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Abstract

In this paper, a general and fully three dimensional multi-body-finite element-boundary element model,

formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the

free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and

the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using

finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This

methodology could be used to take into account local soil discontinuities, underground constructions such

as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the

track line. The non-linear behaviour of the structures could be also considered. In the present paper, in

order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track.

The quasi-static and dynamic load components are studied and the influence of the suspended mass on the

vertical loads is analyzed. The numerical model is validated by comparison with experimental records from

two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track

is analyzed and the obtained results from the proposed model are compared with those obtained from a

model with invariant geometry with respect to the track direction.
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1. Introduction

The emergence of high-speed trains (HST) in Spain has been decisive for its economic and social regional

development. The Spanish Government is developing the Infrastructures and Transports Strategic Plan

where, the National Administrator of Railways (ADIF) is committed to construct HST lines to reach a total

of 10000 km before 2020. At present, there are 1.594 km HST lines in operation, 2.214 km under construction,

and 1.720 km have already been planned [1].

The construction of many HST lines in Spain, other European countries and Asia has pushed the railway

engineering community to conduct much research related to different aspects of HST passage effects in recent
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years. Vehicle, track, soil, and structure dynamic behaviours have been studied, leading to the conclusion

that dynamic effects are much more important for HST than for conventional trains [2]. These effects

require a deep analysis in order to maintain security and comfort in the trains and to avoid problems due

to vibrations induced in nearby constructions by waves transmitted through the soil.

One of the first steps in the study of vibrations induced by HST is an accurate modelling of the force

induced by the train which is transmitted to the soil through the track. This force is generated by a variety of

excitation mechanisms: the quasi-static contribution (force generated by moving axle loads), the parametric

excitation due to discrete supports of the rails, the transient excitation due to rail joints and wheel flats, and

the excitation due to wheel and rail roughness and track unevenness [3]. In the early studies, a prediction

model developed by Krylov [4] was used [5, 6]. In that model, only the quasi-static force transmitted by

the sleepers in a ballasted track is taken into account as a moving force. Krylov’s model is valid when the

train speed is close to the critical phase velocity of the coupled track-soil system because in this case the

quasi-static excitation is dominant [7, 8, 9].

Recently, more advanced models have been used allowing the dynamic train-track interaction mecha-

nisms and the actual track properties to be considered. Lombaert et al. [8, 10] have applied the formulation

presented by Metrikine et al. [11], Metrikine and Popp [12], and Dieterman and Metrikine [13], to predict

vibrations produced by railway traffic using a coupled two-and-half boundary element-finite element formu-

lation in the frequency domain. In that approach the vehicle is coupled to an infinite length beam that

represents the track and a half-space representing the soil. The model has been validated by experimental

results [8, 10]. Auersch [9, 14] has presented a model for ground-borne railway induced vibrations formu-

lated in a similar way. Takemiya and Bian [15] have extended the model presented by Metrikine and Popp

[16] to consider the facts that rails are based discretely on the ground and that sleepers have a significant

inertia effect on the rails. They included a layered soil in the analysis and used a discrete Kelvin model for

the sleepers’ complex frequency-dependent stiffness. Sheng et al. [7, 17, 18] also applied a two-and-a-half-

dimensional frequency domain model to study vibrations due to train passage. In that model, the dynamic

train-track interaction is taken into account using an infinite layered beam for the track coupled to a layered

half-space. Xia et al. [19] have presented an integrated train-track-subsoil dynamic interaction model for

moving-train induced ground vibration based on vehicle dynamics, track dynamics and Green’s functions of

the soil.

The previous numerical models, except reference [19], are formulated in the two-and-a-half domain,

therefore, it is supposed that the ground and structures such as tunnels and tracks, are homogeneous in

the track direction. The models use Green’s functions for a layered full-space or for a layered half-space

to represent the soil. The objective of the present paper is to develop a general and fully coupled three

dimensional multi-body-finite element-boundary element model formulated in the time domain to predict

vibrations due to train passage at the vehicle, the track, the free field and structures situated near the track
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(figure 1). The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic

excitation mechanism can be considered. The model has been developed to account for the full dynamic

vehicle-track-soil interaction. As compared to two-and-a-half domain solutions, the formulation presented

in this paper could be used to take into account local soil discontinuities, underground constructions such as

underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track

line. However, the main disadvantage of the three dimensional models are that they are computationally

expensive. In this model, the track and other structures are modelled using finite elements and their non-

linear behaviour could be also considered since a time domain formulation is employed [20]. The soil is

represented using the boundary element method, in combination with a full-space fundamental solution and

quadratic elements [21]. Special attention is paid to stabilization algorithms and element subdivision to

improve efficiency, stability and accuracy. Internal material damping is introduced in the boundary element

time domain formulation in a simple and efficient manner [6, 22, 23].

[Figure 1 about here.]

