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Universidad de Sevilla
Sevilla, Spain

————————–

5th International Workshop on Model Reduction
in Reacting Flows (IWMRRF),

Spreewald, Germany

June 28th-July 1st, 2015

T. Caraballo, Univ. Sevilla RD equations with multiplicative noise 1



Introduction

Most real phenomena are better described if random,
non-autonomous (or stochastic) terms are considered in the models

du

dt
= F (u)

du

dt
= F (t, u) + noise

Several questions:
• Are deterministic models good approximations of real ones?
• Which effects are caused by the noise in deterministic systems?
• What kind of noise is more appropriate?
Ito vs Stratonovich (different effects in long time behaviour)
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The Chafee-Infante equation
We will compare the global asymptotic behaviour of

(Ch − I )


ut −∆u = βu − u3 in (0,+∞)× [0, L],
u(0, x) = u0(x), x ∈ [0, L],
u(t, 0) = u(t, L) = 0, t ≥ 0.

with its Ito stochastic perturbation

(Ch−I+ito)

 ut −∆u = βu − u3 + σuẆt in (0,+∞)× [0, L],
u(0, x) = u0(x), x ∈ [0, L],
u(t, 0) = u(t, L) = 0, t ≥ 0.

and its Stratonovich one

(Ch−I+strat)

 ut −∆u = βu − u3 + σu ◦ Ẇt in (0,+∞)× [0, L],
u(0, x) = u0(x), x ∈ [0, L],
u(t, 0) = u(t, L) = 0, t ≥ 0.

• Different effects.
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Preliminaries on Dynamical Systems
(X , d) compl. met. space, F : D(F ) ⊂ X −→ X

du

dt
= F (u(t)),

u(0) = u0.

Dynamical System in X :

S(t) : X −→ X , S(t)u0 = u(t; u0)

S(0) = IdX , S(t + s) = S(t)S(s),∀t, s ≥ 0.

• B ⊂ X absorbing if ∀D ⊂ X bounded ∃T (D):

S(t)D ⊂ B, ∀t ≥ T (D).

• B ⊂ X attracting if ∀D ⊂ X bounded

lim
t→+∞

distH(S(t)D,B) = 0.
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Preliminaries on Dynamical Systems

A ⊂ X is the global attractor for S(t) if
• is compact,
• S(t)A = A,∀t > 0 (invariance),
• Attracts every bounded subset of X .

Theorem
The global attractor A exists if and only if there exists a compact
attracting subset K ⊂ X.

Internal structure of the attractor determines the behavior.
For our (Ch − I ): If λn eigenvalues of −∆, we have:

{0} is a steady-state solution which is

{
stable if β < λ1

unstable if β > λ1

There exists the global attractor A0 of (Ch-I) which is formed
by the stationary points (which bifurcate from the origin when
β passesses through λn–Pitchfork bifurcation) and the
unstable manifolds joining them.
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Random dynamical systems: Motivation
•Problem : solution paths are not globally bounded, in general.
Example: Consider (OU)

dz = −z dt + dW (t) (1)

where W (t) standard Wiener process1 over the filtered probability
space (Ω,F , (Ft)t≥0,P), canonical probability space i.e.

Ω = {ω ∈ C (R,R) : ω(0) = 0}, W (t, ω) := ω(t)

F the Borel σ-algebra, P the Wiener measure, and θt : Ω→ Ω
given by

(θtω) (·) := ω(t + ·)− ω(t).
1family of ran. var. W (t)(·) : ω ∈ Ω 7→W (t)(ω) ∈ R, t ≥ 0 s.t. P−a.s.

W (0) = 0

cont. paths (NOT bounded variation, a.s.): t ∈ R+ 7→W (t)(ω) ∈ R
independent increments:

stationarity: the joint distribution of {W (t1 + t), . . . , W (tk + t)} does
not depend on t.

W (t)−W (s), 0 ≤ s ≤ t, is a Gussian var.: mean 0, variance t − s.
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Random dynamical systems: Motivation

Solution:

z(t) = z(t0)e−(t−t0) +

∫ t

t0

e−(t−s)dW (s)

= z(t0)e−(t−t0) + ω(t)− e−(t−t0)ω(t0)

−
∫ t

t0

e−(t−s)ω(s)ds (2)

If we take two solutions z1(·), z2(·) then

z1(t)− z2(t) = (z1(t0)− z2(t0))e−(t−t0)
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Random dynamical systems: Motivation

BUT, a special solution:
Denote

z∗(ω) = −
∫ 0

−∞
esω(s) ds.

