Some smoothness results for classical problems in optimal design and applications

Juan Casado-Díaz, University of Seville

Compliance problem

 $\Omega \subset \mathbb{R}^N, N \ge 2$, bounded, open, $\beta > \alpha > 0, \ 0 < \kappa < |\Omega|, \tilde{f} \in H^{-1}(\Omega)$

$$\max_{|\omega| \leq \kappa} \int_{\Omega} (\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) |\nabla u_{\omega}|^2 dx$$

$$\begin{cases} -\operatorname{div}((\alpha\chi_{\omega}+\beta(1-\chi_{\omega}))\nabla u_{\omega}) = \tilde{f} \text{ in } \Omega\\ u_{\omega} = 0 \text{ on } \partial\Omega \end{cases}$$

Using

$$\begin{split} &\int_{\Omega} \left(\alpha \chi_{\omega} + \beta (1 - \chi_{\omega}) \right) |\nabla u_{\omega}|^{2} dx \\ &= - \left(\int_{\Omega} \left(\alpha \chi_{\omega} + \beta (1 - \chi_{\omega}) \right) |\nabla u_{\omega}|^{2} dx - 2 \prec \widetilde{f}, u_{\omega} \succ \right) \\ &= - \min_{u \in H_{0}^{1}(\Omega)} \left(\int_{\Omega} \left(\alpha \chi_{\omega} + \beta (1 - \chi_{\omega}) \right) |\nabla u|^{2} dx - 2 \prec \widetilde{f}, u \succ \right). \end{split}$$

The problem can be stated as

$$\min_{\substack{u\in H_0^1(\Omega)\\ |\omega|\leq \kappa}} \left(\int_{\Omega} \left(\alpha \chi_{\omega} + \beta (1-\chi_{\omega}) \right) |\nabla u|^2 dx - 2 \prec \widetilde{f}, u \succ \right)$$

F. Murat (1972): The problem has not solution in general. A relaxation is needed.

F. Murat, L. Tartar (1985). A relaxation is given by replacing $\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})$ by the armonic mean value of α and β with proportions θ and $1-\theta$, with $\theta \in L^{\infty}(\Omega; [0,1])$, i.e. $\min_{u \in H_1^1(\Omega)} \left(\int_{\Omega} \frac{\alpha \beta |\nabla u|^2}{\beta \theta + \alpha (1 - \theta)} dx - 2 \prec \widetilde{f}, u \succ \right)$ $\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \leq \kappa$ $=\beta \qquad \min_{u\in H^1_0(\Omega)} \qquad \left(\int_{\Omega} \frac{|\nabla u|^2}{1+c\theta} dx - 2 \prec f, u \succ\right)$ $\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \leq \kappa$ or $\begin{cases} \max_{\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta \, dx \le \kappa} \int_{\Omega} \frac{|\nabla u_{\theta}|^{2}}{1 + c\theta} \, dx \\ -\operatorname{div}\left(\frac{\nabla u_{\theta}}{1 + c\theta}\right) = f \text{ in } \Omega, \quad u_{\theta} = 0 \text{ on } \partial\Omega \end{cases}$ $c = \frac{\beta - \alpha}{\alpha}, f = \frac{1}{\beta}\tilde{f}$

Another formulation (F. Murat, L. Tartar (1985)). Recall: If u_{θ} is the solution of

 $-\operatorname{div}\sigma = f$ in Ω

 $-\operatorname{div} \frac{\nabla u_{\theta}}{1+c\theta} = f \text{ in } \Omega, \qquad u_{\theta} = 0 \text{ on } \partial \Omega.$ Then, $\sigma_{\theta} = \frac{\nabla u_{\theta}}{1+c\theta}$ is the solution of $\min_{\sigma \in L^2(\Omega)^N} \int_{\Omega} (1+c\theta) |\sigma|^2 dx$. $-\operatorname{div}\sigma = f$ in Ω $\min_{\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \le \kappa} \min_{u \in H_0^1(\Omega)} \left(\int_{\Omega} \frac{|\nabla u|^2}{1 + c\theta} dx - 2 < f, u > \right)$ Thus $-\max_{\theta\in L^{\infty}(\Omega;[0,1]),\int_{\Omega}}\min_{\theta\,dx\leq\kappa}\int_{\sigma\in L^{2}(\Omega)^{N}}\int_{\Omega}(1+c\theta)|\sigma|^{2}dx$ $-\operatorname{div}\sigma = f$ in Ω $= -\min_{\substack{\sigma \in L^{2}(\Omega)^{N} \\ = -\dim \sigma = f \text{ in } \Omega}} \max_{\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \le \kappa} \int_{\Omega} (1+c\theta) |\sigma|^{2} dx$

Remark:

The functional $\sigma \mapsto \max_{\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta \, dx \le \kappa} \int_{\Omega} (1+c\theta) |\sigma|^2 dx$ is strictly convex. So the problem $\min \qquad \max \qquad \int (1+c\theta) |\sigma|^2 dx$

$$\sigma \in L^{2}(\Omega)^{N} \quad \theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta \, dx \leq \kappa \int_{\Omega} (1 + c \sigma) |\sigma| + dx$$
$$-\operatorname{div} \sigma = f \text{ in } \Omega$$

has a unique solution $\hat{\sigma}$, i.e. although the solution $(\hat{\theta}, \hat{u})$ of $\min_{u \in H_0^1(\Omega)} \left(\int_{\Omega} \frac{|\nabla u|^2}{1 + c\theta} dx - 2 < f, u > \right)$ $\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \le \kappa$

can be not unique, $\hat{\sigma} = \frac{\nabla \hat{u}}{1+c\hat{\theta}}$ is unique.

