International Conference-School Infinite-dimensional dynamics, dissipative systems, and attractors July 13–17, 2015

Some recent results on tempered pullback attractors for non-autonomous variants of Navier-Stokes equations

Pedro Marín-Rubio¹

with J. García-Luengo¹, G. Planas², J. Real^{1,†} & J. Robinson³

¹Dpto. Ecuaciones Diferenciales y An. Num., Univ. Sevilla, Spain.
 ² IMECC, Universidade Estadual de Campinas, Brazil.
 ³Mathematics Institute, University of Warwick, Coventry, U.K.

Outline of the talk

Motivation

Abstract results on attractors theory

Existence of minimal pullback attractors Comparison of non-tempered and tempered attractors Comparison of pullback D_i -attractors

Application to a 2D-Navier-Stokes model

Pullback \mathcal{D} -attractors in HPullback \mathcal{D} -attractors in VTempered behaviour of the pullback attractors

Flattening property: shorter proof of asymp.compactness for V

Delay terms: "good" and "bad" ones

Navier-Stokes-Voigt

Motivation

- Non-autonomous dynamical systems
 - V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279–333.
 - V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications 49, Providence, AMS, 2002.

- Random dynamical systems (unbounded time-dependent terms)
 - B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, en International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour (V. Reitmann, T. Redrich y N. J. Kosch, eds.), (Dresden), pp. 185–192, Technische Universität, 1992.
 - H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields 100 (1994), 365–393.
 - H. Crauel, A. Debussche, and F. Flandoli, Random attractors, J. Dynam. Differential Equations 9 (1997), 307–341.
 - I. D. Chueshov, Monotone Random Systems and Applications, Lecture Notes in Mathematics 1779, Berlin Heidelberg: Springer-Verlag, 2002.

- Deterministic non-autonomous dynamical systems with the pullback approach with fixed bounded sets
 - P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, *Numer. Algorithms*, **14** (1997) 141–152. Dynamical numerical analysis (Atlanta, GA, 1995).
 - P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, *Systems & Control Letters*, **33** (1998), 275–280.
 - P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, *Dynam. Contin. Discrete Impuls. Systems*, 4 (1998), 211–226.
 - P. E. Kloeden, Pullback attractors in nonautonomous difference equations, *J. Difference Eqns. Applns.*, 6 (2000), 33–52.

• Deterministic non-autonomous dynamical systems with tempered universes:

- T. Caraballo, G. Łukaszewicz, and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, *Nonlinear Anal.* 64 (2006), 484-498.
- T. Caraballo, G. Łukaszewicz, and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263–268.

* Physical and mathematical questions: big-bang-bang-past, present, future; dissipative world

Abstract results on attractors theory. Existence of minimal pullback attractors

Consider given a metric space (X, d_X) , and let us denote $\mathbb{R}_d^2 = \{(t, \tau) \in \mathbb{R}^2 : \tau \leq t\}.$ A process on X is a mapping U such that $\mathbb{R}_d^2 \times X \ni (t, \tau, x) \mapsto U(t, \tau)x \in X$ with $U(\tau, \tau)x = x$ for any $(\tau, x) \in \mathbb{R} \times X$, and $U(t, r)(U(r, \tau)x) = U(t, \tau)x$ for any $\tau \leq r \leq t$ and all $x \in X$.

Definition

A process U on X is said to be closed if for any $\tau \leq t$, and any sequence $\{x_n\} \subset X$ with $x_n \to x \in X$ and $U(t, \tau)x_n \to y \in X$, then $U(t, \tau)x = y$.

Remark U continuous ⇒ strong-weak (also known as norm-to weak) ⇒ closed This more relaxed concepts are useful in some situations

(e.g., dyn. syst. and attractors for strong sols. for RD eqns).

 $\mathcal{P}(X)$ the family of all nonempty subsets of X, and consider a family of nonempty sets $\widehat{D}_0 = \{D_0(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$ [not required compactness or boundedness on these sets]

Definition

U is pullback \widehat{D}_0 -asymptotically compact if for any $t \in \mathbb{R}$ and any sequences $\{\tau_n\} \subset (-\infty, t]$ and $\{x_n\} \subset X$ satisfying $\tau_n \to -\infty$ and $x_n \in D_0(\tau_n)$ for all *n*, the sequence $\{U(t, \tau_n)x_n\}$ is relatively compact in *X*.

Denote

$$\Lambda(\widehat{D}_0,t):=\bigcap_{s\leq t}\overline{\bigcup_{\tau\leq s}U(t,\tau)D_0(\tau)}^X\quad\forall\,t\in\mathbb{R}.$$

Proposition

U pullback \widehat{D}_0 -asymptotically compact \Rightarrow for all $t \in \mathbb{R}$, the set $\Lambda(\widehat{D}_0, t)$ given by (8) is a nonempty compact subset of X, and (attracts pullback)

$$\lim_{\tau \to -\infty} \operatorname{dist}_X(U(t,\tau)D_0(\tau), \Lambda(\widehat{D}_0, t)) = 0.$$

Let be given \mathcal{D} a nonempty class of families parameterized in time $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$. The class \mathcal{D} will be called a universe in $\mathcal{P}(X)$.

Definition

It is said that $\widehat{D}_0 = \{D_0(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$ is pullback \mathcal{D} -absorbing for the process U on X if for any $t \in \mathbb{R}$ and any $\widehat{D} \in \mathcal{D}$, there exists a $\tau_0(t, \widehat{D}) \leq t$ such that

$$U(t,\tau)D(\tau) \subset D_0(t) \quad ext{for all } \tau \leq \tau_0(t,\widehat{D}).$$

Observe that in the definition above \widehat{D}_0 does not belong necessarily to the class \mathcal{D} .

Definition

U pullback \mathcal{D} -asymptotically compact if it is \widehat{D} -asymptotically compact for any $\widehat{D} \in \mathcal{D}$.

Proposition

 $\widehat{D}_0 = \{D_0(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$ pullback \mathcal{D} -absorbing for a process U on X, which is pullback \widehat{D}_0 -asymptotically compact. Then, U is also pullback \mathcal{D} -asymptotically compact.

Proposition

U closed and pullback \mathcal{D} -asymptotically compact \Rightarrow for each $\widehat{D} \in \mathcal{D}$ and any $t \in \mathbb{R}$, the set $\Lambda(\widehat{D}, t)$ is a nonempty compact subset of X, invariant for U, that attracts \widehat{D} in the pullback sense, i.e.

$$\lim_{\tau \to -\infty} \operatorname{dist}_{X}(U(t,\tau)D(\tau),\Lambda(\widehat{D},t)) = 0.$$
(1)

(日) (同) (三) (三) (三) (○) (○)

Moreover, it is the minimal family of closed sets satisfying (1).

Theorem

 $U : \mathbb{R}^2_d \times X \to X$ closed, a universe \mathcal{D} in $\mathcal{P}(X)$, and a family $\widehat{D}_0 = \{D_0(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$ pullback \mathcal{D} -absorbing for U, and U pullback \widehat{D}_0 -asymptotically compact. Then, the family $\mathcal{A}_{\mathcal{D}} = \{\mathcal{A}_{\mathcal{D}}(t) : t \in \mathbb{R}\}$ defined by

$$\mathcal{A}_{\mathcal{D}}(t) = \overline{igcup_{\widehat{D}\in\mathcal{D}}}^X \quad t\in\mathbb{R},$$

- (a) for any $t \in \mathbb{R}$, $\mathcal{A}_{\mathcal{D}}(t)$ is a nonempty compact subset of X, and $\mathcal{A}_{\mathcal{D}}(t) \subset \Lambda(\widehat{D}_0, t)$,
- (b) $\mathcal{A}_{\mathcal{D}}$ is pullback \mathcal{D} -attracting

(c) $\mathcal{A}_{\mathcal{D}}$ is invariant, i.e. $U(t,\tau)\mathcal{A}_{\mathcal{D}}(\tau) = \mathcal{A}_{\mathcal{D}}(t)$ for all $\tau \leq t$, (d) if $\widehat{D}_0 \in \mathcal{D}$, then $\mathcal{A}_{\mathcal{D}}(t) = \Lambda(\widehat{D}_0, t) \subset \overline{D_0(t)}^X$, for all $t \in \mathbb{R}$. The family $\mathcal{A}_{\mathcal{D}}$ is minimal in the sense that if $\widehat{C} = \{C(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$ is a family of closed sets and \mathcal{D} -attracting, then $\mathcal{A}_{\mathcal{D}}(t) \subset C(t)$.

Remark

Under the assumptions of Theorem 5, the family A_D is called the minimal pullback D-attractor for the process U.

If $\mathcal{A}_{\mathcal{D}} \in \mathcal{D}$, then it is the unique family of closed subsets in \mathcal{D} that satisfies (b)–(c).

A sufficient condition for $\mathcal{A}_{\mathcal{D}} \in \mathcal{D}$ is to have that $\widehat{D}_0 \in \mathcal{D}$, the set $D_0(t)$ is closed for all $t \in \mathbb{R}$, and the family \mathcal{D} is inclusion-closed (i.e. if $\widehat{D} \in \mathcal{D}$, and $\widehat{D}' = \{D'(t) : t \in \mathbb{R}\} \subset \mathcal{P}(X)$ with $D'(t) \subset D(t)$ for all t, then $\widehat{D}' \in \mathcal{D}$).

Denote \mathcal{D}_{F}^{X} the universe of fixed nonempty bounded subsets of X, i.e. the class of all families \widehat{D} of the form $\widehat{D} = \{D(t) = D : t \in \mathbb{R}\}$ with D a fixed nonempty bounded subset of X.

For \mathcal{D}_{F}^{X} , the corresponding minimal pullback \mathcal{D}_{F}^{X} -attractor $\mathcal{A}_{\mathcal{D}_{F}^{X}}$ is the one defined by Crauel, Debussche, and Flandoli.

Corollary

Under the assumptions of Theorem 5, if the universe \mathcal{D} contains the universe \mathcal{D}_F^X , then both attractors, $\mathcal{A}_{\mathcal{D}_F^X}$ and $\mathcal{A}_{\mathcal{D}}$, exist, and the following relation holds:

$$\mathcal{A}_{\mathcal{D}_F^X}(t) \subset \mathcal{A}_\mathcal{D}(t) \qquad orall t \in \mathbb{R}.$$

Remark

Under the above assumptions, if, moreover, $\widehat{D}_0 \in \mathcal{D}$, and for some $T \in \mathbb{R}$ the set $\cup_{t \leq T} D_0(t)$ is a bounded subset of X, then

$$\mathcal{A}_{\mathcal{D}_F^X}(t) = \mathcal{A}_\mathcal{D}(t) \qquad orall t \leq T.$$

Comparison of pullback \mathcal{D}_i -attractors

Theorem

Let $\{(X_i, d_{X_i})\}_{i=1,2}$ be metric spaces, $X_1 \subset X_2$ contin. injected, and for i = 1, 2, let \mathcal{D}_i be a universe in $\mathcal{P}(X_i)$, with $\mathcal{D}_1 \subset \mathcal{D}_2$. U acts as a process in both cases, $U : \mathbb{R}^2_d \times X_i \to X_i$ for i = 1, 2.

$$\mathcal{A}_i(t) = \overline{\bigcup_{\widehat{D}_i \in \mathcal{D}_i} \Lambda_i(\widehat{D}_i, t)}^{X_i}, \quad i = 1, 2.$$

Then, $\mathcal{A}_1(t) \subset \mathcal{A}_2(t)$ for all $t \in \mathbb{R}$.