The outline of this paper is as follows. First, the numerical model is presented. This presentation includes:

a brief summary of the finite element and the boundary element time domain formulations, and the multi-

body model used to represent the train-track-soil dynamic interaction. Second, the quasi-static and dynamic

load components are studied. The dynamic load is due to rail and wheel irregularities and the parametric

excitation is due to the discrete rail support. The influence of the suspended mass on the vertical loads is

analyzed. Third, the numerical model is experimentally validated by comparison with existing experimental

records taken from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast

track and a slab track is studied. Induced vibrations during HST passage on a transition zone are computed

and they are compared with results obtained considering an invariant geometry model with respect to the

track direction. A parametric analysis is conducted considering different rail pads and soil properties.

2. Numerical model

The model is based on three-dimensional finite element [20] and boundary element [21] time domain

formulations. A direct procedure is used to couple boundary and finite element methods [24, 25, 26]. A

multi-body model is considered to represent the vehicle and to consider the quasi-static and dynamic load

components transmitted by the train to the soil through the track.

2.1. Boundary Element Formulation

The boundary element method system of equations can be solved step-by-step to obtain the time variation

of the boundary unknowns; i.e. displacements and tractions. Piecewise constant time interpolation functions
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are used for tractions and piecewise linear functions for displacements, the fundamental solution displacement

and traction are evaluated analytically without much difficulty, and nine node rectangular and six node

triangular quadratic elements are used for spatial discretization. Explicit expressions of the fundamental

solution displacements and tractions corresponding to an impulse point load in a three dimensional elastic

full-space can be seen in reference [22]. An approach based on the idea of using a linear combination of

equations for several time steps in order to advance one step is used to ensure that the stepping procedure

is stable in time. Details of this stabilization approach can be found in [27]. Finally, an approach based on

the classical Barkan expression [28] is employed to account for material damping in the soil.

Once the integral equation is discretized one obtains the following equation for each time step:

Hnnun = Gnnpn +
n−1∑
m=1

(Gnmpm −Hnmum) exp [−2πα(n−m)∆t] (1)

where, un is the displacement vector and pn is the traction vector at the end of the time interval n, and

Hnn and Gnn are the full unsymmetrical boundary element system matrices, in the time interval n, α is the

soil attenuation coefficient and ∆t is the time step. The right hand side term derived from previous steps is

damped by an exponential coefficient using a linearly increasing exponent, with time.

2.2. Finite Element Formulation

The equation which results from the finite element method can be expressed symbolically as follows if

an implicit time integration Newmark method is applied [29]:

Dnnun = fn + fn−1 (2)

where Dnn is the dynamic stiffness matrix, un the displacement vector and fn the equivalent force vector,

in the time interval n. Spring-damper, beam, shell and solid elements are used for the discretization.

2.3. Vehicle model

The articulated HST studied in this paper has two traction cars and eight passenger cars. It includes

a laboratory wagon next to a traction car for the Córdoba-Málaga HST. The two passenger cars adjacent

to the traction cars or to the laboratory wagon, share one bogie with the neighbouring passenger car, while

the six central passenger cars share both bogies with the neighbouring cars.

[Figure 2 about here.]

The multi-body model shown in figure 3 is used to represent the train-track dynamic interaction due to

an axle passage. The primary and secondary suspensions isolate the carriages from the track vibrations.

The axles and the car body are considered as rigid parts and the primary and secondary suspensions are

represented by spring and damper elements [17]. The coupling between axles on the same bogie, known as

leakage, is ignored since not coupling is expected [6, 8, 10].
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[Figure 3 about here.]

The equations of motion can be written as follows:



M c 0 0 0
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0 0 Mw 0
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ẋb

ẋw
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(3)

where xc, xb and xw represent the car body, bogie and wheel displacements, respectively. g is the acceleration

due to gravity. The load transmitted by an axle depends on the car body mass, Mc, the bogie mass, Mb,

the mass of the wheelset, Mw, the primary suspension, k1 and c1, the secondary suspension, k2 and c2, and

the train configuration. The bogies are supported by two axles, therefore an axle transmits a half of the

total bogie mass, (M b = Mb/2). The primary suspension connects the wheels to the bogie, therefore, k1 and

c1 represent two times the total primary vertical stiffness and the total primary vertical viscous damping,

respectively. In a traction car, the car body is supported by two bogies (four axles) and every axle transmits

a quarter of the car body mass (M c = Mc/4). The secondary suspension connects the bogie centre to the

car body. The car body mass transmitted by an axle is isolated by a half of the secondary suspension.

Then, k2 and c2 represent a half of the secondary vertical stiffness and secondary vertical viscous damping,

respectively. Similar models can be derived for the passenger cars, taking into account the fact that adjacent

cars are coupled by shared bogies. uc denotes the total displacement of the rail and Fc the contact force

between the axle and the rail. Wheel-rail coupling is illustrated in figure 3, where a Hertzian contact spring

is inserted between both elements [17, 30]. The stiffness of this Hertzian contact spring is denoted by kH

and its value 2.8× 109 N/m is taken from [30].

The displacement vector uc is equal to the sum of the actual rail displacement ur and the rail unevenness

uw/r perceived by an axle [8, 10]:

uc = ur + uw/r (4)

In this paper, random track unevenness uw/r(x) is modelled as a stationary Gaussian random process

characterized by its one-sided PSD function S̃uw/r
(ky). The spectral representation theorem is used to

generate samples of track unevenness uw/r(x) as a superposition of harmonic functions with random phase

angles [8, 10]:

uw/r(x) =
n∑

m=1

√
2S̃uw/r

(kym)∆ky cos(kymy − θm) (5)
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where kym = m∆ky is the wavenumber sampling used only to compute the artificial profile, ∆ky the

wavenumber step and θm are independent random phase angles uniformly distributed in the interval [0, 2π].

The artificial track profile is generated from PSD function according to ISO 8608 [31]:

S̃uw/r
(ky) = S̃uw/r

(ky0)
(

ky

ky0

)−w

(6)

2.4. Multi-body-Finite element-Boundary element coupling

The boundary element equation 1 can be split in two parts, one for the nodes on the interface with

the finite element sub-region and another for the nodes not shared with any other sub-region. Sub-index c

indicates the degrees of freedom associated with the interface and the sub-index b the other boundary element

degrees of freedom. The forces of all boundary element nodes are computed from their corresponding nodal

tractions. Thus equation 1 can be rewritten as follows:
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Ĝ
nn

bc Ĝ
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Ĝ
nm

bc Ĝ
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(7)

where:

f =

[
A∑

a=1

∫

Γ

NT NdΓ

]
p = L p and Ĝ = GL−1 (8)

with N being the shape functions vector. Summation extends over the elements A that contain the boundary

element node.

The finite element equation 2 can also be split as follows,
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 (9)

where sub-index c indicates the degrees of freedom are shared with the boundary element sub-region and f

stands for the rest of the finite element degrees of freedom.

Coupling boundary element and finite element sub-regions entails satisfying equilibrium and compati-

bility conditions at the interface between both regions. To do so, there are different procedures [32, 33].

Usually, domain formulations in time coupling are performed directly by writing boundary element equa-

tions and finite element equations in a single global system, together with the equilibrium and compatibility

6



equations [24, 25, 26]. Thus,
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Ĝ

nm

cc fmc + Ĝ
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(10)

This system of equations is used in the present model to represent the track and the structures (finite

elements) and the soil (boundary elements).

Equation 3 is introduced into the boundary element-finite element system of equations 10 taking into

account the compatibility displacements and equilibrium forces at the wheel-rail contact points. Thus,

the vehicle-track interaction forces, considering the train-track-soil dynamic interaction, can be taken into

account in the problem and evaluated if required.

As the vehicle moves along the track according to its speed, the contact point between the vehicle and

the rail changes as time goes on (figure 4). A moving node is created in the rail to couple the vehicle and

the track. So the track mesh including the rail changes at each time step and the obtained finite element

system of equations becomes non-linear because mass, damping and stiffness matrices vary at each time step.

Nevertheless, the time domain formulation allows one to solve the non-linear system of equations using, for

example, the methodology presented in reference [34].

[Figure 4 about here.]

3. Quasi-static and dynamic excitation mechanisms

In this section, the different components of the excitation mechanism are studied. Quasi-static and

dynamic effects due to the vehicle behaviour, sleeper discrete support and the rail and wheel unevenness are

all analyzed.

[Figure 5 about here.]

Figure 5a shows the cross section of a classical ballast track that it is represented by the mesh shown in figure

5b. The ballast track is represented by 1740 finite elements: the rails and the sleepers are modelled as 872

Euler-Bernoulli beam elements, the rail-pads are modelled as 292 spring-damper elements, and the ballast

is modelled using 576 solid elements. The finite element model has 8253 degrees of freedom. The track
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is composed of two UIC60 rails with a bending stiffness EI = 6.45 × 106 Nm2 and a mass per unit length

m = 60.3 kg/m for each rail. The rail-pads have a 10 mm thickness and their stiffness and damping values are

krp = 150× 106 N/m and crp = 13.5× 103 Ns/m, respectively. The prestressed concrete monoblock sleepers

have a length l = 2.50 m, a width w = 0.235m, a height h = 0.205m (under the rail) and a mass m = 300 kg.

A distance d = 0.6m between the sleepers is considered. The ballast has a density ρ = 1500 kg/m3, a Poisson

ratio ν = 0.2, and a Young’s modulus equal to E = 200× 106 N/m2. The width of the ballast equals 2.92m

and the height h = 1.00 m.

The track is assumed to be located at the surface of a homogeneous half-space that represents the soil,

with a S-wave velocity Cs = 150.0m/s, a P-wave velocity Cp = 299.8m/s, and a Rayleigh wave velocity

CR = 139.7m/s. The soil discretization is shown in figures 5b and 5c. The soil surface is discretized into 864

quadrilateral nine-node quadratic elements. The mesh has a total length of 86m and a width of 29 m. The

boundary element model has 11472 degrees of freedom. It is worth mentioning that to validate the mesh

in figure 5b, the problem of a point load travelling at constant speed on the surface of half-space without

track was studied first using the same mesh. A good agreement between numerical and analytical solution

was obtained for the same velocities and properties of the present study. Results of that experiment can be

seen in [22]. The size of the elements used in the discretization of Figure 5b is small enough to represent

the soil surface motion for an axle load at the speeds of interest. It should be taken into account that a

15 × 15 element subdivision is used to carry out numerical integration over the boundary elements. The

time step depends on the train speed and it allows the representation of the quasi-static load and the rail

and wheel irregularities. Previous boundary element analysis of soil vibration problems show that a mesh

several times as wide as the loading zone is enough to obtain accurate results in an area around the loading

zone [21]. In the present study, a mesh width of 29 m was chosen in order to be able to measure soil surface

displacements up to 11.8m from the track axis. A good representation of the soil surface displacements at

larger distances would require a wider mesh. The running time of the model is about 44 hours on a personal

computer (PC) with 3.48GB RAM and a 3.06 GHz processor.