Taking the minimum in θ in

he minimum in
$$\theta$$
 in

$$\min_{u \in H_0^1(\Omega)} \min_{\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \le \kappa} \left(\int_{\Omega} \frac{|\nabla u|^2}{1 + c\theta} dx - 2 \prec f, u \succ \right),$$

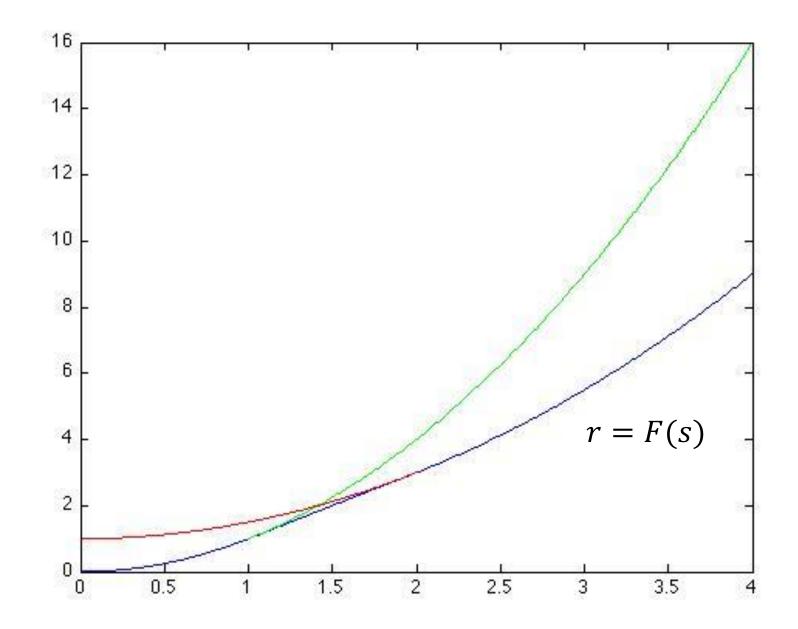
we deduce the existence of $\mu > 0$ such that u is a solution of

$$\min_{u\in H^1_0(\Omega)}\left(\int_{\Omega} F(|\nabla u|)dx - 2 \prec f, u \succ\right)$$

with $F \in W^{2,\infty}(0,\infty)$ given by

$$2F(s) = \begin{cases} s^2 & \text{if } 0 \le s \le \mu \\ 2\mu s - \mu^2 & \text{if } \mu \le s \le (1+c)\mu \\ \frac{s^2}{1+c} + \mu^2 & \text{if } (1+c)\mu \le s. \end{cases}$$

Besides $\theta = 1$ if $|\sigma| < \mu$, $\theta = 0$ if $|\sigma| > \mu$. Thus (θ, u) is unique in $\{|\sigma| \neq \mu\}$



Theorem: Assume $\Omega \in C^{2,\gamma}$, $\gamma \in (0,1]$ ($\Omega \in C^{1,1}$ must be enough)

$$f \in W^{-1,p}(\Omega), \ 2 \le p < \infty \implies \hat{\sigma} \in L^p(\Omega)^N \implies u \in W_0^{1,p}(\Omega)$$
$$f \in L^p(\Omega), \ N
$$f \in W^{1,1}(\Omega) \cap L^2(\Omega) \implies \begin{cases} \hat{\sigma} \in H^1(\Omega)^N, \ P(\hat{\sigma}) = 0 \text{ on } \partial\Omega\\ \partial_i \theta \hat{\sigma}_j - \partial_j \theta \hat{\sigma}_i \in L^2(\Omega), \ 1 \le i, j \le N \end{cases}$$$$

P denotes the orthogonal projection on the tangent space.

Chipot, Evans, 1986, Local estimates in $W^{1,\infty}$.

Sketch of the proof. *u* satisfies

$$-\operatorname{div}\left(\frac{F'(|\nabla u|)}{|\nabla u|}\nabla u\right) = f \text{ in } \Omega$$

and then

$$-\frac{1}{1+c}\Delta u = f + \operatorname{div}\left(\left(\frac{F'(|\nabla u|)}{|\nabla u|} - \frac{1}{1+c}\right)\nabla u\right) \text{ in }\Omega,$$

Using that F'(s) = s/(1+c) if $s > \mu$, we deduce

$$f \in W^{-1,p}(\Omega), \ 2 \le p < \infty \implies u \in W_0^{1,p}(\Omega).$$

Now, deriving formally in

$$-\operatorname{div}\left(\frac{F'(|\nabla u|)}{|\nabla u|}\nabla u\right) = f \text{ in } \Omega$$

with respect to x_i , we deduce

$$-\operatorname{div}(M\nabla(\partial_{i}u)) = \partial_{i}f \text{ in }\Omega$$

with
$$M = \begin{cases} I & \text{ if } |\nabla u| < \mu \\ \frac{\mu}{|\nabla u|} \left(I - \frac{\nabla u \otimes \nabla u}{|\nabla u|^{2}}\right) & \text{ if } \mu < |\nabla u| < (1+c)\mu \\ \frac{1}{1+c}I & \text{ if } (1+c)\mu < |\nabla u|. \end{cases}$$

Assume $f \in H^1(\Omega)$. Multiplying by $\partial_i u \varphi^2$, $\varphi \in C_c^1(\Omega)$, we get $\int_{\Omega} M \nabla(\partial_i u) \cdot \nabla(\partial_i u) \varphi^2 dx < \infty.$ but $\partial_i \hat{\sigma} = M \nabla(\partial_i u)$. Thus

$$\int_{\Omega} |\partial_i \hat{\sigma}|^2 \varphi^2 dx = \int_{\Omega} |M \nabla (\partial_i u)|^2 \varphi^2 dx$$
$$\leq \int_{\Omega} M \nabla (\partial_i u) \cdot \nabla (\partial_i u) \varphi^2 dx < \infty.$$

The proof of $\hat{\sigma} \in L^{\infty}(\Omega)^N$ is based on

$$-\operatorname{div}(M\nabla(\partial_i u)) = \partial_i f \text{ in } \Omega,$$

with $M = \frac{l}{1+c}$ if $|\nabla u| > \mu$ and Stampacchia's estimates.

Proposition: If $f \in W^{1,1}(\Omega) \cap L^2(\Omega)$, and there exists an unrelaxed solution $(\theta = \chi_{\omega})$, then $\operatorname{curl}(\hat{\sigma}) = 0$.

If Ω is simply connected, $\Omega \in C^{2,\gamma}$, then $\hat{\sigma} = \nabla w$, with *w* the unique solution of $\begin{cases} -\Delta w = f \text{ in } \Omega \\ w = 0 \text{ on } \partial \Omega \end{cases}$

Proof. It is essentially a consequence of $\partial_i \theta \hat{\sigma}_j - \partial_j \theta \hat{\sigma}_i \in L^2(\Omega), \quad 1 \le i, j \le N$

Remark: The above conclusions appear in F. Murat, L. Tartar 1985, but assuming the existence of smooth solutions.

Remark: The discontinuity sets of a solution θ must be composed by surface levels of the corresponding function u_{θ} . Moreover, $\frac{\partial u_{\theta}}{\partial v} = \text{constant}$ on these surface levels.

Energy problem

$$\Omega \subset \mathbb{R}^N, N \ge 2, \text{ bounded, open,}$$

$$\beta > \alpha > 0, \ 0 < \kappa < |\Omega|, \ \tilde{f} \in H^{-1}(\Omega)$$

$$\min_{|\omega| \ge \kappa} \int_{\Omega} (\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) |\nabla u_{\omega}|^2 dx$$

$$\begin{cases} -\operatorname{div}((\alpha\chi_{\omega} + \beta(1 - \chi_{\omega}))\nabla u_{\omega}) = \tilde{f} \text{ in } \Omega\\ u_{\omega} = 0 \text{ on } \partial\Omega \end{cases}$$

or equivalently

$$\max_{|\omega| \ge \kappa} \min_{u \in H_0^1(\Omega)} \left(\int_{\Omega} \left(\alpha \chi_{\omega} + \beta (1 - \chi_{\omega}) \right) |\nabla u|^2 dx - 2 \prec \widetilde{f}, u \succ \right)$$

Relaxed formulation

We now need to consider the arithmetic mean value of α and β with proportions θ and 1- θ .

Denoting $c = \frac{\beta - \alpha}{\beta}, f = \frac{1}{\beta} \tilde{f}$. The relaxed problem can be written as $\max_{\substack{\theta \in L^{\infty}(\Omega; [0,1]) \ u \in H_0^1(\Omega)}} \min_{\substack{u \in H_0^1(\Omega)}} \left(\int_{\Omega} (1 - c\theta) |\nabla u|^2 dx - 2 < f, u > \right)$ $\int_{\Omega} \theta dx \ge \kappa$ $= \min_{\substack{u \in H_0^1(\Omega) \ \theta \in L^{\infty}(\Omega; [0,1]) \ \int_{\Omega}}} \left(\int_{\Omega} (1 - c\theta) |\nabla u|^2 dx - 2 < f, u > \right)$ $\int_{\Omega} \theta dx \ge \kappa$ or

or

$$\min_{\substack{\theta \in L^{\infty}(\Omega; [0,1]), \sigma \in L^{2}(\Omega)^{N} \\ \int_{\Omega} \theta dx \ge \kappa, -\operatorname{div}\sigma = f}} \int_{\Omega} \frac{|\sigma|^{2}}{1 - c\theta} dx$$

Now, it is the state function \hat{u} which is unique

Theorem: Assume $\Omega \in C^{2,\gamma}$, $\gamma \in (0,1]$ ($\Omega \in C^{1,1}$ must be enough)

$$f \in W^{-1,p}(\Omega), \ 2 \le p < \infty \implies \hat{u} \in W_0^{1,p}(\Omega)$$
$$f \in L^p(\Omega), \ N
$$f \in L^2(\Omega) \implies \begin{cases} \hat{u} \in H^2(\Omega) \\ \nabla \theta \cdot \nabla \hat{u} \in L^2(\Omega). \end{cases}$$$$

Remark: As for the compliance problem, the function \hat{u} is the solution of a certain non-linear problem. Namely \hat{u} is the limit of \hat{u}_{ε} satisfying

$$-\operatorname{div}(M_{\varepsilon}(\nabla \hat{u}_{\varepsilon})\nabla (\partial_{i}\hat{u}_{\varepsilon})) = \partial_{i}f \text{ in } \Omega,$$

where the matrices $M_{\varepsilon}(\nabla \hat{u}_{\varepsilon})$ are uniformly elliptic but unbounded.

Remark:

If $f \in L^2(\Omega)$, and there exists an unrelaxed solution $(\theta = \chi_{\omega})$, then from the condition $\nabla \chi_{\omega} \cdot \nabla \hat{u} \in L^2(\Omega)$ one hopes to deduce $\nabla \chi_{\omega} \cdot \nabla \hat{u} = 0$. This would imply

$$-(1-c\chi_{\omega})\Delta\hat{u} = -\operatorname{div}((1-c\chi_{\omega})\nabla\hat{u}) = f \text{ in }\Omega$$

and as consequence

If
$$\exists U \subset \Omega$$
 open set with $\omega \cap U \Subset U \Longrightarrow \int_{\omega \cap U} f \, dx = 0$
If $\exists U \subset \Omega$ open set with $\omega^c \cap U \Subset U \Longrightarrow \int_{\omega^c \cap U} f \, dx = 0$.

However the implication

$$\nabla \chi_{\omega} \cdot \nabla \hat{u} \in L^2(\Omega) \Longrightarrow \nabla \chi_{\omega} \cdot \nabla \hat{u} = 0,$$

is not clear.

Remark: On the discontinuity surface of a solution θ , we have $\frac{\partial \hat{u}}{\partial v} = 0$.

Eigenvalue problem

We want to mix two materials α and β in order to minimize the first eigenvalue of the operator

$$-\operatorname{div}(\alpha\chi_{\omega}+\beta(1-\chi_{\omega}))$$

Namely, for $0 < \kappa < |\Omega|$, we have the problem

$$(\Lambda_m) \quad \min_{|\omega| \leq \kappa} \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} (\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) |\nabla u|^2 dx}{\int_{\Omega} |u|^2 dx}$$

Remark: For $A \in L^{\infty}(\Omega)^N$, elliptic,

$$\lambda_1(A) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} A \nabla u \cdot \nabla u \, dx}{\int_{\Omega} |u|^2 dx}$$

can be characterized by

$$\frac{1}{\lambda_1(A)} = \max_{\substack{-\operatorname{div}(A\nabla u)=f\\ u\in H_0^1(\Omega)\\ \|f\|_{L^2(\Omega)} \le 1}} \int_{\Omega} A\nabla u \cdot \nabla u \, dx$$
$$= -\min_{\substack{u\in H_0^1(\Omega)\\ \|f\|_{L^2(\Omega)} \le 1}} \left(\int_{\Omega} A\nabla u \cdot \nabla u \, dx - 2 \int_{\Omega} fu \, dx \right).$$

Thus, we have the relaxed formulation

$$(\Lambda_m) \min_{\|f\|_{L^2(\Omega)} \le 1} \min_{\substack{u \in H_0^1(\Omega) \\ \int_{\Omega} \theta dx \le \kappa}} \left(\int_{\Omega} \frac{|\nabla u|^2}{1 + c\theta} \, dx - 2 \int_{\Omega} f u \, dx \right) \qquad c = \frac{\beta - \alpha}{\alpha}$$

The regularity results for the compliance problem can then be applied.