Suppose moreover that the two following conditions are satisfied:

$$U(s, \tau)D_2(\tau) \subset D_1(s)$$
 for all $\tau \leq \tau_s$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then, under all the conditions above, $\mathcal{A}_1(t) = \mathcal{A}_2(t)$ for all $t \in \mathbb{R}$.

Remark

In the preceding theorem, if instead of assumption (ii) we consider the following condition:

(ii') for any $\widehat{D}_2 \in \mathcal{D}_2$ and any sequence $\tau_n \to -\infty$ there exist another family $\widehat{D}_1 \in \mathcal{D}_1$ and another sequence $\tau'_n \to -\infty$ with $\tau'_n \geq \tau_n$ for all n, such that U is pullback \widehat{D}_1 -asymptotically compact, and

$$U(\tau'_n, \tau_n)D_2(\tau_n) \subset D_1(\tau'_n), \quad \text{for all } n, \tag{2}$$

then, with a similar proof, the equality $A_2(t) = A_1(t)$ for all $t \in \mathbb{R}$, also holds.

Observe that a sufficient condition for (2) is that there exists T > 0 such that for any $\hat{D}_2 \in \mathcal{D}_2$, there exists a $\hat{D}_1 \in \mathcal{D}_1$ satisfying $U(\tau + T, \tau)D_2(\tau) \subset D_1(\tau + T)$, for all $\tau \in \mathbb{R}$.

Application to a 2D-Navier-Stokes model

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla p = f(t) \text{ in } (\tau, +\infty) \times \Omega, \\ \operatorname{div} u = 0 \text{ in } (\tau, +\infty) \times \Omega, \\ u = 0 \text{ on } (\tau, +\infty) \times \partial \Omega, \\ u(\tau, x) = u_{\tau}(x), \ x \in \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^2$ is open and bounded with smooth enough $\partial \Omega^1$, $\nu > 0$ is the kinematic viscosity, u is the velocity field of the fluid, p is the pressure, u_{τ} is the initial velocity field, and f the external force (time-dep.)term (Ex.: Arctic sea, control, etc)

¹Not for the results in H but in V.

$$\mathcal{V} = \left\{ u \in (C_0^\infty(\Omega))^2 : \operatorname{div} u = 0 \right\},$$

H = the closure of \mathcal{V} in $(L^2(\Omega))^2$ with the norm $|\cdot|$, and inner product (\cdot, \cdot) , where for $u, v \in (L^2(\Omega))^2$,

$$(u,v) = \sum_{j=1}^2 \int_{\Omega} u_j(x) v_j(x) \mathrm{d}x,$$

V = the closure of \mathcal{V} in $(H_0^1(\Omega))^2$ with the norm $\|\cdot\|$ associated to the inner product $((\cdot, \cdot))$, where for $u, v \in (H_0^1(\Omega))^2$,

$$((u, v)) = \sum_{i,j=1}^{2} \int_{\Omega} \frac{\partial u_j}{\partial x_i} \frac{\partial v_j}{\partial x_j} \mathrm{d}x.$$

Definition (Weak solution)

A weak solution is a function u that belongs to $L^2(\tau, T; V) \cap L^{\infty}(\tau, T; H)$ for all $T > \tau$, with $u(\tau) = u_{\tau}$, such that for all $v \in V$,

$$\frac{d}{dt}(u(t),v) + \nu \langle Au(t),v \rangle + b(u(t),u(t),v) = \langle f(t),v \rangle,$$

where the equation must be understood in the sense of $\mathcal{D}'(\tau, +\infty)$.

Remark

If u is a weak solution, then we deduce that for any $T > \tau$, one has $u' \in L^2(\tau, T; V')$, and so $u \in C([\tau, +\infty); H)$, whence the initial datum has full sense. Moreover, in this case the following energy equality holds for all $\tau \leq s \leq t$:

$$|u(t)|^2 + 2\nu \int_s^t \langle Au(r), u(r) \rangle dr = |u(s)|^2 + 2 \int_s^t \langle f(r), u(r) \rangle dr.$$

Definition (Strong solution)

A strong solution is a weak solution u of (17) such that $u \in L^2(\tau, T; D(A)) \cap L^{\infty}(\tau, T; V)$ for all $T > \tau$.

Remark

If $f \in L^2_{loc}(\mathbb{R}; H)$ and u is a strong solution, then $u' \in L^2(\tau, T; H)$ for all $T > \tau$, and so $u \in C([\tau, +\infty); V)$. In this case the following energy equality holds:

$$\|u(t)\|^{2} + 2\nu \int_{s}^{t} |Au(r)|^{2} dr + 2 \int_{s}^{t} b(u(r), u(r), Au(r)) dr$$

= $\|u(s)\|^{2} + 2 \int_{s}^{t} (f(r), Au(r)) dr, \quad \forall \tau \le s \le t.$

Theorem (Weak and strong solutions) $f \in L^2_{loc}(\mathbb{R}; V')$ and $u_{\tau} \in H \Rightarrow \exists!$ weak solution $u(\cdot) = u(\cdot; \tau, u_{\tau})$. $f \in L^2_{loc}(\mathbb{R}; H) \Rightarrow u \in C((\tau, T]; V) \cap L^2(\tau + \varepsilon, T; (H^2(\Omega))^2)$ for every $\varepsilon > 0$ and $T > \tau + \varepsilon$.

If $u_{\tau} \in V$, then $u \in C([\tau, T]; V) \cap L^{2}(\tau, T; (H^{2}(\Omega))^{2})$ for every $T > \tau$, i.e. u is a strong solution.

Theorem (Weak and strong solutions) $f \in L^2_{loc}(\mathbb{R}; V')$ and $u_{\tau} \in H \Rightarrow \exists !$ weak solution $u(\cdot) = u(\cdot; \tau, u_{\tau})$. $f \in L^2_{loc}(\mathbb{R}; H) \Rightarrow u \in C((\tau, T]; V) \cap L^2(\tau + \varepsilon, T; (H^2(\Omega))^2)$ for every $\varepsilon > 0$ and $T > \tau + \varepsilon$. If $u_{\tau} \in V$, then $u \in C([\tau, T]; V) \cap L^2(\tau, T; (H^2(\Omega))^2)$ for every

 $T > \tau$, i.e. u is a strong solution.

Therefore, when $f \in L^2_{loc}(\mathbb{R}; V')$, we can define a process $U : \mathbb{R}^2_d \times H \to H$ as

$$U(t,\tau)u_{\tau} = u(t;\tau,u_{\tau}) \quad \forall u_{\tau} \in H, \quad \forall \tau \leq t,$$

and if $f \in L^2_{loc}(\mathbb{R}; H)$, the restriction of this process to $\mathbb{R}^2_d \times V$ is a process in V.

Pullback \mathcal{D} -attractors in H

Proposition (Continuity of the process) If $f \in L^2_{loc}(\mathbb{R}; V')$, for any pair $(t, \tau) \in \mathbb{R}^2_d$, the map $U(t, \tau)$ is continuous from H into H.

Moreover, if $f \in L^2_{loc}(\mathbb{R}; H)$, then $U(t, \tau)$ is also continuous from V into V.

Pullback \mathcal{D} -attractors in H

Proposition (Continuity of the process) If $f \in L^2_{loc}(\mathbb{R}; V')$, for any pair $(t, \tau) \in \mathbb{R}^2_d$, the map $U(t, \tau)$ is continuous from H into H.

Moreover, if $f \in L^2_{loc}(\mathbb{R}; H)$, then $U(t, \tau)$ is also continuous from V into V.

Lemma

Assume that $f \in L^2_{loc}(\mathbb{R}; V')$ and $u_{\tau} \in H$. Consider any $\mu \in (0, 2\nu\lambda_1)$ fixed. Then, the solution u satisfies for all $t \geq \tau$:

$$|u(t)|^2 \leq e^{-\mu(t- au)}|u_{ au}|^2 + rac{e^{-\mu t}}{2
u - \mu\lambda_1^{-1}}\int_{ au}^t e^{\mu s}\|f(s)\|_*^2 ds.$$

Lemma

Assume that $f \in L^2_{loc}(\mathbb{R}; V')$ and $u_{\tau} \in H$. Consider any $\mu \in (0, 2\nu\lambda_1)$ fixed. Then, the solution u satisfies for all $t \geq \tau$:

$$|u(t)|^2 \leq e^{-\mu(t- au)}|u_{ au}|^2 + rac{e^{-\mu t}}{2
u - \mu\lambda_1^{-1}}\int_{ au}^t e^{\mu s}\|f(s)\|_*^2 ds.$$

Definition (Universe)

We will denote by \mathcal{D}^{H}_{μ} the class of all families of nonempty subsets $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(H)$ such that

$$\lim_{\tau \to -\infty} \left(e^{\mu \tau} \sup_{v \in D(\tau)} |v|^2 \right) = 0.$$

Remark $\mathcal{D}_{F}^{H} \subset \mathcal{D}_{\mu}^{H}$ and that \mathcal{D}_{μ}^{H} is inclusion-closed (tempered condition).

Corollary (\mathcal{D}^{H}_{μ} -absorbing family)

Assume that there exists some $\mu \in (0, 2\nu\lambda_1)$ such that

$$\int_{-\infty}^0 e^{\mu s} \|f(s)\|_*^2 ds < +\infty.$$

Then, $\widehat{D}_0 = \{D_0(t) : t \in \mathbb{R}\}$ defined by $D_0(t) = \overline{B}_H(0, R_H^{1/2}(t)),$

$$R_{H}(t) = 1 + rac{e^{-\mu t}}{2
u - \mu\lambda_{1}^{-1}} \int_{-\infty}^{t} e^{\mu s} \|f(s)\|_{*}^{2} ds,$$

is pullback \mathcal{D}_{μ}^{H} -absorbing for the process $U : \mathbb{R}_{d}^{2} \times H \to H$ (and therefore \mathcal{D}_{F}^{H} -absorbing too), and $\widehat{D}_{0} \in \mathcal{D}_{\mu}^{H}$.

(日) (同) (三) (三) (三) (○) (○)

Lemma (\mathcal{D}^{H}_{μ} -asymptotic compactness) The process U is pullback \mathcal{D}^{H}_{μ} -asymptotically compact.

Corollary (\mathcal{D}^{H}_{μ} -absorbing family)

Assume that there exists some $\mu \in (0, 2\nu\lambda_1)$ such that

$$\int_{-\infty}^0 e^{\mu s} \|f(s)\|_*^2 ds < +\infty.$$

Then, $\widehat{D}_0 = \{D_0(t) : t \in \mathbb{R}\}$ defined by $D_0(t) = \overline{B}_H(0, R_H^{1/2}(t)),$

$$R_{H}(t) = 1 + rac{e^{-\mu t}}{2
u - \mu\lambda_{1}^{-1}} \int_{-\infty}^{t} e^{\mu s} \|f(s)\|_{*}^{2} ds,$$

is pullback \mathcal{D}_{μ}^{H} -absorbing for the process $U : \mathbb{R}_{d}^{2} \times H \to H$ (and therefore \mathcal{D}_{F}^{H} -absorbing too), and $\widehat{D}_{0} \in \mathcal{D}_{\mu}^{H}$.

Lemma (\mathcal{D}^{H}_{μ} -asymptotic compactness) The process U is pullback \mathcal{D}^{H}_{μ} -asymptotically compact. Proof (energy method based on non-increasing continuous functionals) omitted, see V case below.

Theorem (Pullback \mathcal{D}_{μ}^{H} -attractor)

Assume that $f \in L^2_{loc}(\mathbb{R}; V')$ satisfies for some $\mu \in (0, 2\nu\lambda_1)$ the above condition. Then, \exists the minimal pullback \mathcal{D}_F^H -attractor

$$\mathcal{A}_{\mathcal{D}_{F}^{H}} = \{\mathcal{A}_{\mathcal{D}_{F}^{H}}(t) : t \in \mathbb{R}\}$$

and the minimal pullback \mathcal{D}^{H}_{μ} -attractor

$$\mathcal{A}_{\mathcal{D}^H_\mu} = \{\mathcal{A}_{\mathcal{D}^H_\mu}(t): t \in \mathbb{R}\},$$

for the process U. The family $\mathcal{A}_{\mathcal{D}_{\mu}^{H}}$ belongs to \mathcal{D}_{μ}^{H} , and the following relation holds:

$$\mathcal{A}_{\mathcal{D}_F^H}(t)\subset \mathcal{A}_{\mathcal{D}_\mu^H}(t)\subset \overline{B}_H(0, \mathcal{R}_H^{1/2}(t)) \quad orall t\in \mathbb{R}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark Useful in unbounded "Poincaré"-domains to obtain $\mathcal{A}_{D_{+}^{\mu}}$.

Regularity: pullback \mathcal{D} -attractors in V

From now on we assume that $f \in L^2_{loc}(\mathbb{R}; H)$, and satisfies

 $\int_{-\infty}^{0} e^{\mu s} |f(s)|^2 \, ds < +\infty, \quad \text{for some } \mu \in (0, 2\nu\lambda_1).$

Lemma

For any $t \in \mathbb{R}$ and $\widehat{D} \in \mathcal{D}_{\mu}^{H}$, there exists $\tau_{1}(\widehat{D}, t) < t - 3$, such that for any $\tau \leq \tau_{1}(\widehat{D}, t)$ and any $u_{\tau} \in D(\tau)$, it holds

$$\begin{cases} |u(r;\tau,u_{\tau})|^{2} \leq \rho_{1}(t) \quad for \ all \ r \in [t-3,t], \\ \|u(r;\tau,u_{\tau})\|^{2} \leq \rho_{2}(t) \quad for \ all \ r \in [t-2,t], \\ \int_{r-1}^{r} |Au(\theta;\tau,u_{\tau})|^{2} d\theta \leq \rho_{3}(t) \quad for \ all \ r \in [t-1,t], \\ \int_{r-1}^{r} |u'(\theta;\tau,u_{\tau})|^{2} d\theta \leq \rho_{4}(t) \quad for \ all \ r \in [t-1,t], \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

where

$$ho_1(t) = 1 + rac{e^{\mu(3-t)}}{2
u\lambda_1-\mu}\int_{-\infty}^t e^{\mu heta} \left|f(heta)
ight|^2 \ d heta,$$

$$\rho_{2}(t) = \max_{r \in [t-2,t]} \left\{ \left(\frac{1}{\nu} \rho_{1}(r) + \left(\frac{1}{\nu^{2}\lambda_{1}} + \frac{2}{\nu} \right) \int_{r-1}^{r} |f(\theta)|^{2} d\theta \right) \\ \times \exp \left[2C^{(\nu)} \rho_{1}(r) \left(\frac{1}{\nu} \rho_{1}(r) + \frac{1}{\nu^{2}\lambda_{1}} \int_{r-1}^{r} |f(\theta)|^{2} d\theta \right) \right] \right\},$$

$$\rho_{3}(t) = \frac{1}{\nu} \left(\rho_{2}(t) + \frac{2}{\nu} \int_{t-2}^{t} |f(\theta)|^{2} d\theta + 2C^{(\nu)}\rho_{1}(t)\rho_{2}^{2}(t) \right),$$

$$\rho_4(t) = \nu \rho_2(t) + 2 \int_{t-2}^t |f(\theta)|^2 d\theta + 2C_1^2 \rho_2(t) \rho_3(t),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

and $C^{(\nu)} = 27 C_1^4 (4\nu^3)^{-1}$.

Remark

 $\lim_{t\to-\infty}e^{\mu t}\rho_1(t)=0.$

So $\{\overline{B}_H(0,
ho_1^{1/2}(t)):t\in\mathbb{R}\}\in\mathcal{D}_\mu^H.$

We will denote by $\mathcal{D}_{\mu}^{H,V}$ the class of all families \widehat{D}_{V} of elements of $\mathcal{P}(V)$ of the form $\widehat{D}_{V} = \{D(t) \cap V : t \in \mathbb{R}\}$, where $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \in \mathcal{D}_{\mu}^{H}$. \mathcal{D}_{F}^{V} the universe of families (parameterized in time but constant for all $t \in \mathbb{R}$) of nonempty fixed bounded subsets of V. $\mathcal{D}_{\mu}^{H,V} \subset \mathcal{P}(V)$ is inclusion-closed, and evidently $\mathcal{D}_{F}^{V} \subset \mathcal{D}_{\mu}^{H,V}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Corollary (Absorbing in *H*+regularizing+tempered) *The family*

$$\widehat{D}_{0,V} = \{\overline{B}_H(0,
ho_1^{1/2}(t)) \cap V : t \in \mathbb{R}\}$$

belongs to $\mathcal{D}_{\mu}^{H,V}$ and satisfies that for any $t \in \mathbb{R}$ and any $\widehat{D} \in \mathcal{D}_{\mu}^{H}$, there exists a $\tau(\widehat{D}, t) < t$ such that

$$U(t, au)D(au)\subset D_{0,V}(t) \quad ext{for all } au\leq au(\widehat{D},t).$$

In particular, the family $\widehat{D}_{0,V}$ is pullback $\mathcal{D}_{\mu}^{H,V}$ -absorbing for the process $U : \mathbb{R}^2_d \times V \to V$.

Sketch of the proof:

$$\begin{cases} u^n \stackrel{*}{\rightharpoonup} u & \text{weak-star in } L^{\infty}(t-2,t;V), \\ u^n \stackrel{}{\rightarrow} u & \text{weakly in } L^2(t-2,t;D(A)), \\ (u^n)' \stackrel{}{\rightarrow} u' & \text{weakly in } L^2(t-2,t;H), \\ u^n \stackrel{}{\rightarrow} u & \text{strongly in } L^2(t-2,t;V), \\ u^n(s) \stackrel{}{\rightarrow} u(s) & \text{strongly in } V, \text{ a.e. } s \in (t-2,t). \end{cases}$$

Sketch of the proof:

$$\begin{cases} u^n \stackrel{*}{\rightarrow} u & \text{weak-star in } L^{\infty}(t-2,t;V), \\ u^n \rightarrow u & \text{weakly in } L^2(t-2,t;D(A)), \\ (u^n)' \rightarrow u' & \text{weakly in } L^2(t-2,t;H), \\ u^n \rightarrow u & \text{strongly in } L^2(t-2,t;V), \\ u^n(s) \rightarrow u(s) & \text{strongly in } V, \text{ a.e. } s \in (t-2,t). \end{cases}$$

From above $u \in C([t-2, t]; V)$ and u satisfies the eqn in (t-2, t).

Sketch of the proof:

$$\begin{cases} u^n \stackrel{*}{\rightarrow} u & \text{weak-star in } L^{\infty}(t-2,t;V), \\ u^n \rightarrow u & \text{weakly in } L^2(t-2,t;D(A)), \\ (u^n)' \rightarrow u' & \text{weakly in } L^2(t-2,t;H), \\ u^n \rightarrow u & \text{strongly in } L^2(t-2,t;V), \\ u^n(s) \rightarrow u(s) & \text{strongly in } V, \text{ a.e. } s \in (t-2,t). \end{cases}$$

From above $u \in C([t-2, t]; V)$ and u satisfies the eqn in (t-2, t).

 $\{u^n\}$ is equi-continuous in H, on [t-2, t].

Sketch of the proof:

$$\begin{cases} u^n \stackrel{*}{\rightarrow} u & \text{weak-star in } L^{\infty}(t-2,t;V), \\ u^n \rightarrow u & \text{weakly in } L^2(t-2,t;D(A)), \\ (u^n)' \rightarrow u' & \text{weakly in } L^2(t-2,t;H), \\ u^n \rightarrow u & \text{strongly in } L^2(t-2,t;V), \\ u^n(s) \rightarrow u(s) & \text{strongly in } V, \text{ a.e. } s \in (t-2,t). \end{cases}$$

From above $u \in C([t-2, t]; V)$ and u satisfies the eqn in (t-2, t).

 $\{u^n\}$ is equi-continuous in H, on [t-2, t]. Since $\{u^n\}$ is bounded in C([t-2, t]; V),

Lemma (Asymptotic compactness in V norm) The process $U : \mathbb{R}^2_d \times V \to V$ is pullback $\mathcal{D}^{H,V}_{\mu}$ - asymptotically compact.

Sketch of the proof:

$$\begin{cases} u^n \stackrel{*}{\rightarrow} u & \text{weak-star in } L^{\infty}(t-2,t;V), \\ u^n \rightarrow u & \text{weakly in } L^2(t-2,t;D(A)), \\ (u^n)' \rightarrow u' & \text{weakly in } L^2(t-2,t;H), \\ u^n \rightarrow u & \text{strongly in } L^2(t-2,t;V), \\ u^n(s) \rightarrow u(s) & \text{strongly in } V, \text{ a.e. } s \in (t-2,t). \end{cases}$$

From above $u \in C([t-2, t]; V)$ and u satisfies the eqn in (t-2, t).

 $\{u^n\}$ is equi-continuous in H, on [t-2, t]. Since $\{u^n\}$ is bounded in C([t-2, t]; V), by $V \subset H$ Ascoli-Arzelà Th.,

Lemma (Asymptotic compactness in V norm) The process $U : \mathbb{R}^2_d \times V \to V$ is pullback $\mathcal{D}^{H,V}_{\mu}$ - asymptotically compact.

Sketch of the proof:

$$\begin{cases} u^n \stackrel{*}{\rightarrow} u & \text{weak-star in } L^{\infty}(t-2,t;V), \\ u^n \rightarrow u & \text{weakly in } L^2(t-2,t;D(A)), \\ (u^n)' \rightarrow u' & \text{weakly in } L^2(t-2,t;H), \\ u^n \rightarrow u & \text{strongly in } L^2(t-2,t;V), \\ u^n(s) \rightarrow u(s) & \text{strongly in } V, \text{ a.e. } s \in (t-2,t). \end{cases}$$

From above $u \in C([t-2, t]; V)$ and u satisfies the eqn in (t-2, t).