3.1. Quasi-static and parametric excitation mechanisms

The quasi-static response due to the passage of a single axle train can be obtained from the equations

3 and 10 with the unevenness term uw/r equal to zero. Since the sleepers are included in the model, the

dynamic effects due to discrete rail support (figure 4) are considered implicitly.

Figure 6 shows the time history of the vertical displacement and the vertical velocity and the frequency

content of the vertical velocity at the rail for a single axle travelling at v = 298 km/h computed from a

model where only a moving force is considered and from the multi-body model shown in figure 3. The

characteristics of the axle are the following: mass of the car body M c = 12000 kg, bogie mass M b = 1520 kg,

and the unsprung mass of the wheelset Mw = 2003 kg; the primary suspension, k1 = 1.4 × 106 N/m and
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c1 = 10 × 103 N/m/s, and the secondary suspension, k2 = 0.41 × 106 N/m and c2 = 24 × 103 N/m/s. The

total axle force is estimated as 152 kN.

[Figure 6 about here.]

The computed displacement shown in figure 6a is completely symmetric and, therefore, it is worth to point

out that the use of a full space fundamental solution with a bounded free surface discretization does not

produce significant spurious noise caused by diffraction at the limits of the discretized area. The time

histories of the vertical displacement and velocity at the rail computed from both models have similar

values. However, the computed frequency content of the vertical velocity present differences due the inertia

is being neglected in the moving force model. Both models lead to the same solution only when the axle

speed is low or if the primary vertical stiffness tends to zero [35]. Therefore, the vehicle model should be

considered to predict the quasi-static response.

[Figure 7 about here.]

Figure 7 shows the time history and the frequency content of the vertical displacement at the vehicle due

to the moving axle and the parametric excitation due to the discrete supports of the rails for a single axle

travelling at v = 298 km/h and at v = 36 km/h. The sleepers positions are also shown. In figure 7a it is

clearly observed that the maximum displacements at the body car occur when the axle is approximately

in the middle of the sleeper distance and the minimum when the axle is approximately on the sleeper in

accordance to the lower and higher stiffness of the track in those zones, respectively. Figures 7c,d show

a peak corresponding to the vehicle resonance frequency at about 13 Hz. Figure 7c shows sharp peaks

associated with the sleeper passing frequency fs = v/d = 16.7 Hz and its higher order harmonics. As the

train speed increase (figures 7b,d), the parametric excitation due to the sleeper discrete support effect goes

to higher frequencies and its effect at the studied frequency range can be neglected. Figure 7d shows a peak

at fs = v/d = 137.9Hz.

3.2. Dynamic excitation mechanism

In order to investigate the behaviour of the coupled vehicle-track-soil system due to rail and wheel

unevenness, the dynamic response due to the passage of a single axle train can be obtained from equations

3 and 10 if the acceleration due to gravity is neglected. Again, the sleepers are included in the model and,

therefore the dynamic effects due to discrete rail support are also taken into account. An artificial track

profile is generated from the PSD function according to ISO 8608 by equation 6 with ky0 = 1 rad/m, w = 3.5

as commonly assumed for railway unevenness, and a value of S̃uw/r
(ky0) = 2π × 10−8 m3.

[Figure 8 about here.]
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It is commonly adopted in the literature [8, 10, 36] that the influence of the suspended mass can be neglected,

and the vehicle’s unsprung mass is the only component that affects the dynamic loads due to the rail and

wheel unevenness. The consistency of the previous hypothesis is studied from the results presented in

figure 8 where the time history and the frequency content of the vertical displacement at the rail due to

unevenness (figure 9a) for a single axle travelling at v = 298 km/h computed from the unsprung mass model

and the multi-body model, respectively, are shown. Both models lead to a similar response for frequencies

higher than 10 Hz approximately. Therefore, the model could be simplified as at frequencies of more than

a few Hertz [36] since the vehicle’s primary and secondary suspension isolate the body and the bogie from

the wheelset. A maximum occurs at the rail displacement between 10 and 40 Hz for both models that

corresponds to the resonance frequency of the vehicle model (grey line) or the unsprung mass model (black

line) on the track. However, at lower frequencies, the suspended mass should be taken into account in order

to predict the track and soil response accurately.

[Figure 9 about here.]

Figure 9b shows the frequency content of the vertical velocity at the vehicle due to the unevenness shown

in figure 9a for a single axle travelling at v = 298 km/h computed from the multi-body model. The wheel

response shows the contributions due to the resonance frequency of the vehicle model on the track and the

dynamic behaviour of the vehicle. The primary suspension filters the bogie response which appear at the

bogie resonance frequency,
√

k1/(M c + M b)/2/π = 1.62Hz. The secondary suspension isolates the body

car and the frequency content of its response is approximately at
√

k2/(M c)/2/π = 0.93Hz.

