),
271-297.



The functional Navier-Stokes problem: