Why (partial) differential equations? Why control problems? What for?

Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla, Spain

Using mathematics to describe real phenomena A very relevant tool: differential equations Introduce, solve and control

Outline

Preliminaries

- Sentences
- Fundamental concepts
- Ordinary and partial differential equations
 - The early times: the motion of planets
 - More recent achievements in biology
 - Time-dependent phenomena
 - Basic ideas for existence, uniqueness, ...

3 Control issues

- The meaning of control
- Some examples and applications
- General ideas to get controllability

Galileo Galilei, 1564–1642:

God wrote the universe with mathematics

Leonhard Euler, 1707–1783:

In view of God's perfection, nothing happens in the universe without submission to a maximum or minimum rule

Henri Poincaré, 1854-1912:

- Mathematics is the art of giving the same name to different things.

- A science is a system of laws deduced from observation. The laws are, in sum, differential equations.

Functions:

Rules that assign quantities to other quantities

Examples:

- The position of a particle: $t \mapsto \mathbf{x}(t)$
- The temperature of a body: $(x, t) \mapsto \theta(x, t)$
- The pressure of a fluid: $(x_1, x_2, x_3, t) \mapsto p(x_1, x_2, x_3, t)$

Derivatives:

Tools that indicate how quickly a function changes

Examples:

- The velocity and the acceleration of a particle: $t \mapsto \dot{\mathbf{x}}(t), t \mapsto \ddot{\mathbf{x}}(t)$
- The time rate change of the temperature: $(x, t) \mapsto \theta_t(x, t)$
- The changes in space of the pressure: $(x, t) \mapsto p_{x_i}(x, t)$, i = 1, 2, 3

Differential equations:

Identities where functions and their derivatives appear

Usually: motivted by physical, chemical, biological etc. laws

The early times: the motion of planets

The first fundamental and starting point:

The description of planetary motion

Three relevant steps:

- Azarquiel, Cordoba (Spain), XI Cent
- Johannes Kepler (1577–1630), Central Europe, XVI Cent
- Sir Isaac Newton (1643–1727), United Kingdom, XVII Cent

Newton's contribution:

- Kepler's laws + reflexion \Rightarrow UGL
- Then, UGL + conservation laws + mathematics ⇒ KLs through ORDINARY DIFFERENTIAL EQUATIONS

The early times: the motion of planets

With the notation of our days:

 $\mathbf{x} = \mathbf{x}(t), \quad t \in \mathbb{R}; \quad \text{the Sun } (M) \text{ and a planet } (m)$

- Linear momentum: $m\ddot{\mathbf{x}} = F$ $(F = -\nabla U(\mathbf{x}))$
- Angular momentum: $m\mathbf{x} \times \dot{\mathbf{x}} = \mathbf{N}$ (constant)
- Energy: $\frac{1}{2}m|\dot{\mathbf{x}}|^2 + U(\mathbf{x}) = E$ (constant)
- UGL: $U(\bar{\mathbf{x}}) = -GmM_{|\mathbf{x}|}^1$ ($\mathbf{F} = -GmM_{|\mathbf{x}|}^x$)

Computations give (among other things):

•
$$\mathbf{x}(t) = (r(t) \cos \varphi(t)) \mathbf{e}_1 + (r(t) \sin \varphi(t)) \mathbf{e}_2$$

Orbits are on a plane

• $r(t) = \frac{C_1}{1+C_2 \cos \varphi(t)}$, for some C_1, C_2 Orbits are elliptic and satisfy KLs

Major consequences:

Invention of differential equations, Birth of calculus (Leibniz?) Explanations of phenomena (Hooke?) More recent achievements in biology

Growth models in population dynamics

T. Malthus (1766–1834), V. Volterra (1860–1940), P.F. Verhulst (1804–1849), B. Gompertz (1779–1865)

- Malthus (exponential) law: $\dot{N} = \rho N$
- Logistic law: $\dot{N} = \rho N RN^2$
- Gompertzian law: $\dot{N} = \rho N \log \frac{\theta}{N}$, etc.