4. Experimental validation

In this section, the numerical model is experimentally validated by comparison of the computed results

with existing experimental data recorded at two HST lines: Córdoba-Málaga [23] and Brussels-Paris [37].

Both, experimental and numerical results were filtered using a high-pass digital filter with a cut-off frequency

fp = 3 Hz (fs = 2.5 Hz).

4.1. First case: Sub-Rayleigh regime

First, the numerical model is validated by comparison of the computed results with those measured on

the HST line between Córdoba and Málaga presented by Galv́ın and Domı́nguez [23]. The track between

Córdoba and Málaga is composed of two UIC60 rails with a bending stiffness EI = 6.45 × 106 Nm2 and a

mass per unit length m = 60.3 kg/m for each rail. The rail-pads have a thickness of 10mm and their stiffness

and damping values are krp = 150× 106 N/m and crp = 13.5× 103 Ns/m, respectively [38]. The prestressed

concrete monoblock sleepers have a length l = 2.60m, a width w = 0.235m, a height h = 0.205m (under
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the rail) and a mass m = 300 kg. A distance d = 0.6m between the sleepers is considered. The ballast has

a density ρ = 1500 kg/m3, a Poisson ratio ν = 0.2, and a Young’s modulus equal to E = 450 × 106 N/m2.

The width of the ballast equals 2.92m and the height h = 1.00m.

The dynamic properties of the soil on which the measurements were taken were obtained experimen-

tally by the SASW (Spectral Analysis of Surface Waves) testing procedure since only non-intrusive testing

methods and instruments could be used. The results present in reference [23] show that the soil can be rep-

resented by an equivalent homogenous half-space with an S-wave velocity Cs = 150.0 m/s, a P-wave velocity

Cp = 299.8m/s, and a Rayleigh wave velocity CR = 139.7 m/s. The Barkan formula for homogeneous soil

[28] was used to estimate the soil attenuation coefficient α from experimental records, which equals 1.1.

The carriage length Lt, the distance Lb between bogies, the axle distance La, the total axle mass Mt and

the unsprung axle mass Mu of all the carriages of the AVE HST are shown in figure 2 and Table 1. Table

2 shows the primary vertical stiffness, k1, the primary vertical viscous damping, c1, the secondary vertical

stiffness, k2, and the secondary vertical viscous damping, c2, of the HST.

[Table 1 about here.]

[Table 2 about here.]

The considered train speed equals v = 298 km/h and the Rayleigh wave velocity in the soil is CR = 139.7m/s.

In this case, the train speed is lower than the Rayleigh wave velocity in the soil. Therefore, according to the

results present in previous studies [7, 10] the contribution of the dynamic loading mechanisms to the vertical

motion of the free field points should be more important than the quasi-static loading mechanism. The track

unevenness was not measured in the site where the induced vibrations were recorded. Then the ISO 8608 is

used to generate artificial track profiles from the PSD function by equation 6. As different samples of track

unevenness yield different predictions of the track and free field response [10], six samples of unevenness are

generated by means of equation 5 as a superposition of harmonic functions with the same amplitude, but

a different random phase, to make the experimental validation of the numerical model. Figure 9a shows

the one-third octave band spectra of the six samples of unevenness. The six samples generate the same

one-third octave band spectra [10].

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

Figures 10, 11 and 12 show the comparison between the time histories, frequency contents and one-third

octave band spectra, respectively, of the vertical velocity at the sleeper and three points in the free field.
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Figure 12 shows the computed results for the six samples of unevenness. The computed results agree quite

well with the experimental results at the sleeper, where the quasi-static contribution is dominant and the

response does not depend on the unevenness. In the free field, where the contribution of the dynamic

loading mechanisms to the vertical motion is important, the comparison between the computed and the

experimental values show a reasonable agreement, but it is not as good as for the sleeper point. Moreover,

the correlation depends on the track profile as shown in figure 12. This fact can be explained by taking

into account that it is not possible to represent the actual unevenness from equation 5 which represent the

geometry only in a random sense. The methodology presented by Lombaert and Degrande [10] leads an

ensemble average that can be used to avoid the random sense of the unevenness. In any case, it can be

concluded from the present comparison, and that presented in reference [23], that the numerical model has

been significantly improved by including the dynamic excitation mechanism. The discrepancies between

computed and measured velocities can be also explained accounting for the soil representation. In the

present model, the soil is represented by a homogeneous halfspace. However, the actual soil presents strata

that are not considered in the model.