 $\{u^n\}$ is equi-continuous in H, on [t-2, t]. Since $\{u^n\}$ is bounded in C([t-2, t]; V), by $V \subset H$ Ascoli-Arzelà Th., \exists subseq.

$$u^n \rightarrow u$$
 strongly in $C([t-2,t];H)$.

For all sequence $\{s_n\} \subset [t-2,t]$ with $s_n \to s_*$, it holds that $u^n(s_n) \rightharpoonup u(s_*)$ weakly in V,

Claim:

$$u^n
ightarrow u$$
 strongly in $C([t-1, t]; V)$,
If not, $\{t_n\} \subset [t-1, t], t_n
ightarrow t_* \ge t-1$
 $\|u^n(t_n) - u(t_*)\| \ge \varepsilon \quad \forall n \ge 1.$

For all sequence $\{s_n\} \subset [t-2,t]$ with $s_n \to s_*$, it holds that $u^n(s_n) \rightharpoonup u(s_*)$ weakly in V,

Claim:

$$u^n
ightarrow u$$
 strongly in $C([t-1,t];V),$
If not, $\{t_n\} \subset [t-1,t], t_n
ightarrow t_* \ge t-1$
 $\|u^n(t_n) - u(t_*)\| \ge \varepsilon \quad \forall n \ge 1.$

 $\|u(t_*)\|\leq \liminf_{n\to\infty}\|u^n(t_n)\|.$

for all
$$t - 2 \le s_1 \le s_2 \le t$$

 $\|u^n(s_2)\|^2 + \nu \int_{s_1}^{s_2} |Au^n(r)|^2 dr$
 $\le \|u^n(s_1)\|^2 + 2C^{(\nu)} \int_{s_1}^{s_2} |u^n(r)|^2 \|u^n(r)\|^4 dr + \frac{2}{\nu} \int_{s_1}^{s_2} |f(r)|^2 dr,$

and

$$\|u(s_2)\|^2 + \nu \int_{s_1}^{s_2} |Au(r)|^2 dr$$

$$\leq \|u(s_1)\|^2 + 2C^{(\nu)} \int_{s_1}^{s_2} |u(r)|^2 \|u(r)\|^4 dr + \frac{2}{\nu} \int_{s_1}^{s_2} |f(r)|^2 dr.$$

for all
$$t - 2 \le s_1 \le s_2 \le t$$

 $\|u^n(s_2)\|^2 + \nu \int_{s_1}^{s_2} |Au^n(r)|^2 dr$
 $\le \|u^n(s_1)\|^2 + 2C^{(\nu)} \int_{s_1}^{s_2} |u^n(r)|^2 \|u^n(r)\|^4 dr + \frac{2}{\nu} \int_{s_1}^{s_2} |f(r)|^2 dr,$

 and

$$\begin{aligned} \|u(s_2)\|^2 + \nu \int_{s_1}^{s_2} |Au(r)|^2 dr \\ \leq \|u(s_1)\|^2 + 2C^{(\nu)} \int_{s_1}^{s_2} |u(r)|^2 \|u(r)\|^4 dr + \frac{2}{\nu} \int_{s_1}^{s_2} |f(r)|^2 dr. \end{aligned}$$

In particular we can define the functions

$$J_n(s) = \|u^n(s)\|^2 - 2C^{(\nu)} \int_{t-2}^s |u^n(r)|^2 \|u^n(r)\|^4 dr - \frac{2}{\nu} \int_{t-2}^s |f(r)|^2 dr,$$

$$J(s) = \|u(s)\|^2 - 2C^{(\nu)} \int_{t-2}^s |u(r)|^2 \|u(r)\|^4 dr - \frac{2}{\nu} \int_{t-2}^s |f(r)|^2 dr.$$

$$J_n(s) \rightarrow J(s)$$
 a.e. $s \in (t-2, t)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$J_n(s) o J(s)$$
 a.e. $s \in (t-2, t)$.
 $\exists \{\tilde{t}_k\} \subset (t-2, t_*) \text{ such that } \tilde{t}_k \to t_*, \text{ and}$
 $\lim_{n \to +\infty} J_n(\tilde{t}_k) = J(\tilde{t}_k) \text{ for all } k.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$J_n(s) o J(s)$$
 a.e. $s \in (t-2, t)$.
 $\exists \{\tilde{t}_k\} \subset (t-2, t_*) \text{ such that } \tilde{t}_k \to t_*, \text{ and}$
 $\lim_{n \to +\infty} J_n(\tilde{t}_k) = J(\tilde{t}_k) \text{ for all } k.$

 J_n are non-increasing, so

$$egin{array}{rcl} J_n(t_n)-J(t_*)&\leq&J_n(ilde{t}_{k_\delta})-J(t_*)\ &\leq&|J_n(ilde{t}_{k_\delta})-J(t_*)|\ &\leq&|J_n(ilde{t}_{k_\delta})-J(ilde{t}_{k_\delta})|+|J(ilde{t}_{k_\delta})-J(t_*)|<\delta. \end{array}$$

$$J_n(s) o J(s)$$
 a.e. $s \in (t-2, t)$.
 $\exists \{\tilde{t}_k\} \subset (t-2, t_*) \text{ such that } \tilde{t}_k \to t_*, \text{ and}$
 $\lim_{n \to +\infty} J_n(\tilde{t}_k) = J(\tilde{t}_k) \text{ for all } k.$

 J_n are non-increasing, so

$$egin{array}{rcl} J_n(t_n)-J(t_*)&\leq&J_n(ilde{t}_{k_\delta})-J(t_*)\ &\leq&|J_n(ilde{t}_{k_\delta})-J(t_*)|\ &\leq&|J_n(ilde{t}_{k_\delta})-J(ilde{t}_{k_\delta})|+|J(ilde{t}_{k_\delta})-J(t_*)|<\delta. \end{array}$$

This yields that

$$\limsup_{n\to\infty} J_n(t_n) \leq J(t_*),$$

$$J_n(s) o J(s)$$
 a.e. $s \in (t-2, t)$.
 $\exists \{\tilde{t}_k\} \subset (t-2, t_*) \text{ such that } \tilde{t}_k \to t_*, \text{ and}$
 $\lim_{n \to +\infty} J_n(\tilde{t}_k) = J(\tilde{t}_k) \text{ for all } k.$

 J_n are non-increasing, so

$$egin{array}{lll} J_n(t_n)-J(t_*)&\leq&J_n(ilde{t}_{k_\delta})-J(t_*)\ &\leq&|J_n(ilde{t}_{k_\delta})-J(t_*)|\ &\leq&|J_n(ilde{t}_{k_\delta})-J(ilde{t}_{k_\delta})|+|J(ilde{t}_{k_\delta})-J(t_*)|<\delta. \end{array}$$

This yields that

$$\limsup_{n\to\infty} J_n(t_n) \leq J(t_*),$$

and therefore,

$$\limsup_{n\to\infty}\|u^n(t_n)\|\leq\|u(t_*)\|.$$

Thus, $u^n(t_n) \rightarrow u(t_*)$ strongly in V.

Theorem There exist the minimal pullback \mathcal{D}_{F}^{V} -attractor

$$\mathcal{A}_{\mathcal{D}_{F}^{V}} = \{\mathcal{A}_{\mathcal{D}_{F}^{V}}(t) : t \in \mathbb{R}\},$$

and the minimal pullback $\mathcal{D}^{H,V}_{\mu}$ -attractor

$$\mathcal{A}_{\mathcal{D}_{\mu}^{H,V}}=\{\mathcal{A}_{\mathcal{D}_{\mu}^{H,V}}(t):t\in\mathbb{R}\}$$

for the process $U: \mathbb{R}^2_d \times V \to V$, and

$$\mathcal{A}_{\mathcal{D}_{F}^{V}}(t)\subset\mathcal{A}_{\mathcal{D}_{F}^{H}}(t)\subset\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H,V}}(t) \quad \textit{for all } t\in\mathbb{R},$$

In particular, the following pullback attraction result in V holds:

 $\lim_{\tau \to -\infty} \operatorname{dist}_{V}(U(t,\tau)D(\tau),\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)) = 0 \quad \text{for all } t \in \mathbb{R} \text{ and any } \widehat{D} \in \mathcal{D}_{\mu}^{H}.$

Finally, if moreover f satisfies

$$\sup_{s\leq 0}\left(e^{-\mu s}\int_{-\infty}^{s}e^{\mu\theta}|f(\theta)|^{2}\,d\theta\right)<+\infty,$$

then (from ρ_i , i = 1, 2)

$$\mathcal{A}_{\mathcal{D}_{F}^{V}}(t)=\mathcal{A}_{\mathcal{D}_{F}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)=\mathcal{A}_{\mathcal{D}_{\mu}^{H,V}}(t) \quad \text{for all } t\in\mathbb{R},$$

and for any bounded subset B of H

$$\lim_{\tau \to -\infty} \operatorname{dist}_{\boldsymbol{V}}(\boldsymbol{U}(t,\tau)\boldsymbol{B}, \mathcal{A}_{\mathcal{D}_{\boldsymbol{F}}^{\boldsymbol{H}}}(t)) = 0 \quad \text{for all } t \in \mathbb{R}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark (Infinitely many bigger universes) If $f \in L^2_{loc}(\mathbb{R}; H)$ satisfies $\int_{-\infty}^0 e^{\mu s} |f(s)|^2 ds < +\infty$, then $\int_{-\infty}^0 e^{\sigma s} |f(s)|^2 ds < +\infty$, for all $\sigma \in (\mu, 2\nu\lambda_1)$.

Thus, for any $\sigma \in (\mu, 2\nu\lambda_1)$, $\exists \mathcal{D}_{\sigma}^{H}$ -pullback attractor, $\mathcal{A}_{\mathcal{D}_{\sigma}^{H}}$.

Remark (Infinitely many bigger universes)
If
$$f \in L^2_{loc}(\mathbb{R}; H)$$
 satisfies $\int_{-\infty}^0 e^{\mu s} |f(s)|^2 ds < +\infty$, then
 $\int_{-\infty}^0 e^{\sigma s} |f(s)|^2 ds < +\infty$, for all $\sigma \in (\mu, 2\nu\lambda_1)$.

Thus, for any $\sigma \in (\mu, 2\nu\lambda_1)$, $\exists \mathcal{D}_{\sigma}^{H}$ -pullback attractor, $\mathcal{A}_{\mathcal{D}_{\sigma}^{H}}$.