Define

z(t, ω) = z∗(θtω)

= −
∫ 0

−∞
es (θtω) (s) ds

= −
∫ 0

−∞
es (ω(t + s)− ω(t)) ds

= ω(t)−
∫ t

−∞
es−tω(s) ds

Same obtained in (2) when t0 → −∞ (pullback limit)
Random attractor: {A(ω);ω ∈ Ω} with A(ω) = z∗(ω).
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Non-autonomous dynamical systems

Pullback versus forward attraction

dx

dt
= −x + t, x (t0) = x0

x (t; t0, x0) = e−(t−t0) (x0 + 1− t0) + t − 1

A (t) = {g(t) = t − 1}

x (t; t0, x0)→∞,
if t → +∞

x (t; t0, x0)→ t − 1,
if t0 → −∞
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Non-autonomous/Random dynamical systems

New concept of attractor

Differences between pullback and forward attractor

Both convergences coincide in the autonomous case

Pullback attractors are becoming popular in applications: e.g.
Chesson proposes it for ecological models. Asymptotic
environmentally-determined trajectories (aedts) are basically
pullback attractors with singleton components.

More suitable for stochastic/random cases (originally
appeared in this context)
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Random dynamical systems generated by random equations
Consider now a random differential equation:

dx

dt
= f (θtω, x) (3)

where (Ω, (θt)t∈R) are the ones defined previously.

Define G (t, ω)x0 := x(t; 0, ω, x0) where x(·; s, ω, x0) is the solution
of (3) s.t. x(s) = x0.

NOTICE: x(t − s; 0, θsω, x0) = G (t − s, θsω)x0 = x(t; s, ω, x0)

Then, G is a cocycle

(i) the mapping x 7→ G (t, ω)x is continuous for every t ≥ 0;

(ii) G (0, ω) is the identity operator;

(iii) (cocycle property) G (t + s, ω) = G (t, θsω)G (s, ω) for all
s, t ≥ 0.

The pair (θt ,G ) is called a random dynamical system. Recall
that θt is a group.
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Graphical interpretation of the cocycle property using fibers

✓t✓⌧!

= ✓t+⌧!

{✓t+⌧!} ⇥X

✓⌧!

{✓⌧!} ⇥X

!

{!} ⇥X

x G(⌧, !, x)

G(t, ✓⌧!, G(⌧, !, x))
= G(t + ⌧, !, x)

G(⌧, !, ·)
G(t, ✓⌧!, ·)

⌦

G(t + ⌧, !, ·)

time ttime ⌧

1
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Random dynamical systems

Random sets

(i) A set-valued mapping B : ω → 2X\∅ is said to be a random
set if ω 7→ distX (x ,B(ω)) is measurable for any x ∈ X .

(ii) A random set B(ω) is said to be bounded, compact or closed
if B(ω) is bounded, compact or closed, for a.e. ω ∈ Ω.

(iii) A bounded random set B(ω) ⊂ X is said to be tempered with
respect to (θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈B(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with
respect to (θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θ−tω)| = 0, for all β > 0.
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Random dynamical systems
In what follows D(X ) := set of all tempered random sets of X .

Absorbing sets

A random set K (ω) ⊂ X is a random absorbing set in D(X ) if for
any B ∈ D(X ) and a.e. ω ∈ Ω, there exists TB(ω) > 0 s.t.

G (t, θ−tω)B(θ−tω) ⊂ K (ω), ∀t ≥ TB(ω).