4.2. Second case: Super-Rayleigh regime

Secondly, the proposed numerical model is validated using the values recorded by Degrande and Schille-

mans on the HST line between Brussels and Paris [37] considering a train passage where the train speed

is higher than the Rayleigh wave velocity and the S-wave velocity in the soil. The track has the same

properties that the previously studied track except in this case the sleepers have a length l = 2.50m and the

ballast has a Young’s modulus equal to E = 250× 106 N/m2. The results present in reference [6] show that

the soil can be represented by an equivalent homogenous half-space with an S-wave velocity Cs = 80.0m/s,

a P-wave velocity Cp = 150.0m/s, and a Rayleigh wave velocity CR = 74.1m/s. The Barkan formula for

homogeneous soil [28] was used to estimate the soil attenuation coefficient α, and this equals 4.4. The

configuration, geometrical and mass characteristics of the Thalys HST can be seen in reference [37] and they

are similar to those previously presented.

The considered train speed equals v = 315 km/h and the Rayleigh wave velocity in the soil is CR =

74.1m/s. In this case, the train speed is higher than the Rayleigh wave velocity in the soil. Therefore, it

prevails the contribution of the quasi-static loading mechanisms to the vertical motion of the free field points

[7]. An artificial track profile is generated using ISO 8608 to take into account the dynamic load.

Figures 13, 14 and 15 show the comparison between the time histories, frequency contents and one-third

octave band spectra of the vertical velocity at the sleeper and three observations points in the free field for

a train speed equals v = 315 km/h. Both, quasi-static and dynamic excitation, mechanisms are considered.

However, the quasi-static excitation dominates the free field response as is clearly shown in figure 15 and

the dynamic contribution could be neglected. The computed results show a good agreement with those
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experimentally recorded. A good agreement was also obtained in reference [6]. The frequency content and

the one-third octave band spectra of the free field response (Figures 14 and 15) show peaks in the bogie

passing frequency fb = 4.7Hz and in the axle passing frequency fa = 29.2Hz.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

5. Vibrations induced by high-speed train passage in a transition zone between ballast and

slab track

The use of ballastless slab track is significantly increasing in HST line track technology. This development

is due to the fact that slab track has some structural and operational advantages over ballasted track [30, 39].

In addition, the floating slab tracks can be used to control ground-borne vibrations generated by railway

traffic [40, 41, 42, 43]. The growing interest in this relatively new track technology in recent years, calls for

additional studies to be conducted. Because of that, the proposed numerical model is used in this section

to study the dynamic behaviour of a transition zone between a ballast track (figure 16a) and a slab track

(figure 16b) which is frequently located at tunnel entrances or near railway stations.

[Figure 16 about here.]

Figure 16a shows the ballasted track system considered. The track is composed of two layers: a ballast layer

over a sub-ballast layer. The ballast has a density ρ = 1500 kg/m3, a Poisson ratio ν = 0.2, and a Young’s

modulus E = 280× 106 N/m2. The sub-ballast layer has a density ρ = 1500 kg/m3, a Poisson ratio ν = 0.2,

and a Young’s modulus E = 140× 106 N/m2. The rail-pads have a thickness of 10 mm and the stiffness and

damping values are krp = 150× 106 N/m and crp = 13.5× 103 Ns/m.

The considered slab track system is shown in figure 16b. The track is composed of two UIC60 rails

supported by prestressed concrete monoblock sleepers separated by d = 0.60m. The concrete slab has a

density ρ = 2500 kg/m3, a Poisson ratio ν = 0.2, and a Young’s modulus E = 34× 109 N/m2. A hydraulic

subbase is placed below the concrete slab in order to reduce gradually the transmitted forces from the track

to the subgrade. The hydraulic subbase has a density ρ = 2500 kg/m3, a Poisson ratio ν = 0.2, and a

Young’s modulus E = 10 × 109 N/m2, and the same width as the concrete slab. Three different rail pads

have been considered with the properties shown in table 3.

[Table 3 about here.]

[Figure 17 about here.]
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Slab tracks have a higher stiffness as compared to ballasted tracks and, because of that a transition zone

between ballasted and slab track must be carefully designed to make a gradual change of the stiffness to

ensure track quality and passenger comfort. Figure 17a shows the geometry of the transition zone between

ballasted and slab track. In the transition slab track zone the thickness of the hydraulic subbase layer

increases from 0.3m to 0.46m. After that, the hydraulic subbase layer replaces the sub-ballast layer under

the ballast layer in the transition ballasted track zone. By doing so, the stiffness changes between the

different parts of the transition zone are smoother. The discretization of the transition zone employed is

shown in figure 17b. The track and soil response are studied at four sections. Section A is located in

the ballasted track 3 m before the transition zone. Section B corresponds to the middle of the ballasted

transition zone, and section C to the middle of slab track transition. Finally, section D is located in the slab

track 9 m from the transition zone.

The track is assumed to be located at the surface of a homogeneous half-space that represents the soil.

Three different soils have been considered with the properties shown in table 4.

[Table 4 about here.]

Figure 18 shows the running RMS value and one-third octave band spectra of the vertical velocity at the

rail, at the sleeper and at a point in the free field located at 11.8m from the track axis for a train speed

v = 298 km/h travelling on the slab track for the three different rail pads. The track is located on the

medium soil. Rail and sleeper have a similar behaviour where the quasi-static contribution is predominated.