More recent achievements in biology

Figure: The evolution in time of a Mathusian population. $\dot{N} = \rho N$

More recent achievements in biology

Figure: The evolution in time of a logistic population. $\dot{N} = \rho N - RN^2$

More recent achievements in biology

Figure: The evolution in time of a Gompertzian population. $\dot{N} = \rho N \log(\theta/N)$

More recent achievements in biology

Lotka-Volterra predator-prey models Alfred J. Lotka (1880–1940) and Vito Volterra (1860–1940)

 $\dot{x} = ax - bxy, \quad \dot{y} = -cy + dxy$

x = x(t) and y = y(t) are resp. the prey and predator populations

More recent achievements in biology

Figure: The evolution in time of a prey-predator system

The Laplace and Poisson (elliptic) PDEs

• Gravitational and electromagnetic fields in \mathbf{R}^3 : $\mathbf{F}(\mathbf{x}) = -\nabla \mathbf{U}(\mathbf{x})$, with

$$\left\{ egin{array}{ll} -\Delta {m U} =
ho({f x})\,{f 1}_D, & {f x} \in {f R}^3, \ U o 0 & {f as} \; |{f x}| o +\infty \end{array}
ight.$$

Notation: $\Delta U := U_{x_1,x_1} + U_{x_2,x_2} + U_{x_3,x_3}$ Good strategy: compute U, then **F** (Laplace, Dirichlet, Poisson, ...)

• Ideal fluid in $\mathbf{R}^2 \setminus B$: $\mathbf{v} = \nabla \times \psi$, with

$$\begin{cases} -\Delta \psi = 0, \quad (x_1, x_2) \in \mathbf{R}^2 \setminus B \\ \psi = 0, \quad (x_1, x_2) \in \partial B; \quad \psi \to \psi_{\infty}, \quad |(x_1, x_2)| \to +\infty \end{cases}$$

• Probability of leaving a region $R \subset \mathbf{R}^2$ through $\Gamma \subset \partial R$:

$$\begin{cases} -\Delta u := -u_{x_1, x_1} - u_{x_2, x_2} = 0, \quad (x_1, x_2) \in R \\ u = 1_{\Gamma}, \quad (x_1, x_2) \in \partial R \end{cases}$$

Partial differential equations

Stationary phenomena

The probability of leaving a room

Time-dependent phenomena: Taylor, D'Alembert, Fourier, ...

Taylor's and D'Alembert's achievements:

A PDE for the elastic string and a formula for its solutions $u_{tt} - c^2 u_{xx} = 0$, $(x, t) \in (0, 1) \times (0, T)$

u(x,t) = f(x+ct) + g(x-ct)

J. D'Alembert, "Refléxions sur la cause des vents", Prusian Academy Prize, 1747

Fourier's achievements:

A PDE for heat propagation and its solutions

 $u_t - ku_{xx} = 0, \quad (x, t) \in (0, 1) \times (0, T)$

$$u(x,t) = \frac{u_0(t)}{2} + \sum_{n \ge 1} \{u_n(t) \cos(n\pi x) + v_n(t) \sin(n\pi x)\}$$

J. Fourier, "Sur la propagation de la chaleur dans les solides", Paris Academy Prize, 1811

Partial differential equations

Time-dependent phenomena

The vibrating string

Partial differential equations

Time-dependent phenomena

The evolution of temperature

Time-dependent phenomena

Other evolution PDEs: the Navier-Stokes system C. Navier (1785–1836), G.G. Stokes (1819–1903) The Navier-Stokes PDEs for a viscous incompressible fluid:

 $\begin{cases} \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \mu \Delta \mathbf{u} + \nabla \boldsymbol{p} = \rho \mathbf{f} \\ \nabla \cdot \mathbf{u} = \mathbf{0} \end{cases}$

$$(\mathbf{x}, t) \in D \times (0, +\infty)$$
, with $D \subset \mathbf{R}^N$, $N = 2$ or $N = 3$
 $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ velocity, $\boldsymbol{p} = \boldsymbol{p}(\mathbf{x}, t)$ pressure, $\rho, \mu > 0$, f is given

New (major) difficulty: nonlinearity – Much more difficult to solve!

Interesting questions: existence, uniqueness, regularity, additional properties

Clay Prize, 10⁶ Dollars!

Fortunately: ∃ numerical methods!

Partial differential equations

Time-dependent phenomena

A more complex system: cancer angiogenesis (*N*, *h*) and blood viscoelasticity $(\mathbf{u}, \boldsymbol{p}, \tau)$:

 $\begin{cases} N_t + \mathbf{u} \cdot \nabla N - \nabla \cdot (D(N)\nabla N) = -\nabla \cdot (N\nabla h) + H(N) \\ h_t + \mathbf{u} \cdot \nabla h - \nabla \cdot (E(h)\nabla h) = K(N,h) \\ \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \mu \Delta \mathbf{u} + \nabla p = \nabla \cdot \tau + \rho \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \\ \tau_t + (\mathbf{u} \cdot \nabla)\tau + a\tau + g(\nabla \mathbf{u}, \tau) = 2b D\mathbf{u} \end{cases}$

 $g(\nabla \mathbf{u}, \tau)$: bilinear, taking into account frame invariance

Much more difficult to analyze and solve! - Keller, Segal, ????