Random Attractor
Let {G (t, ω)}t≥0,ω∈Ω an RDS and A(ω)(⊂ X ) a random set.
Then A(ω) is a global random D attractor (or pullback D
attractor) for {G (t, ω)}t≥0,ω∈Ω if ω 7→ A(ω) satisfies

(i) A(ω) is a compact set of X for a.e. ω ∈ Ω;

(ii) for a.e. ω ∈ Ω and all t ≥ 0, it holds G (t, ω)A(ω) = A(θtω);

(iii) for any B ∈ D(X ) and a.e. ω ∈ Ω,

lim
t→∞

distX (G (t, θ−tω)B(θ−tω),A(ω)) = 0,

where
distX (F ,H) = sup

f ∈F
inf
h∈H
‖f − h‖X

is the Hausdorff semi-metric for F ,H ⊆ X .
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Graphical interpretation of the random attractor

Ω
ω

{ω} ×X

θ−t1ω

{θ−t1ω} ×X

θ−t2ω

{θ−t2ω} ×X

time −t1time −(t2 − t1)

A(ω)
= G(t2, θ−t2ω,A(θ−t2ω))

A(θ−t2ω) G(·, θ−t2ω,A(θ−t2ω))

U(θ−t2ω)

G(·, θ−t2ω, U(θ−t2ω))

U(θ−t1ω)

G(·, θ−t1ω, U(θ−t1ω))

U(·)

1
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Conditions ensuring the existence of Random Attractors

Existence of Random Attractor2 Let B ∈ D(X ) be absorbing
closed set for {G (t, ω)}t≥0,ω∈Ω and satisfies the asymptotic
compactness condition for a.e. ω ∈ Ω, i.e., each sequence
xn ∈ G (tn, θ−tn ,B(θ−tnω)) has a convergent subsequence in X
when tn →∞. Then the cocycle G has a unique random attractor

A(ω) =
⋂

τ≥tB(ω)

⋃
t≥τ

G (t, θ−tω)B(θ−tω).

If the pullback absorbing set is positively invariant, i.e.,
G (t, ω)B(ω) ⊂ B(θtω)) for all t ≥ 0, then

A(ω) =
⋂
t≥0

G (t, θ−tω)B(θ−tω).

2[Bates, Lisei & Lu (2006), Caraballo, Lukaszewicz & Real (2006),
Flandoli & Schmalfuß(1996)]
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Conditions ensuring the existence of Random Attractors

For state space X = Rd , the asymp. compactness follows trivially.

When the cocycle mapping is strictly uniformly contracting3, i.e.,
there exists K > 0 such that

‖G (t, ω)x0 − G (t, ω)y0‖X ≤ e−Kt ‖x0 − y0‖X

for all t ≥ 0, ω ∈ Ω and x0, y0 ∈ X , then the random attractor
consists of singleton subsets A(ω) = {a(ω)} (as in our motivating
example)

3[Caraballo, Kloeden & Schmalfuß(2004), Kloeden & Lorenz (2013)]
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Random dynamical systems generated by stochastic
equations

Not every stochastic equation has been proved to generate a
random dynamical system.

Main idea is to perform a transformation (change of variable)

For stochastic PDEs, only additive or multiplicative (linear)
noise has been considered.

dx = F (x) dt + σxdW (t), (linear multiplicative) (4)

dx = F (x) dt + dW (t), (additive) (5)

Different interpretations of the stochastic integrals may yield
to completely different results.
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Random dynamical systems generated by stochastic
equations

Consider the linear n-dimensional ODE

ẋ = F (x), (6)

and the stochastic versions

dx = F (x) dt + σx ◦ dW (t) (Stratonovich) (7)

dy = F (y) dt + σy dW (t), (Ito) (8)

These equations must be interpreted in integral formulation:

x(t) = x0 +

∫ t

0
F (x(s)) ds +

∫ t

0
σx(s) ◦ dW (s) (Stratonovich)

(9)

y(t) = y0 +

∫ t

0
F (y(s)) ds +

∫ t

0
σy(s) dW (s), (Ito) (10)
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Random dynamical systems generated by stochastic
equations

We must be careful with interpreting/defining the stochastic term:
Main difficulty is that paths are NOT of bounded variation, we
CANNOT use the Riemann-Stieltjes sums to define the stochastic
integral. Instead, we have to define the stochastic integral∫ T

0
φ(t) dW (t)

as a limit in L2(Ω,F ,P; R).
We will not construct the stochastic integral but let us consider an
illustrative example:
Consider the one-dimensional standard Wiener process

W (t) = Wt , and let us try to define

∫ T

0
Ws dWs using the

Riemann-Stieltjes sums.