At low frequencies the velocity is higher as the rail pad stiffness decreases. The bogie passing frequency

fb = 4.4Hz and the axle passing frequency fa = 27.6Hz lead the medium frequency range. In the free field

a different behaviour is obtained. The soil response is dominated by the contribution of the dynamic loading

mechanisms at frequencies higher than 31.5Hz and presents higher values as the rail pad stiffness increases.

The rail pads play an important role in vibration induced due to train passage on non-ballasted tracks and

softer rail pads could be used in order to mitigate the free field response.

[Figure 18 about here.]

Figures 19 and 20 show the running RMS value and one-third octave band spectra of the vertical velocity

at the rail, at the sleeper and at a point in the free field located at 11.8 m from track axis for a train speed

v = 298 km/h travelling on the transition zone for the three different soils. Medium rail pads are considered.

For the soft soil the train is running faster than Rayleigh wave velocity (super-Rayleigh regime). So, a clear

amplification is observed for the ballasted track in section A. Then, the quasi-static contribution prevails

in the track and free field responses as the in HST Brussels-Paris case, previously studied. However, for the

slab track in section D only a light increase is observed when the softer soil is considered. The super-critical

behaviour which takes place in the ballasted track zone does not appear in the slab track due to higher
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stiffness of the system. For the slab track, the low frequency response depends on the soil properties and

higher levels are obtained for softer soils. In the free field response the quasi-static excitation at medium

frequencies gains importance when the S-wave velocity in the soil goes to lower values.

[Figure 19 about here.]

[Figure 20 about here.]

Finally, an analysis of the transition zone between ballast and slab track is made using models which consider

an invariant geometry with respect to the track direction, and the obtained results are compared with those

previously presented. Four independent track-soil models are used to compute the response in each section.

Figure 21 compares the results from the transition zone model (using the present three dimensional model)

and a two-and-a-half model (using the present three dimensional model with track and soil invariant in the

track direction). The results obtained for both models in section A are similar. As the train goes into the

transition zone the vertical stiffness of the track is modified and a transient response appears due to the

inertial forces induced by the vehicle mass. The correlation between the computed results from both models

in the transition zone present is not good and three dimensional models should be used to obtain an accurate

response for these problems. The transient response produced by the stiffness track change disappears as

the train travels along the slab track, and far from the transition zone both models tend to the same results.

[Figure 21 about here.]

6. Conclusions

This paper is intended to develop a general numerical model for the analysis of vibrations due to HST

and their effects on nearby structures. The numerical model is based on the three dimensional finite element

and boundary element formulations in the time domain. As compared to two-and-a-half domain solutions,

the present formulation can take into account local soil discontinuities, underground constructions such

as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the

track line. Track and other structures are modelled using the finite element method and their non-linear

behaviour can be considered because a time domain formulation is employed. The soil is represented using

the boundary element method, where a full-space fundamental solution is used in combination with quadratic

boundary elements. The train vehicle is modelled as a multi-body and, therefore, the quasi-static and the

dynamic excitation mechanisms can be considered, taking into account the dynamic effects due to sleeper

discrete support and the wheel and rail irregularities.

The influence of the vehicle model in the quasi-static and dynamic responses has been studied. The vehicle

inertia should be considered to predict accurately the quasi-static response. For the dynamic response, the

suspended mass should be taken into account in order to predict the track and soil response at low frequencies.
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The numerical model has been experimentally validated by comparison with existing experimental records

taken in two HST lines: the Córdoba-Málaga HST line [23] and the Brussels-Paris HST line [37]. In the first

case, the train speed was lower than the Rayleigh wave velocity in the soil. Thus, quasi-static and dynamic

contributions are important to reproduce the actual problem. Different samples of track unevenness yield

different predictions of the track and free field response due to the dynamic excitation [10]. Then, six samples

of unevenness are generated to make the experimental validation of the numerical model. In the second

case, the train speed is higher than the Rayleigh wave velocity in the soil and, therefore, the quasi-static

contribution dominates the track and free field response. In both cases, the correlation between experimental

and computed results is quite good.

The dynamic behaviour of a transition zone between a ballast track and a slab track has also been

studied by the present three dimensional model. The computed results have been compared with those

obtained from models which consider an invariant geometry with respect to the track direction. It has been

concluded, in this case, that a three dimensional model including the non-linearity of the track should be

used to obtain accurate responses.
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Figure 1: The dynamic track-soil and soil-structure interaction problem.
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Figure 2: Configuration of the Córdoba-Málaga HST.
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Figure 4: Vehicle and track model at: (a) time step i and (b) time step i+1.
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25



(a)
0 0.05 0.1 0.15 0.2

−15

−10

−5

0

5
x 10

−4

Time [s]

D
is

pl
ac

em
en

t [
m

]

(b)
0 0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

Time [s]

V
el

oc
ity

 [m
/s

]

(c)
0 50 100 150

0

0.5

1

1.5

2
x 10

−3

Frequency [Hz]

V
el

oc
ity

 [m
/s

/H
z]