Theorem: Assume
$$\Omega \in C^{2,\gamma}, \gamma \in (0,1]$$

$$\sigma = \frac{\nabla u}{1+c\theta} \in H^1(\Omega)^N \cap L^\infty(\Omega)^N, \quad \partial_i \theta \sigma_j - \partial_j \theta \sigma_i \in L^2(\Omega), \quad 1 \le i, j \le N.$$

Theorem: Assume there exists an unrelaxed solution χ_{ω} for (Λ_m) . Then,

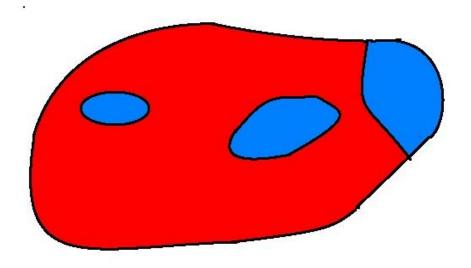
$$\sigma = (\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) \nabla u \in W^{2,p}(\Omega), \quad \forall p \in [1, \infty), \quad \operatorname{curl} \sigma = 0$$

Moreover, if there exist two open sets $O \subseteq U \subset \Omega$, $O \in C^2$, such that $\chi_{\omega} = r$ in $O, \chi_{\omega} = 1 - r$ in $U \setminus O$. Then, O is a sphere.

Proof.

It is a consequence of
$$\begin{cases} -\Delta u = \lambda_1 u & \text{in } O\\ u = \text{constant on } \partial O, \quad \frac{\partial u}{\partial v} = \text{constant on } \partial O. \end{cases}$$

and Serrin's theorem.



It would be only possible if the interior blue zones were circles

Counterexample: $\Omega = \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{N-1}$, $\alpha = 1, \beta = 2$. For $\varepsilon > 0$ small enough the solutions θ of $\min \left\{ \frac{\int_{\Omega} \frac{|\nabla u|^2}{1+\theta} dx}{1+\theta}; u \in H_0^1(\Omega), \theta \in L^{\infty}(\Omega, [0,1]), \int_{\Omega} \theta dx < |\Omega| - \varepsilon \right\}$

$$\min\left\{\frac{\int_{\Omega} 1 + \theta^{-\alpha n}}{\int_{\Omega} |u|^2 dx} : u \in H_0^1(\Omega), \theta \in L^{\infty}(\Omega, [0,1]), \int_{\Omega} \theta dx \le |\Omega| - \varepsilon\right\}$$

is not a characteristic

Proof. If $(\chi_{\omega_{\varepsilon}}, u_{\varepsilon})$ were a solution then $u_{\varepsilon} \approx \cos(2x_1) \prod_{j=2}^{N} \cos(x_j)$. \exists a smooth connected component O_{ε} of $\Omega \setminus \omega_{\varepsilon}$,

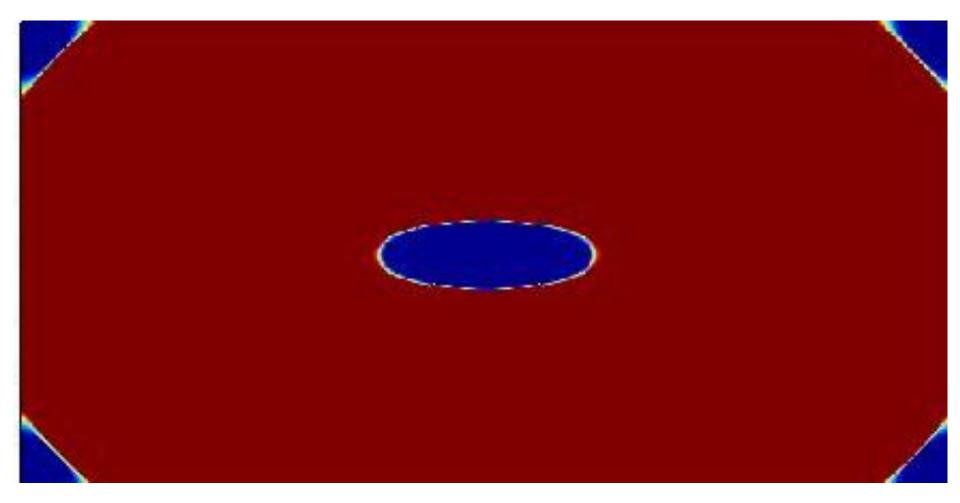
$$O_{\varepsilon} \approx \left\{ \frac{x_1^2}{8} + \sum_{i=2}^{N} \frac{x_i^2}{2} = 1 - c_{\varepsilon} \right\}, \quad c_{\varepsilon} > 0$$

Numerical experiments.

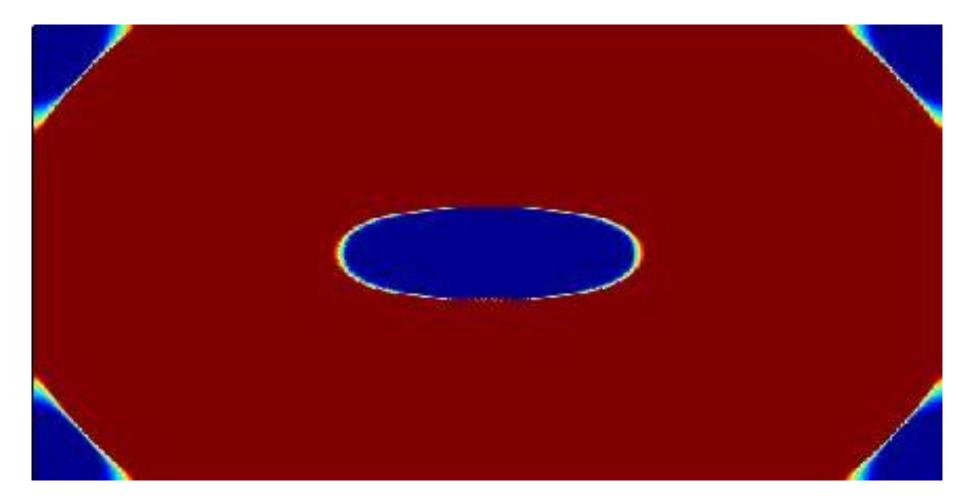
Problem $\Omega = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{4}, \frac{\pi}{4}\right), \ |\Omega| \approx 4,935, \ \alpha = 1, \beta = 2$

$$\min \frac{\int_{\Omega} \frac{|\nabla u|^2}{1+\theta} dx}{\int_{\Omega} |u|^2 dx}$$