Since $\mathcal{D}^{H}_{\mu} \subset \mathcal{D}^{H}_{\sigma}$, by comparison, for any $t \in \mathbb{R}$,

 $\mathcal{A}_{\mathcal{D}^H_{\mu}}(t) \subset \mathcal{A}_{\mathcal{D}^H_{\sigma}}(t) \quad \text{for all } \sigma \in (\mu, 2\nu\lambda_1).$

Moreover, if f satisfies $\sup_{s \leq 0} \left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta} |f(\theta)|^2 d\theta \right) < +\infty$, then, comparing with the \mathcal{D}_{F}^{H} attractor,

$$\mathcal{A}_{\mathcal{D}_F^H}(t) = \mathcal{A}_{\mathcal{D}_\mu^H}(t) = \mathcal{A}_{\mathcal{D}_\sigma^H}(t) \quad \text{for all } t \in \mathbb{R}, \text{ and any } \sigma \in (\mu, 2\nu\lambda_1).$$

Tempered behaviour of the pullback attractors

The pullback attractor $\mathcal{A}_{\mathcal{D}^H_{\mu}} \in \mathcal{D}^H_{\mu}$, i.e. one has that

$$\lim_{t\to-\infty}\left(e^{\mu t}\sup_{v\in\mathcal{A}_{\mathcal{D}_{\mu}^{H}}(t)}|v|^{2}\right)=0.$$

Proposition

$$\begin{split} f \in L^2_{loc}(\mathbb{R};H): \sup_{s \leq 0} \left(e^{-\mu s} \int_{-\infty}^s e^{\mu \theta} |f(\theta)|^2 \, d\theta \right) < +\infty, \\ \widehat{D} \in \mathcal{D}^H_{\mu} \text{ invariant w.r.t. } U: \ D(t) = U(t,\tau)D(\tau) \text{ for all } \tau \leq t. \\ Then, \end{split}$$

$$\lim_{t\to-\infty}\left(e^{\mu t}\sup_{v\in D(t)}\|v\|^2\right)=0.$$

Proposition (More a-priori + derivating eqn.) $f \in W_{loc}^{1,2}(\mathbb{R}; H): \int_{-\infty}^{0} e^{\mu s} |f(s)|^2 ds < +\infty$, then for each $t \in \mathbb{R}$ and $\widehat{D} \in \mathcal{D}_{\mu}^{H}$ there exists $\tau_{1}(\widehat{D}, t) < t - 3$ such that

 $|AU(r,\tau)u_{\tau}|^2 \leq
ho_6(t)$ for all $r \in [t-1,t], \tau \leq \tau_1(\widehat{D},t), u_{\tau} \in D(\tau),$ where

$$ho_6(t) = rac{4}{
u^2}(
ho_5(t) + \max_{r\in[t-1,t]}|f(r)|^2) + rac{2C^{(
u)}}{
u}
ho_1(t)
ho_2(t)^2,$$

with $\rho_5(t)$ defined by

$$\rho_{5}(t) = \left(\rho_{4}(t) + \frac{1}{\nu\lambda_{1}}\int_{t-2}^{t}\left|f'(\theta)\right|^{2}d\theta\right)\exp\left(\frac{C_{1}^{2}}{\nu}\rho_{2}(t)\right).$$

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

Proposition (Above result + estimating f) $f \in W^{1,2}_{loc}(\mathbb{R}; H): \quad \sup_{s \le 0} \left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta} |f(\theta)|^2 d\theta \right) < +\infty,$

$$\lim_{t\to-\infty}\left(e^{\mu t}\int_{t-1}^t |f'(\theta)|^2 \, d\theta\right) = 0, \qquad \lim_{t\to-\infty}\left(e^{\mu t}|f(t)|^2\right) = 0.$$

Then, for every invariant family $\widehat{D} \in \mathcal{D}^{\mathcal{H}}_{\mu}$:

$$\lim_{t\to-\infty}\left(e^{\mu t}\sup_{v\in D(t)}\|v\|^2_{(H^2(\Omega))^2}\right)=0.$$

Proposition (Above result + estimating f) $f \in W^{1,2}_{loc}(\mathbb{R}; H): \quad \sup_{s \le 0} \left(e^{-\mu s} \int_{-\infty}^{s} e^{\mu \theta} |f(\theta)|^2 d\theta \right) < +\infty,$

$$\lim_{t\to-\infty}\left(e^{\mu t}\int_{t-1}^t|f'(\theta)|^2\,d\theta\right)=0,\qquad\lim_{t\to-\infty}\left(e^{\mu t}|f(t)|^2\right)=0.$$

Then, for every invariant family $\widehat{D} \in \mathcal{D}^{\mathcal{H}}_{\mu}$:

$$\lim_{t\to-\infty}\left(e^{\mu t}\sup_{v\in D(t)}\|v\|^2_{(H^2(\Omega))^2}\right)=0.$$

Proof: $|f(r)| \le |f(t-1)| + \left(\int_{t-1}^t |f'(\theta)|^2 \, d\theta\right)^{1/2} \forall r \in [t-1,t].$

Flattening property: shorter proof of asymp.compact in V

A splitting of the solutions into high and low components

A very common technique in the study of the qualitative behaviour of solutions for PDE problems (long-time dynamics):

Flattening property: shorter proof of asymp.compact in V

A splitting of the solutions into high and low components

A very common technique in the study of the qualitative behaviour of solutions for PDE problems (long-time dynamics):

In the construction of invariant manifolds:

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations 74 (1988), 285–317.
D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathe- matics 840,

Springer-Verlag, Berlin-New York, 1981.

Flattening property: shorter proof of asymp.compact in V

A splitting of the solutions into high and low components

A very common technique in the study of the qualitative behaviour of solutions for PDE problems (long-time dynamics):

In the construction of invariant manifolds:

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations 74 (1988), 285–317.
D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathe- matics 840, Springer-Verlag, Berlin-New York, 1981.

Inertial manifolds:

• C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, *J. Differential Equations* **73** (1988), 309–353.

• S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds, *J. Math. Anal. Appl.* **169** (1992), 283–312.

The squeezing property:

• C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, *RAIRO Modl. Math. Anal. Numr.* **22** (1988), 93–118.

• R. Temam, *Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Springer, New York, 1988.

The squeezing property:

• C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, *RAIRO Modl. Math. Anal. Numr.* **22** (1988), 93–118.

• R. Temam, *Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Springer, New York, 1988.

Determining modes:

 C. Foias, O. P. Manley, R. Temam and Y. M. Trve, Asymptotic analysis of the Navier–Stokes equations, *Phys. D* 9 (1983), 157–188.

• D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier?Stokes equations, *Indiana Univ. Math. J.* **42** (1993), 875–887.

Existence of attractors

• 'Condition (C)' Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, *Indiana Univ. Math. J.* **51** (2002), 1541–1559.

Existence of attractors

• 'Condition (C)' Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, *Indiana Univ. Math. J.* **51** (2002), 1541–1559.

• 'Flattening property' P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.* **463** (2007), 163–181.

Existence of attractors

• 'Condition (C)' Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, *Indiana Univ. Math. J.* **51** (2002), 1541–1559.

• 'Flattening property' P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.* **463** (2007), 163–181.

Definition (Pullback \widehat{D}_0 -flattening property)

U satisfies the pullback \widehat{D}_0 -flattening property if for any $t \in \mathbb{R}$ and $\varepsilon > 0$, there exist $\tau_{\varepsilon} < t$, a finite dimensional subspace X_{ε} of *X*, and a mapping $P_{\varepsilon} : X \to X_{\varepsilon}$ such that

$$\bigcup_{\tau \leq \tau_{\varepsilon}} P_{\varepsilon} U(t,\tau) D_0(\tau) \text{ is bounded in } X$$

 $\|(Id_X - P_{\varepsilon})U(t,\tau)u^{\tau}\|_X < \varepsilon \quad \text{for any } \tau \leq \tau_{\varepsilon}, \ u^{\tau} \in D_0(\tau).$

Proposition (Flattening implies asymp.compact)

 $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t, \tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proposition (Flattening implies asymp.compact) $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t, \tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proof. Fix $k \ge 1$ (integer), $\exists P_k : X \to X_k$ (fin.dim.subspace of X) $\{P_k U(t, \tau_n) x_n\}_{n \ge N_k}$ bounded in X_k (therefore relatively compact)

Proposition (Flattening implies asymp.compact) $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t, \tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proof. Fix $k \ge 1$ (integer), $\exists P_k : X \to X_k$ (fin.dim.subspace of X) { $P_k U(t, \tau_n) x_n$ } $_{n\ge N_k}$ bounded in X_k (therefore relatively compact) $\|(I - P_k)U(t, \tau_n) x_n\|_X \le 1/(3k)$ for all $n \ge N_k$.

Proposition (Flattening implies asymp.compact) $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t, \tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proof. Fix $k \ge 1$ (integer), $\exists P_k : X \to X_k$ (fin.dim.subspace of X) { $P_k U(t, \tau_n) x_n$ } $_{n \ge N_k}$ bounded in X_k (therefore relatively compact) $\|(I - P_k)U(t, \tau_n) x_n\|_X \le 1/(3k)$ for all $n \ge N_k$.

Thus, $\{PUx_n\} \subset \bigcup_{i=1}^M B_{X_k}(PUx_i, 1/(3k))$ (reordering)

Proposition (Flattening implies asymp.compact) $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t, \tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proof. Fix $k \ge 1$ (integer), $\exists P_k : X \to X_k$ (fin.dim.subspace of X) { $P_k U(t, \tau_n) x_n$ } $_{n\ge N_k}$ bounded in X_k (therefore relatively compact) $\|(I - P_k)U(t, \tau_n) x_n\|_X \le 1/(3k)$ for all $n \ge N_k$.

Thus, $\{PUx_n\} \subset \bigcup_{i=1}^{M} B_{X_k}(PUx_i, 1/(3k))$ (reordering) $\Rightarrow \|Ux_n - Ux_i\| \le \|PUx_n - PUx_i\| + \|QUx_n\| + \|QUx_i\| \le 1/k$

Proposition (Flattening implies asymp.compact) $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t,\tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proof. Fix $k \ge 1$ (integer), $\exists P_k : X \to X_k$ (fin.dim.subspace of X) { $P_k U(t, \tau_n) x_n$ } $_{n \ge N_k}$ bounded in X_k (therefore relatively compact) $\|(I - P_k)U(t, \tau_n) x_n\|_X \le 1/(3k)$ for all $n \ge N_k$.

Thus, $\{PUx_n\} \subset \bigcup_{i=1}^M B_{X_k}(PUx_i, 1/(3k))$ (reordering) $\Rightarrow \|Ux_n - Ux_i\| \le \|PUx_n - PUx_i\| + \|QUx_n\| + \|QUx_i\| \le 1/k$

 $\{Ux_n\} \subset \cup_{i=1}^M B_X(Ux_i, 1/k) \text{ (get a ball with infinite elements)}$

Proposition (Flattening implies asymp.compact) $t \in \mathbb{R}$, sequences $(t \ge)\tau_n \to -\infty$, $x_n \in D_0(\tau_n)$. Then $\{U(t, \tau_n)x_n : n \ge 1\}$ is relatively compact in X (Banach space).

Proof. Fix $k \ge 1$ (integer), $\exists P_k : X \to X_k$ (fin.dim.subspace of X) { $P_k U(t, \tau_n) x_n$ } $_{n \ge N_k}$ bounded in X_k (therefore relatively compact) $\|(I - P_k)U(t, \tau_n) x_n\|_X \le 1/(3k)$ for all $n \ge N_k$.