Again many questions: existence, uniqueness, regularity, etc. For instance: do classical (regular) solutions exist? (unknown)

Again: numerical methods give results

Tumor growth evolution in low vascularization regime (results by MC Calzada and others, 2011)

Basic ideas for existence, uniqueness, ...

ANALYSIS OF NONLINEAR PDEs

$$E(U) = F + \dots$$

Existence (steps):

- Approximation: $E(U_h) = F_h + \dots, h \to 0$
- Estimates: $\|U_h\|_X \leq C$
- Compactness: $U_h \rightarrow U$ weakly in *X*, strongly in *Y*, with $X \hookrightarrow Y$
- Conclusion: \exists solutions $U \in X$

OK for Navier-Stokes and many variants Not so easy for Oldroyd-like systems:

$$\begin{cases} \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \mu \Delta \mathbf{u} + \nabla p = \nabla \cdot \tau + \rho \mathbf{f} \\ \nabla \cdot \mathbf{u} = \mathbf{0} \\ \tau_t + (\mathbf{u} \cdot \nabla)\tau + a\tau + g(\nabla \mathbf{u}, \tau) = 2b \, D\mathbf{u} \end{cases}$$

Estimates: only sometimes; Compactness is not immediate (contributions by EFC, F Guillén and others)

Partial differential equations

Basic ideas for existence, uniqueness, ...

ANALYSIS OF NONLINEAR PDEs

$$E(U) = F + \dots$$

Existence (steps):

- Approximation: $E(U_h) = F_h + \dots, h \to 0$
- Estimates: $\|U_h\|_X \leq C$
- Compactness: $U_h \rightarrow U$ weakly in X, strongly in Y, with $X \hookrightarrow Y$
- Conclusion: \exists solutions $U \in X$

Again unclear for temperature-dependent flows:

 $\begin{cases} \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot (\nu(\theta)D\mathbf{u}) + \nabla p = \mathbf{f} \\ \nabla \cdot \mathbf{u} = \mathbf{0} \\ \theta_t + \mathbf{u} \cdot \nabla \theta - \nabla \cdot (\kappa(\theta)D\theta) = \nu(\theta)D\mathbf{u} D\mathbf{u} \end{cases}$

Estimates: only in L^1 ! (contributions by B Climent, EFC and others)

Basic ideas for existence, uniqueness, ...

ANALYSIS OF NONLINEAR PDEs

 $E(U) = F + \dots$

Existence (steps):

- Approximation: $E(U_h) = F_h + \dots, h \to 0$
- Estimates: $\|U_h\|_X \leq C$
- Compactness: $U_h \rightarrow U$ weakly in *X*, strongly in *Y*, with $X \hookrightarrow Y$
- Conclusion: \exists solutions $U \in X$

Uniqueness and regularity:

- Rely on (very) good estimates: small X
- Usual argument for uniqueness:

$$0 = E(U_1) - E(U_2) = \tilde{E}(U_1, U_2) \cdot (U_1 - U_2) \Rightarrow U_1 = U_2$$

Unknown for 3D Navier-Stokes

Up to now: analysis and (numerical) resolution of

$$E(U) = F$$

+ . . .

From now on: control, i.e. acting to get good (or the best) results ...

What is easier? Solving? Controlling?

James Watt, 1736–1819 — The steam engine (later analyzed by G. Airy, J.C. Maxwell)

Control issues The early times: XVIII, XIX Centuries and control engineering

Figure: Steam engines

Main ideas: balls rotate around an axis, increasing velocity open valves, scaping vapor diminishes velocity.

This way: autoregulation, optimal performance, constant velocity, etc.

The (general) optimal control problem; recall Euler's sentence!

Minimize $J(\mathbf{v}, \mathbf{y})$ Subject to $\mathbf{v} \in \mathcal{V}_{ad}$, $\mathbf{y} \in \mathcal{Y}_{ad}$, (\mathbf{v}, \mathbf{y}) satisfies (S)

with

$$E(y) = F(v) + \dots \qquad (S)$$

The (general) controllability problem:

Find $v \in \mathcal{V}_{ad}$ such that $Ry \in \mathcal{Z}_{ad}$

Main questions: \exists , uniqueness/multiplicity, characterization, computation, ...