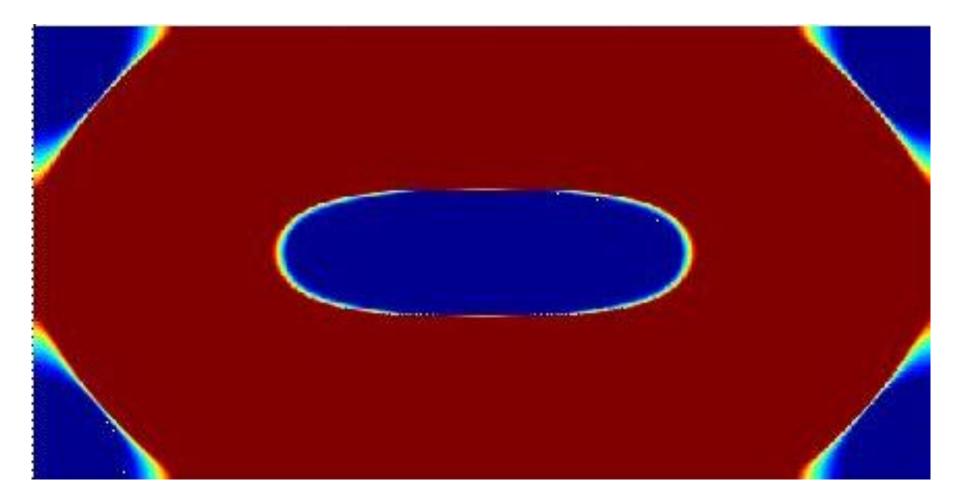
$$u \in H^1_0(\Omega), \int_{\Omega} \ \theta dx \leq \kappa$$



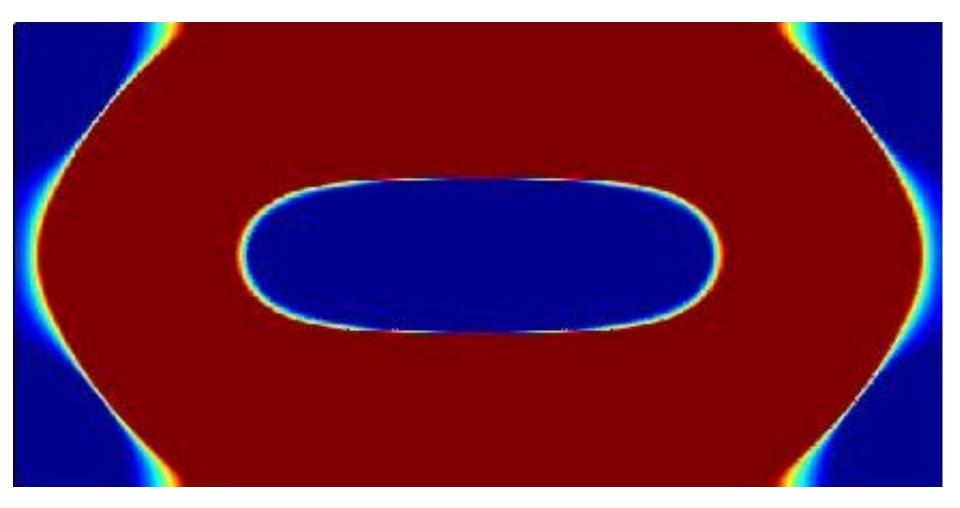
$$\alpha = 1, \beta = 2, \kappa = 4.685$$



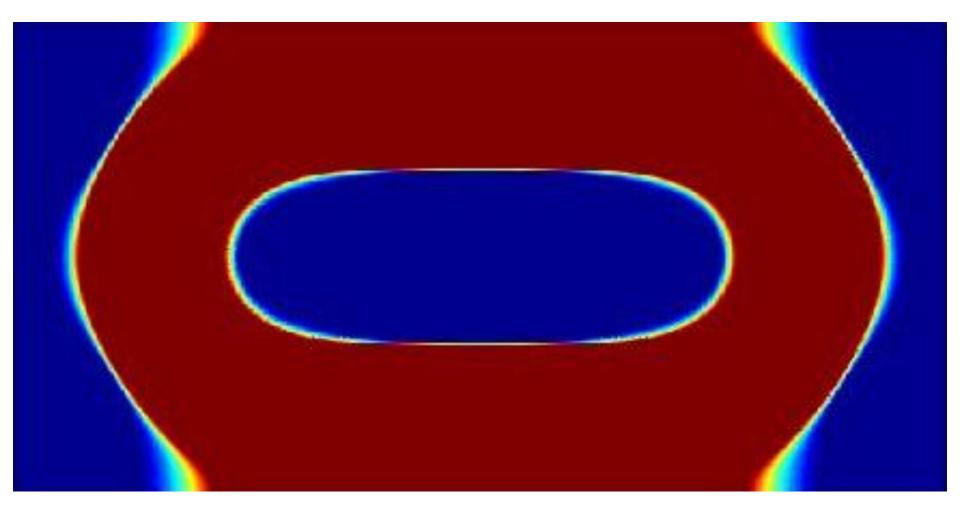
$$\alpha = 1, \beta = 2, \kappa = 4.435$$



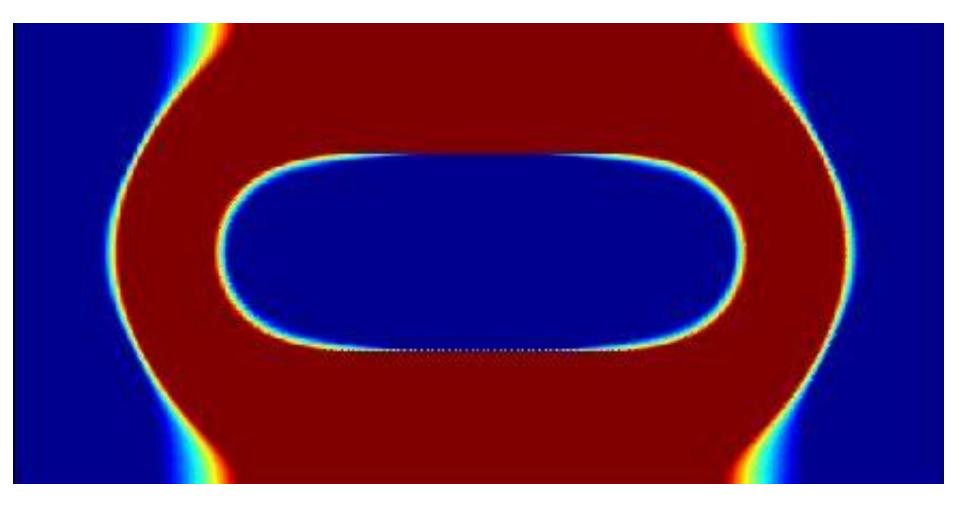
$$\alpha = 1, \beta = 2, \kappa = 3.935$$