Thus, $\{PUx_n\} \subset \bigcup_{i=1}^M B_{X_k}(PUx_i, 1/(3k))$ (reordering) $\Rightarrow \|Ux_n - Ux_i\| \le \|PUx_n - PUx_i\| + \|QUx_n\| + \|QUx_i\| \le 1/k$

 $\{Ux_n\} \subset \cup_{i=1}^M B_X(Ux_i, 1/k) \text{ (get a ball with infinite elements)}$

 $\{U(t,\tau_n)x_n : n \ge 1\}$ possesses a Cauchy subseq. in X (Banach)

If $f \in L^2_{loc}(\mathbb{R}; H)$ satisfies $\int_{-\infty}^0 e^{\mu s} |f(s)|^2 ds < \infty$ for some $\mu \in (0, 2\nu\lambda_1)$, then, for any $t \in \mathbb{R}$,

$$\lim_{\rho\to\infty}e^{-\rho t}\int_{-\infty}^t e^{\rho s}|f(s)|^2\,ds=0.$$

Proposition

For any $\varepsilon > 0$ and $t \in \mathbb{R}$, there exists $m = m(\varepsilon, t) \in \mathbb{N}$ such that for any $\widehat{D} \in \mathcal{D}_{\mu}^{H}$, the projection $P_m : V \to V_m := \operatorname{span}[w_1, \ldots, w_m]$ satisfies the following properties:

$$\{ {{\mathcal P}_m}{\mathcal U}(t, au){\mathcal D}(au): au \leq au_1(\widehat{D},t) \}$$
 is bounded in ${\mathcal V}_{ au}$

and

$$\|(I-P_m)U(t, au)u_ au\|$$

Proof: Recall the strong estimates we had...

$$egin{aligned} orall t \in \mathbb{R}, \, \widehat{D} \in \mathcal{D}^H_\mu, \, \exists au_1(\widehat{D},t) < t-2 \, ext{ s. t. } orall t \leq au_1(\widehat{D},t), \, u_ au \in D(au) \ & |u(r; au,u_ au)|^2 &\leq R_1^2(t) \quad orall \, r \in [t-2,t], \ & \|u(r; au,u_ au)\|^2 &\leq R_2^2(t) \quad orall \, r \in [t-1,t], \ &
u \int_{t-1}^t |Au(heta; au,u_ au)|^2 \, d heta &\leq R_3^2(t), \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$egin{aligned} orall t \in \mathbb{R}, \, \widehat{D} \in \mathcal{D}^H_\mu, \, \exists au_1(\widehat{D},t) < t-2 ext{ s. t. } orall t \leq au_1(\widehat{D},t), \, u_ au \in D(au) \ & |u(r; au,u_ au)|^2 \ \leq \ R_1^2(t) \ orall \, r \in [t-2,t], \ & \|u(r; au,u_ au)\|^2 \ \leq \ R_2^2(t) \ orall \, r \in [t-1,t], \ &
u \int_{t-1}^t |Au(heta; au,u_ au)|^2 \, d heta \ \leq \ R_3^2(t), \end{aligned}$$

where

$$\begin{aligned} R_1^2(t) &= 1 + e^{-\mu(t-2)} (2\nu\lambda_1 - \mu)^{-1} \int_{-\infty}^t e^{\mu\theta} |f(\theta)|^2 \, d\theta, \\ R_2^2(t) &= \nu^{-1} \left(R_1^2(t) + (\nu^{-1}\lambda_1^{-1} + 2) \int_{t-2}^t |f(\theta)|^2 \, d\theta \right) \\ &\quad \times \exp\left[2\nu^{-1} C^{(\nu)} R_1^2(t) \left(R_1^2(t) + \nu^{-1}\lambda_1^{-1} \int_{t-2}^t |f(\theta)|^2 \, d\theta \right) \right], \\ R_3^2(t) &= R_2^2(t) + 2\nu^{-1} \int_{t-1}^t |f(\theta)|^2 \, d\theta + 2C^{(\nu)} R_1^2(t) R_2^4(t). \end{aligned}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへの

$$\begin{split} \{w_j\}_{j\geq 1} \text{ special basis } &\Rightarrow P_m \text{ non-expansive in } V \\ &\Rightarrow \{P_m U(t,\tau) D(\tau) : \tau \leq \tau_1(\widehat{D},t)\} \text{ bounded in } V \ \forall m \geq 1. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\{w_j\}_{j\geq 1} \text{ special basis } \Rightarrow P_m \text{ non-expansive in } V$ $\Rightarrow \{P_m U(t,\tau)D(\tau) : \tau \leq \tau_1(\widehat{D},t)\} \text{ bounded in } V \ \forall m \geq 1.$

 $q_m(r) = u(r) - P_m u(r)$ and the second energy equality

 $\frac{1}{2}\frac{d}{dr}\|q_m(r)\|^2 + \nu|Aq_m(r)|^2 = -b(u(r), u(r), Aq_m(r)) + (f(r), Aq_m(r))$

 $\leq rac{
u}{2}|Aq_m(r)|^2 + rac{1}{
u}|f(r)|^2 + rac{C_1^2}{
u}R_1(t)R_2^2(t)|Au(r)|$ a.e. t - 1 < r < t.

 $\{w_i\}_{i\geq 1}$ special basis $\Rightarrow P_m$ non-expansive in V \Rightarrow { $P_m U(t, \tau) D(\tau) : \tau \leq \tau_1(\widehat{D}, t)$ } bounded in $V \forall m \geq 1$. $q_m(r) = u(r) - P_m u(r)$ and the second energy equality $\frac{1}{2}\frac{d}{dr}||q_m(r)||^2 + \nu|Aq_m(r)|^2 = -b(u(r), u(r), Aq_m(r)) + (f(r), Aq_m(r))$ $\leq \frac{\nu}{2}|Aq_m(r)|^2 + \frac{1}{\nu}|f(r)|^2 + \frac{C_1^2}{\nu}R_1(t)R_2^2(t)|Au(r)|$ a.e. t - 1 < r < t. $|Aq_m(r)|^2 \ge \lambda_{m+1} ||q_m(r)||^2$, implies that (a.e. t - 1 < r < t) $\frac{d}{dr} \|q_m(r)\|^2 + \nu \lambda_{m+1} \|q_m(r)\|^2 \le 2\nu^{-1} |f(r)|^2 + 2C_1^2 \nu^{-1} R_1(t) R_2^2(t) |Au(r)|$

Multiplying by $e^{\nu\lambda_{m+1}r}$, integrating from t-1 to t,

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\begin{aligned} & \text{Multiplying by } e^{\nu\lambda_{m+1}r}, \text{ integrating from } t-1 \text{ to } t, \\ & e^{\nu\lambda_{m+1}t} \|q_m(t)\|^2 \\ \leq & e^{\nu\lambda_{m+1}(t-1)} \|q_m(t-1)\|^2 + 2\nu^{-1} \int_{t-1}^t e^{\nu\lambda_{m+1}r} |f(r)|^2 \, dr \\ & + 2C_1^2 \nu^{-1}R_1(t)R_2^2(t) \int_{t-1}^t e^{\nu\lambda_{m+1}r} |Au(r)| \, dr \\ \leq & e^{\nu\lambda_{m+1}(t-1)} \|u(t-1)\|^2 + 2\nu^{-1} \int_{t-1}^t e^{\nu\lambda_{m+1}r} |f(r)|^2 \, dr \\ & + 2C_1^2 \nu^{-1}R_1(t)R_2^2(t) \left(\int_{t-1}^t e^{2\nu\lambda_{m+1}r} \, dr\right)^{1/2} \left(\int_{t-1}^t |Au(r)|^2 \, dr\right)^{1/2} \\ \leq & e^{\nu\lambda_{m+1}(t-1)}R_2^2(t) + 2\nu^{-1} \int_{t-1}^t e^{\nu\lambda_{m+1}r} |f(r)|^2 \, dr \\ & + 2C_1^2 \nu^{-3/2}R_1(t)R_2^2(t)R_3(t)(2\nu\lambda_{m+1})^{-1/2}e^{\nu\lambda_{m+1}t}. \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Multiplying by
$$e^{\nu\lambda_{m+1}r}$$
, integrating from $t-1$ to t ,
 $e^{\nu\lambda_{m+1}t} ||q_m(t)||^2$
 $\leq e^{\nu\lambda_{m+1}(t-1)} ||q_m(t-1)||^2 + 2\nu^{-1} \int_{t-1}^t e^{\nu\lambda_{m+1}r} |f(r)|^2 dr$
 $+ 2C_1^2 \nu^{-1}R_1(t)R_2^2(t) \int_{t-1}^t e^{\nu\lambda_{m+1}r} |Au(r)| dr$
 $\leq e^{\nu\lambda_{m+1}(t-1)} ||u(t-1)||^2 + 2\nu^{-1} \int_{t-1}^t e^{\nu\lambda_{m+1}r} |f(r)|^2 dr$
 $+ 2C_1^2 \nu^{-1}R_1(t)R_2^2(t) \left(\int_{t-1}^t e^{2\nu\lambda_{m+1}r} dr\right)^{1/2} \left(\int_{t-1}^t |Au(r)|^2 dr\right)^{1/2}$
 $\leq e^{\nu\lambda_{m+1}(t-1)}R_2^2(t) + 2\nu^{-1} \int_{t-1}^t e^{\nu\lambda_{m+1}r} |f(r)|^2 dr$
 $+ 2C_1^2 \nu^{-3/2}R_1(t)R_2^2(t)R_3(t)(2\nu\lambda_{m+1})^{-1/2}e^{\nu\lambda_{m+1}t}.$
Since $\lambda_m \to \infty$ as $m \to \infty$, $\exists m = m(\varepsilon, t) \in \mathbb{N}$ s.t.

 $\|(I-P_m)U(t,\tau)u_{\tau}\| < \varepsilon \,\forall \tau \leq \tau_1(\widehat{D},t), \, u_{\tau} \in D(\tau).$

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ つんぐ

Navier-Stokes eqns with delay terms

- T. Caraballo and J. Real, Navier-Stokes equations with delays, *R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.* 457 (2001), 2441–2453.
- T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, *R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.* **459** (2003), 3181–3194.
- T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, *J. Differential Equations* 205 (2004), 271–297.

The functional Navier-Stokes problem:

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f(t) + g(t, u_t) & \text{in } \Omega \times (\tau, \infty), \\ \text{div } u = 0 & \text{in } \Omega \times (\tau, \infty), \\ u = 0 & \text{on } \partial \Omega \times (\tau, \infty), \\ u(x, \tau) = u^{\tau}(x), \quad x \in \Omega, \\ u(x, \tau + s) = \phi(x, s), \quad x \in \Omega, s \in (-h, 0), \end{cases}$$

 u_t the function defined a.e. on (-h, 0) by the relation $u_t(s) = u(t+s)$, a.e. $s \in (-h, 0)$.

$$\begin{split} \mathcal{C}_{H} &= \mathcal{C}([-h,0];H) \text{ with norm } |\varphi|_{\mathcal{C}_{H}} = \max_{s \in [-h,0]} |\varphi(s)|, \\ L_{X}^{2} &= L^{2}(-h,0;X) \text{ for } X = H, V. \end{split}$$

$$g : \mathbb{R} \times \mathcal{C}_{H} \rightarrow (L^{2}(\Omega))^{2} \text{ satisfies} \\ (1) \quad \forall \xi \in \mathcal{C}_{H}, \ \mathbb{R} \ni t \mapsto g(t,\xi) \in (L^{2}(\Omega))^{2} \text{ is measurable}, \\ (11) \quad g(t,0) = 0, \text{ for all } t \in \mathbb{R}, \\ (11) \quad \exists L_{g} > 0 \text{ s.t. } \forall t \in \mathbb{R}, \ \xi, \ \eta \in \mathcal{C}_{H}, \\ &|g(t,\xi) - g(t,\eta)| \leq L_{g}|\xi - \eta|_{\mathcal{C}_{H}}, \\ (1V) \quad \exists \mathcal{C}_{g} > 0 \text{ s.t. } \forall \tau \leq t, \ u, \ v \in \mathcal{C}([\tau - h, t]; H), \\ &\int_{\tau}^{t} |g(s, u_{s}) - g(s, v_{s})|^{2} ds \leq \mathcal{C}_{g}^{2} \int_{\tau - h}^{t} |u(s) - v(s)|^{2} ds. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Observe that (I) - (III) imply that given $T > \tau$ and $u \in C([\tau - h, T]; H)$, the function $g_u : [\tau, T] \to (L^2(\Omega))^2$ defined by $g_u(t) = g(t, u_t)$ for all $t \in [\tau, T]$, is measurable and, in fact, belongs to $L^{\infty}(\tau, T; (L^2(\Omega))^2)$.