Optimal radioterapy strategies (I)

Lian-Martin model for tumor growth: Without and with radiotherapy

Figure: Controlling tumor growth (towards optimal therapy strategies, I). The state (cells+drug) solves $y_t = \lambda y \log(\theta/y) - k(v - v_*) + y$, $v_t = u - \gamma v$

Strategies based on senescence

Figure: Controlling tumor growth, II). The state (healthy + senescent + long-life + inmortal + tumoral cells) solves a 5×5 ODE, controlled by *u*

Optimal radioterapy strategies (II)

MDELLING AND OPTIMIZING RADIOTHERAPY STRATEGIES (glioblastoma, results by R Echevarría and others, 2007)

- \bullet Brain \approx a two-dimensional crown section
- 2 subdomains
- Parameter values in agreement with [Alvord-Murray-Swanson 2000]

Optimal radioterapy strategies

The state equation (description of the phenomenon):

$$\left\{\begin{array}{ll} \boldsymbol{c}_t - \nabla \cdot (\boldsymbol{\mathcal{D}}(\boldsymbol{x}) \nabla \boldsymbol{c}) = (\rho - \boldsymbol{v} \boldsymbol{1}_{\omega}) \, \boldsymbol{c}, & (\boldsymbol{x}, t) \in \Omega \times (0, T) \\ \boldsymbol{c}|_{t=0} = \boldsymbol{c}_0, & \boldsymbol{x} \in \Omega \\ + \dots \end{array}\right.$$

(E)

c = c(x, t) is the state: a cancer cell population density v = v(x, t) is the control: a radiotherapy administration dose Glioblastoma [Murray-Swanson, 90's], $D(x) = D_w$ or D_g (white and grey matters)

The optimal control problem:

$$\begin{cases} \text{Minimize } J(\mathbf{v}, \mathbf{y}) = \frac{1}{2} \int_{\Omega} |\mathbf{c}(\mathbf{x}, T)|^2 + \frac{1}{2} \iint_{\omega \times (0, T)} |\mathbf{v}|^2 \\ \text{Subject to } 0 \le \mathbf{v} \le \mathbf{M}, \ \iint_{\omega \times (0, T)} \mathbf{v} \le \mathbf{R}, \ \dots, \ (\mathbf{v}, \mathbf{y}) \text{ satisfies } (\mathbf{E}) \end{cases}$$

Intermitent therapy (realistic) - A numerical solution

Evolution after detection (no therapy)

Evolution after detection (optimal therapy)

See more in:

- http://mathematicalneurooncology.org/ Kristin Swanson
- http://mathcancer.org/ Paul Macklin

The "good" control problem: exact controllability to the trajectories

Figure: The desired, the uncontrolled and the controlled trajectories

Local exact controllability to a fixed flow

Again Navier-Stokes, local ECT:

(NS)
$$\begin{cases} \mathbf{y}_t + (\mathbf{y} \cdot \nabla)\mathbf{y} - \Delta \mathbf{y} + \nabla p = \mathbf{v} \mathbf{1}_{\omega}, \ \nabla \cdot \mathbf{y} = \mathbf{0} \\ \mathbf{y}(x, t) = \mathbf{0}, \ (x, t) \in \partial \Omega \times (\mathbf{0}, T) \\ \mathbf{y}(x, 0) = \mathbf{y}^0(x) \end{cases}$$

Fix a solution $(\overline{\mathbf{y}}, \overline{p})$, with $\overline{\mathbf{y}} \in L^{\infty}$ Goal: Find \mathbf{v} such that $\mathbf{y}(T) = \overline{\mathbf{y}}(T)$

Fortunately: possible, at least if \mathbf{y}^0 is not too far from $\overline{\mathbf{y}}(0)$ Question: is this always possible? (unknown)

An exact controllability problem

Figure: The desired, the uncontrolled and the controlled trajectories

Exact controllability to a fixed flow - Numerical approximations and results

Results by EFC and DA Souza, 2014 Test 1: Poiseuille flow

$$\overline{y}=(4x_2(1-x_2),0), \ \overline{p}=4x_1$$

(stationary)

Figure: Poiseuille flow

Exact controllability to a fixed flow - Numerical approximations and results

Test 1: Poiseuille flow $\Omega = (0,5) \times (0,1), \omega = (1,2) \times (0,1), T = 2$ $y_0 = \overline{y} + mz, \ z = \nabla \times \psi, \ \psi = (1-y)^2 y^2 (5-x)^2 x^2 \ (m << 1)$ Approximation: P_2 in (x_1, x_2, t) + multipliers ... – freefem++