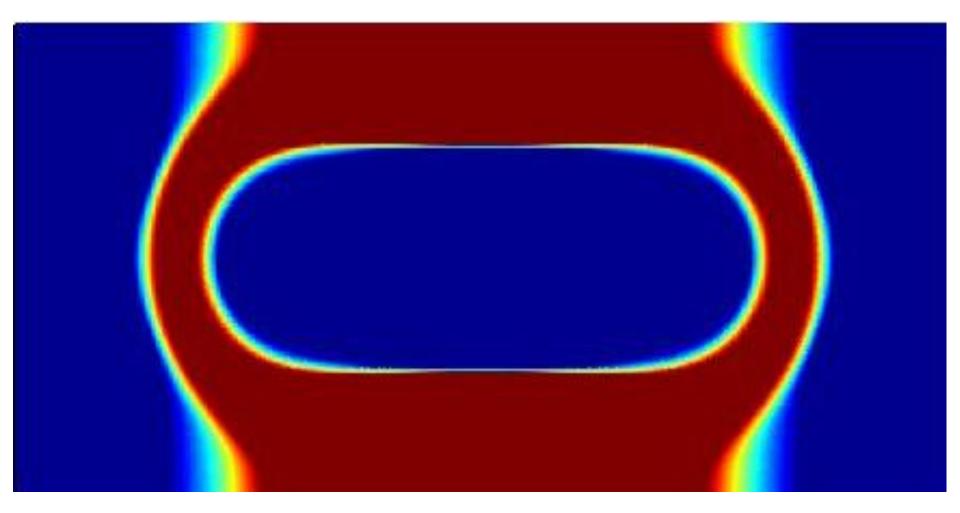
$$\alpha = 1, \beta = 2, \kappa = 3.435$$



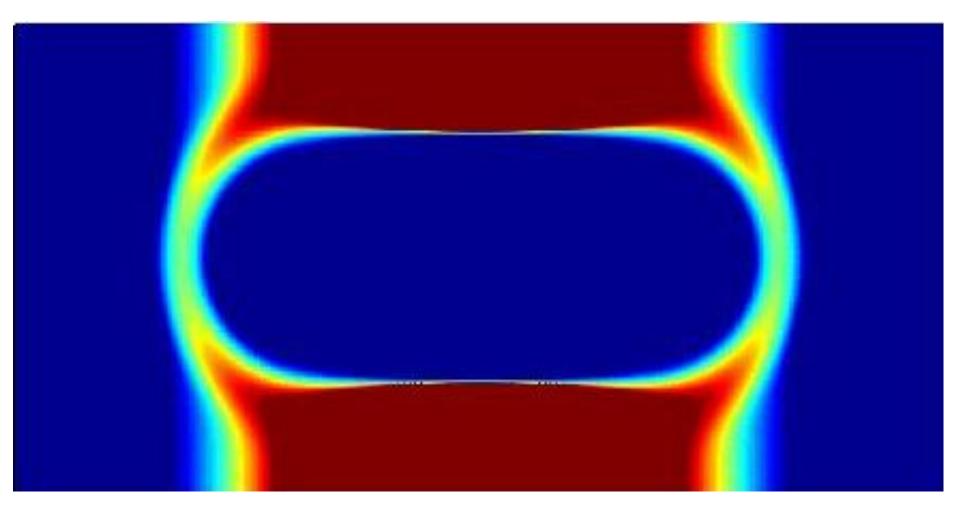
$$\alpha = 1, \beta = 2, \kappa = 2.935$$



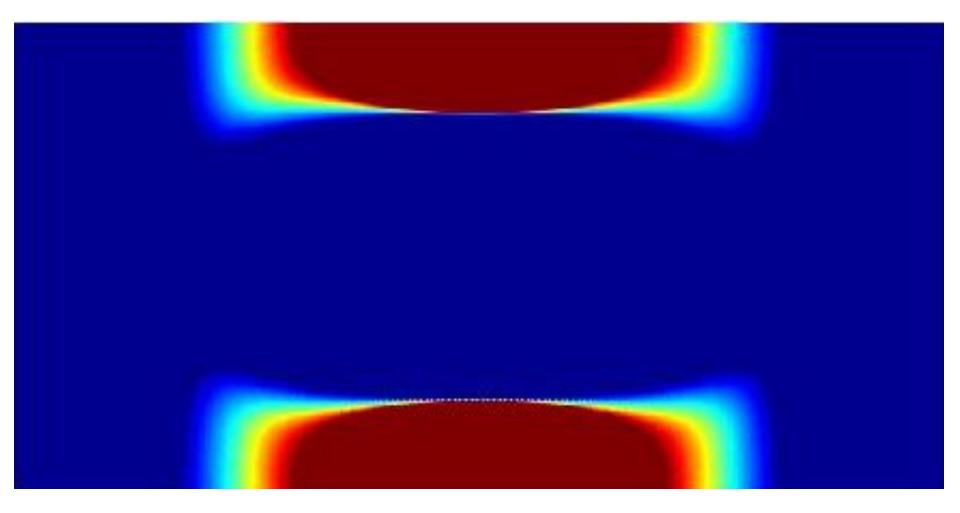
$$\alpha = 1, \beta = 2, \kappa = 2.435$$



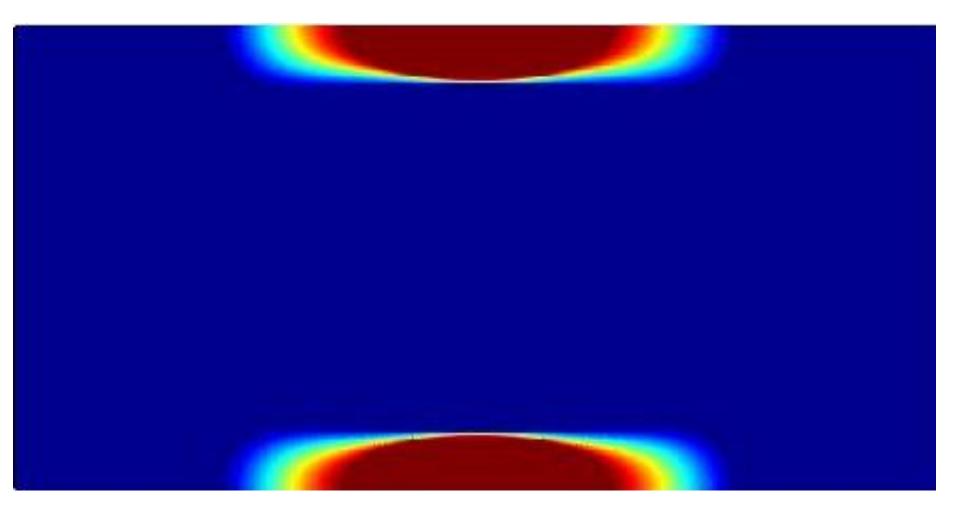
$$\alpha = 1, \beta = 2, \kappa = 1.935$$