Observe that (I) - (III) imply that given $T > \tau$ and $u \in C([\tau - h, T]; H)$, the function $g_u : [\tau, T] \to (L^2(\Omega))^2$ defined by $g_u(t) = g(t, u_t)$ for all $t \in [\tau, T]$, is measurable and, in fact, belongs to $L^{\infty}(\tau, T; (L^2(\Omega))^2)$.

Then, thanks to (IV), the mapping

$$\mathcal{G}: u \in C([\tau - h, T]; H) \rightarrow g_u \in L^2(\tau, T; (L^2(\Omega))^2)$$

has a unique extension to a mapping $\tilde{\mathcal{G}}$ which is uniformly continuous from $L^2(\tau - h, T; H)$ into $L^2(\tau, T; (L^2(\Omega))^2)$. From now on, we will denote $g(t, u_t) = \tilde{\mathcal{G}}(u)(t)$ for each $u \in L^2(\tau - h, T; H)$, and thus property (IV) will also hold for all u, $v \in L^2(\tau - h, T; H)$.

(日) (同) (三) (三) (三) (○) (○)

A weak solution $u \in L^2(\tau - h, T; H) \cap L^2(\tau, T; V) \cap L^{\infty}(\tau, T; H)$ for all $T > \tau$, with $u(\tau) = u^{\tau}$, $u(t) = \phi(t - \tau)$ a.e. $t \in (\tau - h, \tau)$,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A weak solution $u \in L^2(\tau - h, T; H) \cap L^2(\tau, T; V) \cap L^{\infty}(\tau, T; H)$ for all $T > \tau$, with $u(\tau) = u^{\tau}$, $u(t) = \phi(t - \tau)$ a.e. $t \in (\tau - h, \tau)$, and $\forall v \in V$, it holds (in $\mathcal{D}'(\tau, \infty)$)

$$\frac{d}{dt}(u(t),v)+\nu\langle Au(t),v\rangle+b(u(t),u(t),v)=\langle f(t),v\rangle+(g(t,u_t),v).$$

Remark

u weak solution, then $u' \in L^2(\tau, T; V')$, so $u \in C([\tau, \infty); H)$. Energy equality:

$$|u(t)|^{2}+2\nu\int_{s}^{t}||u(r)||^{2}dr=|u(s)|^{2}+2\int_{s}^{t}[\langle f(r),u(r)\rangle+(g(r,u_{r}),u(r))]dr$$

for all $\tau \leq s \leq t$.

A strong solution is a weak solution u such that $u \in L^2(\tau, T; D(A)) \cap L^{\infty}(\tau, T; V)$ for all $T > \tau$.

Remark

If $f \in L^2_{loc}(\mathbb{R}; (L^2(\Omega))^2)$ and u is a strong solution, then $u' \in L^2(\tau, T; H)$ for all $T > \tau$, and so $u \in C([\tau, \infty); V)$. Second energy equality:

$$\|u(t)\|^{2} + 2\nu \int_{s}^{t} |Au(r)|^{2} dr + 2 \int_{s}^{t} b(u(r), u(r), Au(r)) dr$$

= $\|u(s)\|^{2} + 2 \int_{s}^{t} (f(r) + g(r, u_{r}), Au(r)) dr \quad \forall \tau \le s \le t.$

Theorem

Let us consider $u^{\tau} \in H$, $\phi \in L^2_H$, $f \in L^2_{loc}(\mathbb{R}; V')$, and $g : \mathbb{R} \times C_H \to (L^2(\Omega))^2$ satisfying (I)–(IV).

Then, for each $\tau \in \mathbb{R}$, there exists a unique weak solution u.

Moreover, if
$$f \in L^{2}_{loc}(\mathbb{R}; (L^{2}(\Omega))^{2})$$
, then
(a) $u \in C([\tau + \varepsilon, T]; V) \cap L^{2}(\tau + \varepsilon, T; D(A))$ for all $T > \tau + \varepsilon > \tau$.

(b) If $u^{\tau} \in V$, u is in fact a strong solution.

We may consider the Banach space C_H , and the Hilbert space $M_H^2 = H \times L_H^2$ with associated norm

$$\|(u^{\tau},\phi)\|_{M^2_H}^2 = |u^{\tau}|^2 + \int_{-h}^0 |\phi(s)|^2 \, ds \quad \text{for } (u^{\tau},\phi) \in M^2_H.$$

A fifth assumption on g and f for asymptotic estimates:

(V) Assume that $\nu\lambda_1 > C_g$, and $\exists \eta \in (0, 2(\nu\lambda_1 - C_g))$ s.t. for any $u \in L^2(\tau - h, t; H)$,

$$\begin{split} &\int_{\tau}^{t} e^{\eta s} |g(s,u_s)|^2 \, ds &\leq \quad C_g^2 \int_{\tau-h}^{t} e^{\eta s} |u(s)|^2 \, ds \quad \forall \tau \leq t, \\ &\int_{-\infty}^{0} e^{\eta s} \|f(s)\|_*^2 \, ds &< \infty. \end{split}$$

For any $\eta > 0$, we will denote by $\mathcal{D}_{\eta}(C_H)$ the class of all families of nonempty subsets $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(C_H)$ such that

$$\lim_{\tau \to -\infty} \left(e^{\eta \tau} \sup_{\varphi \in D(\tau)} |\varphi|^2_{\mathcal{C}_{\mathcal{H}}} \right) = 0.$$

Analogously, we will denote by $\mathcal{D}_{\eta}(M_{H}^{2})$ the class of all families of nonempty subsets $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(M_{H}^{2})$ such that

$$\lim_{\tau \to -\infty} \left(e^{\eta \tau} \sup_{(w,\varphi) \in D(\tau)} \| (w,\varphi) \|_{M^2_H}^2 \right) = 0.$$

Theorem $f \in L^2_{loc}(\mathbb{R}; V')$ and $g : \mathbb{R} \times C_H \to (L^2(\Omega))^2$ satisfy (1)–(V).

Then, $\exists \{\mathcal{A}_{\mathcal{D}_{F}(C_{H})}(t)\}_{t \in \mathbb{R}}, \{\mathcal{A}_{\mathcal{D}_{\eta}(C_{H})}(t)\}_{t \in \mathbb{R}}, \{\mathcal{A}_{\mathcal{D}_{F}(M_{H}^{2})}(t)\}_{t \in \mathbb{R}}, and \{\mathcal{A}_{\mathcal{D}_{\eta}(M_{H}^{2})}(t)\}_{t \in \mathbb{R}}, in C_{H} and M_{H}^{2} respectively.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

$$f \in L^2_{loc}(\mathbb{R}; V')$$
 and $g : \mathbb{R} \times C_H \to (L^2(\Omega))^2$ satisfy (I)–(V).
Then, $\exists \{\mathcal{A}_{\mathcal{D}_F(C_H)}(t)\}_{t \in \mathbb{R}}, \{\mathcal{A}_{\mathcal{D}_\eta(C_H)}(t)\}_{t \in \mathbb{R}}, \{\mathcal{A}_{\mathcal{D}_F(M_H^2)}(t)\}_{t \in \mathbb{R}},$
and $\{\mathcal{A}_{\mathcal{D}_\eta(M_H^2)}(t)\}_{t \in \mathbb{R}}, \text{ in } C_H \text{ and } M_H^2 \text{ respectively.}$

$$egin{aligned} &\mathcal{A}_{\mathcal{D}_F(\mathcal{C}_H)}(t) \ \subset \ \mathcal{A}_{\mathcal{D}_\eta(\mathcal{C}_H)}(t), \ \textit{and} \ \mathcal{A}_{\mathcal{D}_F(M_H^2)}(t) \subset \mathcal{A}_{\mathcal{D}_\eta(M_H^2)}(t) \ orall \ t \in \mathbb{R}, \end{aligned} \ j(\mathcal{A}_{\mathcal{D}_F(\mathcal{C}_H)}(t)) \ \subset \ \mathcal{A}_{\mathcal{D}_F(M_H^2)}(t) \ orall \ t \in \mathbb{R}, \ \textit{and} \cr j(\mathcal{A}_{\mathcal{D}_\eta(\mathcal{C}_H)}(t)) \ = \ \mathcal{A}_{\mathcal{D}_\eta(M_H^2)}(t) \ orall \ t \in \mathbb{R}, \end{aligned}$$

[*j* the canonical injection of C_H into M_H^2 : $j(\varphi) = (\varphi(0), \varphi)$.] If *f* also satisfies $\sup_{s \le 0} \left(e^{-\eta s} \int_{-\infty}^s e^{\eta \theta} \|f(\theta)\|_*^2 d\theta \right) < \infty$, the inclusions are in fact equalities.

A modification of Navier-Stokes eqns:

W. Liu, Discrete Contin. Dyn. Syst. Ser. B 2 (2002), 47–56.
A time-delayed term in the Burgers' equation was considered
G. Planas and E. Hernández, Discrete Contin. Dyn. Syst. Ser. B 21 (2008), 1245–1258.

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + (u(t - \rho(t)) \cdot \nabla)u + \nabla p = f(t) + g(t, u_t) \text{ in } \Omega \times (\tau, \infty); \\ \text{div } u = 0 \text{ in } \Omega \times (\tau, \infty), \\ u = 0 \text{ on } \partial \Omega \times (\tau, \infty), \\ u(x, \tau) = u^{\tau}(x) \text{ in } \Omega, \\ u(x, \tau + s) = \phi(x, s) \text{ in } \Omega \times (-h, 0), \end{cases}$$

where $\Omega \subset \mathbb{R}^2$, $\tau \in \mathbb{R}$, h > 0 u_t denotes the delay function $u_t(s) = u(t+s)$ $\rho \in C^1(\mathbb{R}; [0, h])$ with $\rho'(t) \leq \rho^* < 1 \ \forall t \in \mathbb{R}$.