Figure: The Mesh – Nodes: 1830, Elements: 7830, Variables: 7×1830

Test 1: Poiseuille flow

Figure: The initial state

Test 1: Poiseuille flow

Figure: The state at t = 1.1

Test 1: Poiseuille flow

Figure: The state at t = 1.7

ZPoisseuille.edp

Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

$$\overline{y} = (\sin(2x_1)\cos(2x_2)e^{-8t}, -\cos(2x_1)\sin(2x_2)e^{-8t})$$

E. Fernández-Cara (Partial) differential equations and control problems

Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

Figure: The Taylor-Green velocity field

Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow $\Omega = (0, \pi) \times (0, \pi), \omega = (\pi/3, 2\pi/3) \times (0, 1), T = 1$ $y_0 = \overline{y} + mz, \ z = \nabla \times \psi, \ \psi = (\pi - y)^2 y^2 (\pi - x)^2 x^2 \ (m << 1)$ Approximation: P_2 in (x_1, x_2) and t + multipliers ... – freefem++

Figure: The mesh - Nodes: 3146, Elements: 15900, Variables: 7×3146

Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

Figure: The initial state

Controlling fluids Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

Figure: The state at t = 0.6

Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

Figure: The state at t = 0.9

Taylor-Green Vortex.edp

NULL CONTROLLABILITY OF NONLINEAR EVOLUTION PDEs

 $y_t - A(y) = F(v), \quad y(0) = y_0, \quad y(T) = 0 + \dots$

Existence (steps):

• Linearization:

 $y_t - A'(0)y = F'(0)v, \quad y(0) = y_0, \quad y(T) = 0, + \dots$ • \exists for the linearized problem:

 $\begin{array}{l} \text{NC} \Leftrightarrow R(M) \hookrightarrow R(L) \Leftrightarrow \|\phi(0)\|_{H}^{2} \leq C \|F'(0)^{*}\phi\|_{U}^{2} \quad \forall \phi_{0} \in H \\ -\phi_{t} - A'(0)^{*}\phi = 0, \quad \phi(T) = \phi_{0} + \dots \quad \text{Carleman estimates} \end{array}$

• Passage from linear to nonlinear: fixed-point, implicit function, ...

Unfortunately: in general, only local results, i.e. small *y*₀ (global Inverse Function Theorems?)

Contributions by Russell, J-L Lions, Fursikov, Imanuvilov, Lebeau, Zuazua, Coron, ...; also EFC, A Doubova, M. González-Burgos, DA Souza, ... New ideas?

∃ many applications of control theory to real-world problems

- Engineering
- Economics
- Biology and Medicine, etc.

Figure: Controlling an aerodynamic profile (I): a car

Geometric control

Figure: Controlling an aerodynamic shape (II): a rocket. (a) Initial design; (b) and (c) computed optimal designs

Figure: Controlling the trajectory of a space shuttle.

Figure: The POP project, INRIA, France. Automatic vision and expression.

Optimal control + controllability Automatic driving

Figure: The ICARE Project, INRIA, France. Autonomous car driving.

The autonomous car driving problem:

 $\dot{x} = f(x, u), \quad x(0) = x_0$

with

dist. $(x(t), Z(t)) \ge \varepsilon \quad \forall t$ $u \in \mathcal{U}_{ad} \quad (|u(t)| \le C)$

Goals (prescribed x_T and \hat{x}):

- $x(T) = x_T$
- Minimize $\sup_t |x(t) \hat{x}(t)|$

Optimal control + controllability Automatic driving

Figure: The ICARE Project, INRIA, France. Autonomous car driving. Malis-Morin-Rives-Samson, 2004

The car in the street

Final comments

SOME CONCLUSIONS:

- Along the time: better descriptions (more precise, more complete) and more complex tools
- For many interesting problems we can get
 - Models
 - Theoretical results
 - Numerical (approximated) solutions
 - Qualitative and quantitative information on control properties

Still many things to do ...

- Why (partial) differential equations? Why control problems? What for?
 - To enlarge and improve scientific knowledge
 - To understand, describe and govern the behavior of real-life phenomena

Final comments

OUR GROUP (A SHORT DESCRIPTION, PEOPLE INVOLVED):

- M Delgado, I Gayte, M Molina, C Morales, A Suárez, ... Theoretical results for PDE models concerning tumor growth: angiogenesis and metastasis modelling, stem cell models, etc.
- B Climent, F Guillén, JV Gutiérrez Santacreu, MA Rodríguez Bellido, G Tierra, ...

Theoretical and numerical control for PDE models from fluid mechanics: cristal liquids, solidification processes, etc.

 A Doubova, EFC, M González Burgos, DA Souza, ... Theoretical and numerical analysis and control of linear and nonlinear PDEs and systems: Navier-Stokes-like controllability, non-scalar control problems, etc. MUCHAS GRACIAS ...