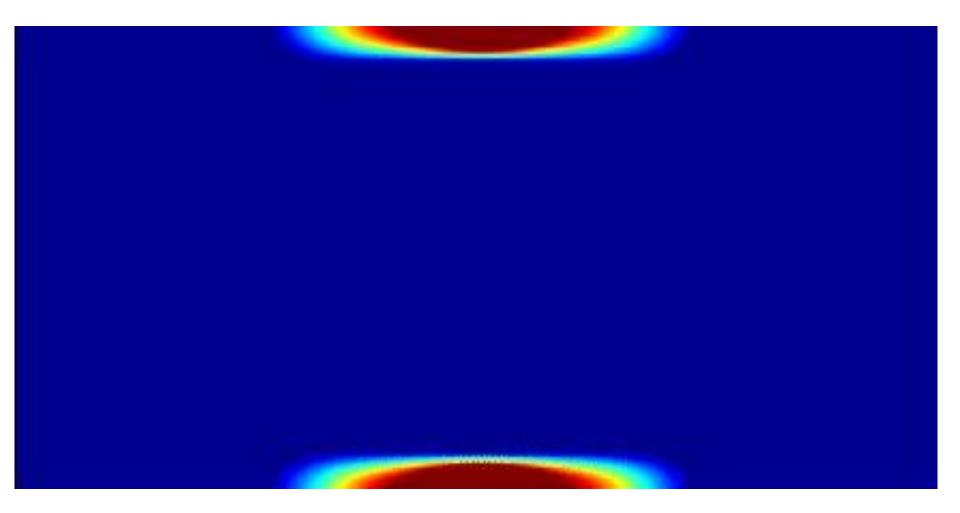
$$\alpha = 1, \beta = 2, \kappa = 1.435$$



$$\alpha = 1, \beta = 2, \kappa = 0.935$$



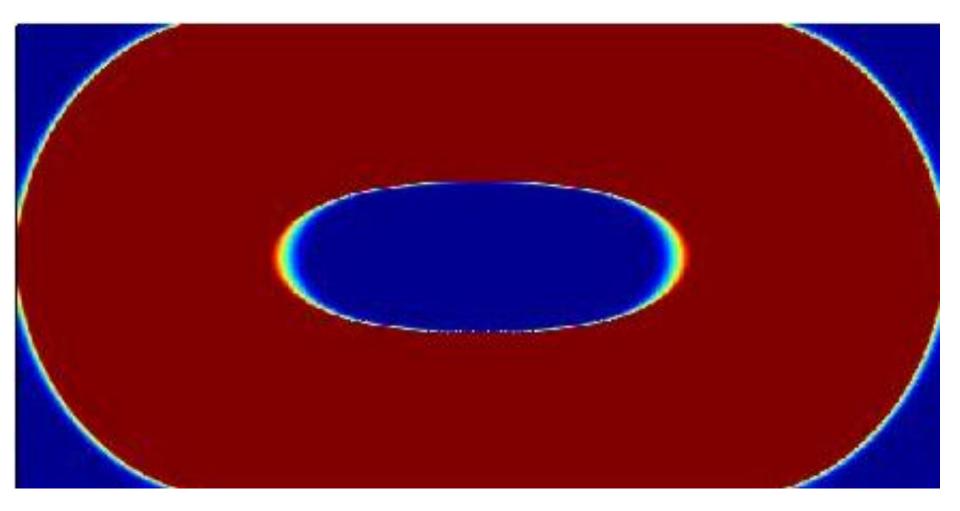
$$\alpha = 1, \beta = 2, \kappa = 0.435$$



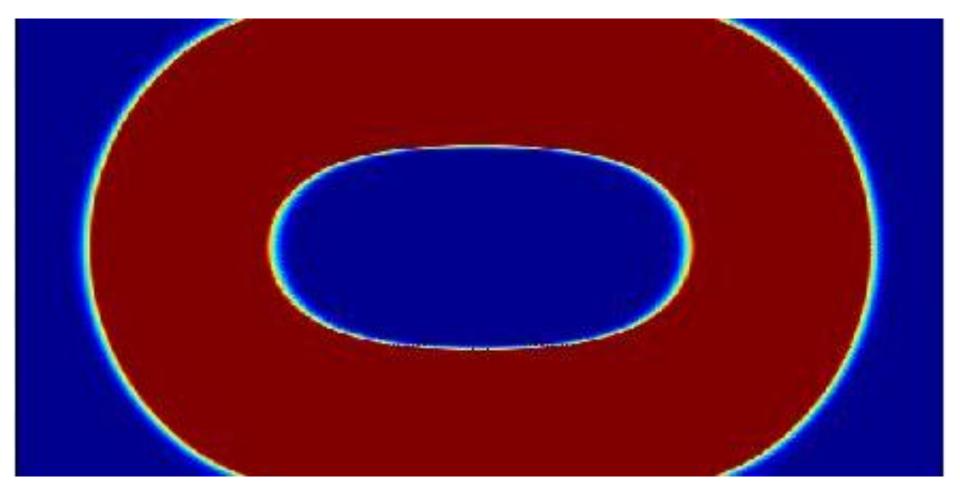
$$\alpha = 1, \beta = 2, \kappa = 0.46$$

Problem
$$\Omega = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{4}, \frac{\pi}{4}\right), \ |\Omega| \approx 4,935, \ \alpha = 1, \beta = 20$$
$$\min \frac{\int_{\Omega} \frac{|\nabla u|^2}{1+19\theta} dx}{\int_{\Omega} |u|^2 dx}$$