Interesting features and goal:

("Small delays don't matter" ... unless in the nonlinearity)

- ▶ $u' \in L^{4/3}(V')$ even in 2D
- Lack of uniqueness and more troubles for dynamical systems: see Ball (1997), Kapustyan & Valero (2007), MR & Robinson (2003)...
- Goal here: under slightly better conditions, uniqueness, and (pullback) attractors

Remarkable fact: special type of (tempered) universes

TRILINEAR TERM AND WEAK SOLUTION:

$$|b(u, v, w)| \leq C |u|^{1/2} ||u||^{1/2} ||v|| |w|^{1/2} ||w||^{1/2} \quad \forall u, v, w \in V.$$

Suppose that $u^{\tau} \in H$, $\phi \in L^2_V$, and $f \in L^2_{loc}(\mathbb{R}; V')$. Remark

$$\begin{aligned} |b(u(t-\rho(t)), u(t), v)| &\leq \widetilde{C} ||u(t-\rho(t))|| ||u(t)||^{1/2} ||u(t)|^{1/2} ||v||, \ \forall v \in V \\ 1/2 + 1/4 &= 3/4 \implies B(u(\cdot - \rho(\cdot)), u(\cdot)) \in L^{4/3}(\tau, T; V'). \\ u' &\in L^{4/3}(\tau, T; V') \Rightarrow \\ u &\in C([\tau, T]; V') \quad and \quad u \in C_w([\tau, T]; H) \ \forall T > \tau \\ (whence initial datum \ u^{\tau} \in H \ meaningful). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Existence and uniqueness:

Theorem (Existence of weak solution by compactness method) $u^{\tau} \in H$, $\phi \in L^2_V$, $f \in L^2_{loc}(\mathbb{R}; V')$, and $g : \mathbb{R} \times C_H \to (L^2(\Omega))^2$ satisfying assumptions (H1)–(H4). Then, there exists at least one weak solution $u(\cdot; \tau, u^{\tau}, \phi)$.

Existence and uniqueness:

Theorem

(Existence of weak solution by compactness method) $u^{\tau} \in H$, $\phi \in L^2_V$, $f \in L^2_{loc}(\mathbb{R}; V')$, and $g : \mathbb{R} \times C_H \to (L^2(\Omega))^2$ satisfying assumptions (H1)–(H4). Then, there exists at least one weak solution $u(\cdot; \tau, u^{\tau}, \phi)$.

Remark

(Uniqueness improving the initial data) $u^{\tau} \in H$ and $\phi \in L^{2}_{V} \cap L^{\infty}_{H}$. Then

$$egin{aligned} |b(u(t-
ho(t)),u(t),v)| \leq & C|u(t-
ho(t))|^{1/2}\|u(t-
ho(t))\|^{1/2}\|v\| \ & imes |u(t)|^{1/2}\|u(t)\|^{1/2} \Rightarrow \end{aligned}$$

 $B(u(\cdot - \rho(\cdot)), u(\cdot)) \in L^2(\tau, T; V')$ for all $T > \tau$, and so $u' \in L^2(\tau, T; V')$

 \Rightarrow uniqueness + energy equality

An appropriate concept of (tempered) universe

Definition

We will denote by $\mathcal{D}_{\eta}^{H,L_{H}^{2}}(H \times (L_{V}^{2} \cap L_{H}^{\infty}))$ the class of all families of nonempty subsets $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(H \times (L_{V}^{2} \cap L_{H}^{\infty}))$ such that

$$\lim_{\tau \to -\infty} \left(e^{\eta \tau} \sup_{(\zeta, \varphi) \in D(\tau)} (|\zeta|^2 + \|\varphi\|_{L^2_H}^2) \right) = 0.$$

Observe that the above definition does not make the most use of the natural norm of (ζ, φ) in $H \times (L_V^2 \cap L_H^\infty)$, but just in $H \times L_H^2$.

(日) (同) (三) (三) (三) (○) (○)

Navier-Stokes-Voigt

 $\Omega \subset \mathbb{R}^3$ bounded domain with smooth (e.g., C^2) $\partial \Omega$.

$$\begin{cases} \frac{\partial}{\partial t} \left(u - \alpha^2 \Delta u \right) - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f(t) \text{ in } \Omega \times (\tau, \infty), \\ \operatorname{div} u = 0 \text{ in } \Omega \times (\tau, \infty), \\ u = 0 \text{ on } \partial \Omega \times (\tau, \infty), \\ u(x, \tau) = u_{\tau}(x), \ x \in \Omega, \end{cases}$$

a length scale parameter $\alpha > 0$, characterizing the elasticity of the fluid (in the sense that the ratio α^2/ν describes the reaction time that is required for the fluid to respond to the applied force)

(日) (同) (三) (三) (三) (○) (○)

Motivation NSV

-The Navier-Stokes-Voigt (NSV) model of viscoelastic incompresible fluid was introduced by Oskolkov [LOMI 1973] -gives an approximate description of the Kelvin-Voigt fluid, [Oskolkov, 1985]

-proposed as a regularization of the 3D-Navier-Stokes with purpose of direct numerical simulations [Cao, Lunasin, Titi, 2006] -The extra regularizing term $-\alpha^2 \Delta u_t$ changes the parabolic character of the equation, which makes it so that in 3D the problem is well-posed (forward and backward), but one does not observe any immediate smoothing of the solution -the inviscid equation is the simplified Bardina subgrid scale model of turbulence (relation studied in [Cao, Lunasin, Titi, 2006] -global compact attractor and estimates on fractal and Hausdorff dim by Kalantarov and Titi [LOMI, 1988; J. Nonlinear Sci. 2009] -uniform attractors by Yue and Zhong [DCDS-B, 2011]

The autonomous equation $u + \alpha^2 A u = g$

For
$$g \in V'$$
, \exists ! solution u_g (Lax-Milgram)
The mapping $C : u \in V \mapsto u + \alpha^2 A u \in V'$ is linear and bijective.
 $C^{-1}(H) = D(A)$

Definition

u is a weak solution if u belongs to $L^2(\tau, T; V)$ for all $T > \tau$, and

$$\frac{d}{dt}(u(t) + \alpha^2 A u(t)) + \nu A u(t) + B(u(t)) = f(t), \text{ in } \mathcal{D}'(\tau, \infty; V'),$$

$$u(au) = u_{ au}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

If $u \in L^2(\tau, T; V)$ for all $T > \tau$ and satisfies the eqn, then

$$v(\cdot) = u(\cdot) + \alpha^2 A u(\cdot) \in L^2(\tau, T; V') \text{ and } v' = \frac{dv}{dt} \in L^1(\tau, T; V').$$

So, $v \in C([\tau, \infty); V')$, and $u \in C([\tau, \infty); V)$. In particular, $u(\tau) = u_{\tau}$ has a sense. Moreover, then, $v' \in L^2(\tau, T; V')$, and $u' \in L^2(\tau, T; V)$. **Thus,** u is a weak solution **iff** $u \in C([\tau, \infty); V)$, $u' \in L^2(\tau, T; V)$ for all $T > \tau$, and

$$u(t)+lpha^2Au(t)+\int_{\tau}^t (
u Au(s)+B(u(s)))\,ds=u_{ au}+lpha^2Au_{ au}+\int_{\tau}^t f(s)ds.$$

Lemma

If u is a weak solution, then

$$\frac{1}{2}\frac{d}{dt}(|u(t)|^2+\alpha^2\|u(t)\|^2)+\nu\|u(t)\|^2=\langle f(t),u(t)\rangle,\quad a.e.\ t>\tau.$$

Theorem

Let $f \in L^2_{loc}(\mathbb{R}; V')$ be given. Then, for each $\tau \in \mathbb{R}$ and $u_{\tau} \in V$, there exists a unique weak solution. Moreover, if $f \in L^2_{loc}(\mathbb{R}; H)$ and $u_{\tau} \in D(A)$, then

$$u\in C([au,\infty);D(A)), \quad u'\in L^2(au,T;D(A)) ext{ for all } T> au,$$

and

$$\frac{1}{2}\frac{d}{dt}(\|u(t)\|^2 + \alpha^2 |Au(t)|^2) + \nu |Au(t)|^2 + (B(u(t)), Au(t)) = (f(t), Au(t)),$$

Existence of minimal pullback attractors in V norm

Lemma

Assume that $f \in L^2_{loc}(\mathbb{R}; V')$ and $u_{\tau} \in V$. Then, for any

$$0 < \sigma < 2\nu (\lambda_1^{-1} + \alpha^2)^{-1}$$

$$\|u(t)\|^{2} + \varepsilon \alpha^{-2} \int_{\tau}^{t} e^{\sigma(s-t)} \|u(s)\|^{2} ds$$

$$\leq (1 + \alpha^{-2} \lambda_{1}^{-1}) e^{\sigma(\tau-t)} \|u_{\tau}\|^{2} + \alpha^{-2} \varepsilon^{-1} \int_{\tau}^{t} e^{\sigma(s-t)} \|f(s)\|_{*}^{2} ds$$

for all $t \geq \tau$, where $\varepsilon = \nu - \frac{\sigma}{2}(\lambda_1^{-1} + \alpha^2)$.

Definition

For $\sigma \in (0, 2\nu(\lambda_1^{-1} + \alpha^2)^{-1})$ s.t. $\int_{-\infty}^0 e^{\sigma s} \|f(s)\|_*^2 ds < \infty$, we will denote by \mathcal{D}^V_{σ} the class of all families of nonempty subsets $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(V) \text{ s.t. } \lim_{\sigma \to \infty} (e^{\sigma \tau} \sup ||v||^2) = 0.$ $v \in D(\tau)$

Attraction in D(A) norm

Lemma

Assume that $f \in L^2_{loc}(\mathbb{R}; H)$ s.t. $\sup_{r \leq 0} \int_{r-1}^r \|f(s)\|_*^2 ds$. Then, if

$$0<\sigma<2\nu(\lambda_1^{-1}+\alpha^2)^{-1},\quad\text{and}\quad 0<\underline{\sigma}<\sigma/3,$$

$$\begin{aligned} \|u(t)\|^2 + \alpha^2 |Au(t)|^2 &\leq e^{\sigma(\tau-t)} (\|u_{\tau}\|^2 + \alpha^2 |Au_{\tau}|^2) + 2\varepsilon^{-1} \\ &\times \int_{\tau}^t e^{\sigma(s-t)} |f(s)|^2 ds + 4C_{\varepsilon} C_{\underline{\sigma}}^3 (\sigma - 3\underline{\sigma})^{-1} \left(e^{-3\underline{\sigma}(t-\tau)} \|u_{\tau}\|^6 + M_{t,\underline{\sigma}}^3 \right) \end{aligned}$$

for all
$$t \geq au$$
, where $M_{t,\underline{\sigma}} = \sup_{r \leq t} \int_{-\infty}^{r} e^{\underline{\sigma}(s-r)} \|f(s)\|_*^2 ds$.

Definition

For any $\sigma, \underline{\sigma} > 0$, consider the universe $\mathcal{D}_{\sigma}^{D(A)} \cap \mathcal{D}_{\underline{\sigma}}^{V}$ formed by $\widehat{D} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{P}(D(A))$ such that

$$\lim_{\tau \to -\infty} \left(e^{\sigma \tau} \sup_{v \in D(\tau)} |Av|^2 \right) = \lim_{\tau \to -\infty} \left(e^{\sigma \tau} \sup_{\substack{v \in D(\tau) \\ \forall \in D \neq v \in \mathbb{P}}} \|v\|^2 \right) = 0.$$