T. Caraballo, Univ. Sevilla RD equations with multiplicative noise 20



Random dynamical systems generated by stochastic
equations

Let us fix a sequence of partitions (∆n) of [0,T ],

∆n = {0 = tn
0 < tn

1 < ... < tn
n = T},

s.t. δn = max0≤k≤n−1(tn
k+1 − tn

k ), satisfies limn→∞ δn = 0.
Pick a ∈ [0, 1], and denote τn

k = atn
k + (1− a)tn

k−1, y

Sn =
n∑

k=1

Wτn
k

(Wtn
k
−Wtn

k−1
).

Using the decomposition

Sn = W 2
T/2− 1/2

n∑
k=1

(Wtn
k
−Wtn

k−1
)2 +

n∑
k=1

(Wτn
k
−Wtn

k−1
)2

+
n∑

k=1

(Wtn
k
−Wτn

k
)(Wτn

k
−Wtn

k−1
),
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Random dynamical systems generated by stochastic
equations

it is not difficult to check that

lim
n→∞

Sn = W 2
T/2− (1− 2a)T/2 in L2(Ω,F ,P; R).

Consequently, trying to define

∫ T

0
Ws dWs as a limit in mean

square, the integral depends on τn
k (i.e. on a).

Denoting (a)
∫ T

0 Ws dWs the obtained integral for the choice of
each a ∈ [0, 1], we have

(a)

∫ t

0
Ws dWs = W 2

t /2− (1− 2a)t/2.

• Notice:

1 The classical expected results for a = 1/2 (Stratonovich)
2 To get that its mean value becomes ZERO (in fact, a

martingale) only when a = 0. (Ito)

T. Caraballo, Univ. Sevilla RD equations with multiplicative noise 22



Random dynamical systems generated by stochastic
equations

• Each interpretation possesses advantages and disadvantages;

• A rule which permits to pass from one to the other;

• Additional term in Ito’s formula;

• Main difference is for long-time behaviour: stabilization or
destabilization.
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Random dynamical systems generated by stochastic
equations

Transformations into random differential equations:

du = F (u) dt + σu ◦ dW (t) (multiplicative) (11)

du = F (u) dt + dW (t), (additive) (12)

For a fixed one-dimensional Wiener process W , consider the
one-dimensional SDE

dz = −z dt + dW (t) (13)

for some λ > 0.
• There exists a random fixed point generating a stationary
solution: Ornstein-Uhlenbeck

z∗(ω) = −
∫ 0

−∞
esω(s) ds.
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Random dynamical systems generated by stochastic
equations

• Multiplicative case: Perform the change

v(t) = u(t)e−σz∗(θtω)

Then we obtain the random equation

dv(t) = (e−σz∗(θtω)F (eσz∗(θtω)v(t)) + σz∗(θtω)v(t))dt

or
dv(t)

dt
= e−σz∗(θtω)F (eσz∗(θtω)v(t)) + σz∗(θtω)v(t)

• Additive case: Perform the change

v(t) = u(t)−W (t)
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The Chafee-Infante equation

Consider

(Ch − I )


ut −∆u = βu − u3 in (0,+∞)× [0, L],
u(0, x) = u0(x), x ∈ [0, L],
u(t, 0) = u(t, L) = 0, t ≥ 0.

Denoting by λn the eigenvalues of −∆, we have:

{0} is a steady-state solution which is

{
stable if β < λ1

unstable if β > λ1

There exists the global attractor A0 of (Ch-I) which is formed
by the stationary points (which bifurcate from the origin when
β passesses through λn–Pitchfork bifurcation) and the
unstable manifolds joining them.
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The Chafee-Infante equation

Now, we consider the perturbed versions:

1 ut −∆u = βu − u3 + σuẆt (Ito) (DCDS (2000))

it generates a random dynamical system.
for any σ there exists Aσ(ω) and dimH(Aσ(ω)) < +∞.
for σ large enough, Aσ(ω) = {0} (and {0} expon. stable)

2 ut −∆u = βu− u3 +σu ◦ Ẇt (Stratonovich) (PRSL (2001))

for any σ there exists Aσ(ω) and dimH(Aσ(ω)) ∼ dimHA0.

3 What happens if we add a more general noise?

+
∑d

i=1 Biu ◦ Ẇ i
t (Ito or Stratonovich)

+ additive noise (collapse to a random fixed point: Crauel &
Flandoli (1998), Caraballo et al. PAMS (2007))
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