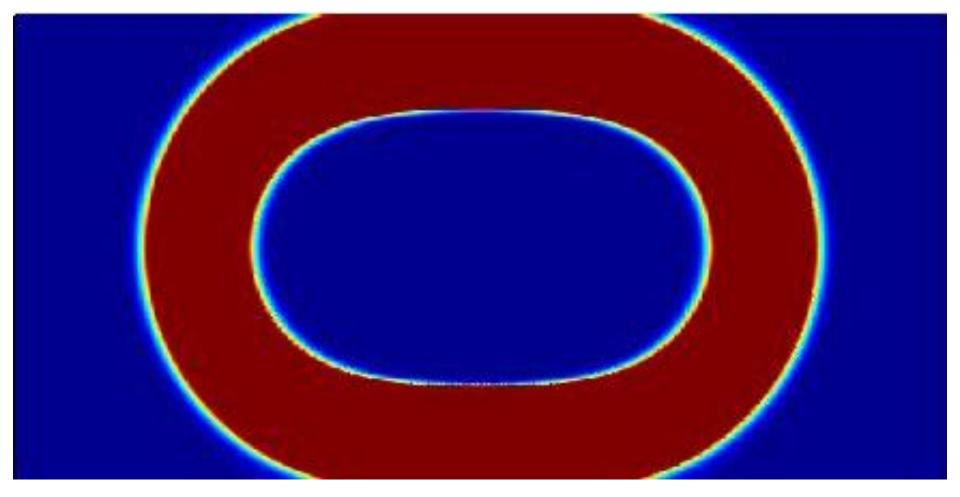
$$u \in H^1_0(\Omega), \int_{\Omega} \ \theta dx \leq \kappa$$



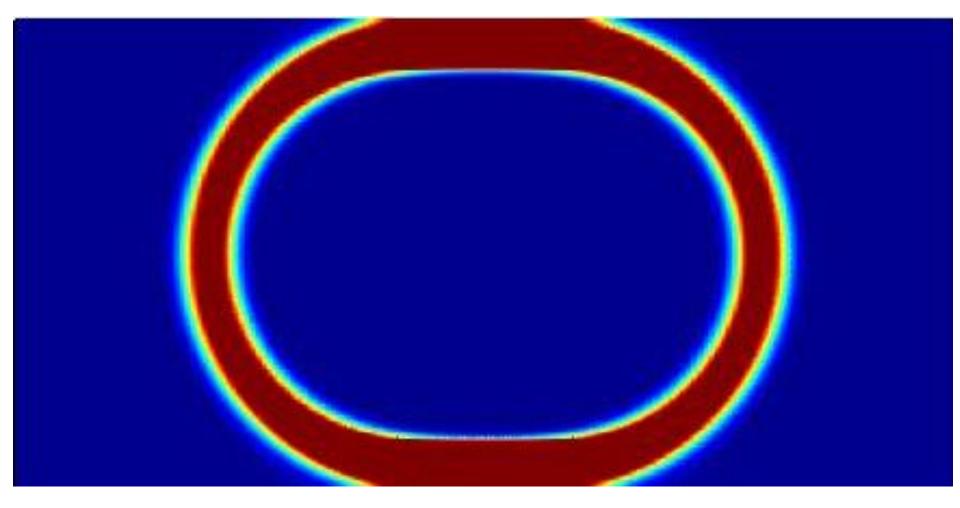
$\alpha=1,\beta=20,\kappa=3.935$



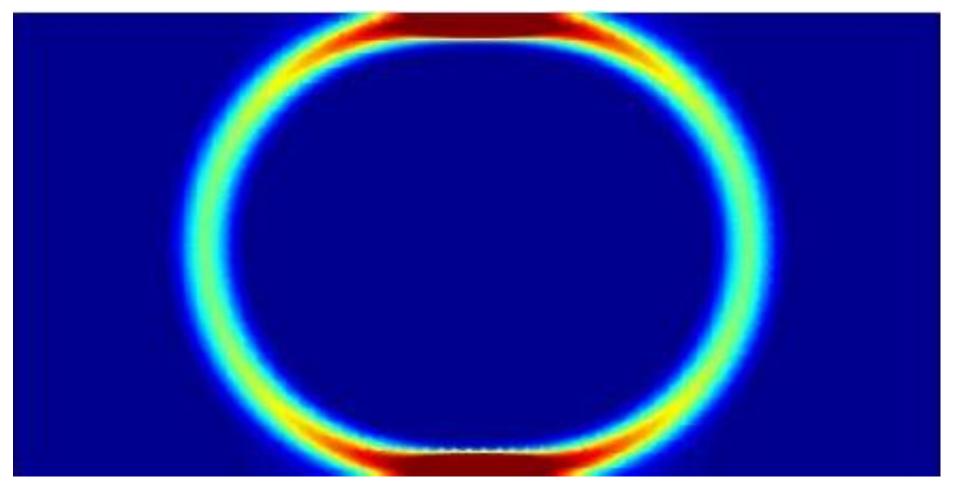
$\alpha=1,\beta=20,\kappa=2.935$



$\alpha = 1, \beta = 20, \kappa = 1.935$



$\alpha=1,\beta=20,\kappa=0.935$



$\alpha=1,\beta=20,\kappa=0.435$

Remark. Similar results can be obtained for the probems (p > 1)

$$\max_{|\omega| \le \kappa} \int_{\Omega} (\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) |\nabla u_{\omega}|^{p} dx$$

$$\begin{cases} -\operatorname{div}((\alpha\chi_{\omega}+\beta(1-\chi_{\omega}))|\nabla u_{\omega}|^{p-2}\nabla u_{\omega}) = \tilde{f} \text{ in } \Omega\\ u_{\omega} = 0 \text{ on } \partial\Omega \end{cases}$$

and

$$\begin{split} \min_{|\omega| \ge \kappa} \int_{\Omega} \left(\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) |\nabla u_{\omega}|^{p} dx \right. \\ \left\{ -\operatorname{div} \left((\alpha \chi_{\omega} + \beta (1 - \chi_{\omega})) |\nabla u_{\omega}|^{p-2} \nabla u_{\omega} \right) = \tilde{f} \text{ in } \Omega \\ u_{\omega} = 0 \text{ on } \partial \Omega, \end{split}$$

which admit the relaxed formulations

$$\min_{\theta \in L^{\infty}(\Omega; [0,1]), \int_{\Omega} \theta dx \leq \kappa} \min_{u \in H^{1}_{0}(\Omega)} \left(\int_{\Omega} \frac{|\nabla u|^{p}}{(1+c\theta)^{p-1}} dx - p \prec f, u \succ \right)$$

with
$$c = \left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}} - 1, \quad f = \frac{1}{\beta}\tilde{f}$$

and

$$\max_{\substack{\theta \in L^{\infty}(\Omega; [0,1]) \ u \in H_{0}^{1}(\Omega)}} \min_{\substack{(\int_{\Omega} (1 - c\theta) |\nabla u|^{p} dx - p < f, u >) \\ \int_{\Omega} \theta dx \ge \kappa}} \int_{\Omega} \theta dx \ge \kappa}$$

with
$$c = \frac{\beta - \alpha}{\beta}$$
, $f = \frac{1}{\beta}\tilde{f}$