Figure 6: (a) Time history of the vertical displacement and (b) vertical velocity and (c) frequency content of the vertical
velocity at the rail for a single axle travelling at v = 298 km/h computed from the moving force model (black line) and the
multi-body model (grey line).
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Figure 7: (a,b) Time histories and (c,d) frequency contents of the vertical displacement at the body car (light grey line), bogie
(dark grey line) and wheel (black line) due to sleeper discrete support for a single axle travelling at (a,c) v = 36 km/h and
(b,d) v = 298 km/h. The sleepers positions are shown as vertical grey lines.
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Figure 8: (a) Time history and (b) frequency content of the vertical displacement at the rail for a single axle travelling at
v = 298 km/h computed from the unsprung mass model (black line) and the multi-body model (grey line).
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Figure 9: (a) One-third octave band spectra of the track unevenness and (b) the frequency content of the vertical velocity at
the body car (black line), bogie (light grey line) and wheel (dark grey line) due to unevenness for a single axle travelling at
v = 298 km/h computed from the multi-body model.
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Figure 10: The experimental (black line) and computed (grey line) time history of the vertical velocity at (a) the sleeper and
the free field at a distance of: (b) 3m; (c) 8m; and (d) 11.8m from the axis track during the passage of the HST at a speed
v = 298 km/h.
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Figure 11: The experimental (black line) and computed (grey line) frequency content of the vertical velocity at (a) the sleeper
and the free field at a distance of: (b) 3m; (c) 8 m; and (d) 11.8m from the axis track during the passage of the HST at a
speed v = 298 km/h.
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Figure 12: The experimental (black line) and computed for 6 samples of vertical track unevenness (grey lines) one-third octave
band spectra of the vertical velocity at (a) the sleeper and the free field at a distance of: (b) 3m; (c) 8m; and (d) 11.8m from
the axis track during the passage of the HST at a speed v = 298 km/h.
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Figure 13: The experimental (black line) and computed (grey line) time history of the vertical velocity at (a) the sleeper and
the free field at a distance of: (b) 4m; (c) 6m; and (d) 8 m from the axis track during the passage of the HST at a speed
v = 315 km/h.
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Figure 14: The experimental (black line) and computed (grey line) frequency content of the vertical velocity at (a) the sleeper
and the free field at a distance of: (b) 4m; (c) 6m; and (d) 8m from the axis track during the passage of the HST at a speed
v = 315 km/h.
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Figure 15: The experimental (black line), the computed total response (dark grey line) and the computed quasi-static response
(light grey line) one-third octave band spectra of the vertical velocity at (a) the sleeper and the free field at a distance of: (b)
4m; (c) 6 m; and (d) 8m from the axis track during the passage of the HST at a speed v = 315 km/h.
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Figure 16: (a) Ballasted track system and (b) slab track system.
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Figure 18: (a-c) Running RMS value and (d-f) one-third octave band spectra of the vertical velocity at (a,d) the rail, (b,e) the
sleeper, and (c,f) at a point in the free field located at 11.8m from track axis for the stiff rail pad (black line), the medium rail
pad (dark grey line), and the soft rail pad (light grey line), at a train speed v = 298 km/h travelling on section D.
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Figure 19: Running RMS value of the vertical velocity (a,d) at the rail, (b,e) the sleeper, and (c,f) at a point in the free field
located at 11.8m from track axis for the stiff soil (black line), the medium soil (dark grey line), and the soft soil (light grey
line), at a train speed v = 298 km/h travelling on: (a-c) section A and (d-f) section D.

39



(a)

1 2 4 8 16 31.5 63 125
60

80

100

120

140

One−third octave band centre frequency
[Hz]

V
el

oc
ity

[d
B

, r
ef

 1
0−

8  m
/s

]

(b)

1 2 4 8 16 31.5 63 125
60

80

100

120

140

One−third octave band centre frequency
[Hz]

V
el

oc
ity

[d
B

, r
ef

 1
0−

8  m
/s

]

(c)

1 2 4 8 16 31.5 63 125
20

40

60

80

100

One−third octave band centre frequency
[Hz]

V
el

oc
ity

[d
B

, r
ef

 1
0−

8  m
/s

]

(d)

1 2 4 8 16 31.5 63 125
60

80

100

120

140

One−third octave band centre frequency
[Hz]

V
el

oc
ity

[d
B

, r
ef

 1
0−

8  m
/s

]

(e)

1 2 4 8 16 31.5 63 125
60

80

100

120

140

One−third octave band centre frequency
[Hz]

V
el

oc
ity

[d
B

, r
ef

 1
0−

8  m
/s

]

(f)

1 2 4 8 16 31.5 63 125
20

40

60

80

100

One−third octave band centre frequency
[Hz]

V
el

oc
ity

[d
B

, r
ef

 1
0−

8  m
/s

]

Figure 20: One-third octave band spectra of the vertical velocity (a,d) at the rail, (b,e) the sleeper, and (c,f) at a point in the
free field located at 11.8m from track axis for the stiff soil (black line), the medium soil (dark grey line), and the soft soil (light
grey line), at a train speed v = 298 km/h travelling on: (a-c) section A and (d-f) section D.
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Figure 21: Running RMS value of the vertical velocity (a-d) at the rail, (e-h) the sleeper, and (i-l) at a point in the free field
located at 11.8m from track axis for the medium soil and the medium rail pad computed from the transition zone model (figure
17) (black line) and from an invariant geometry model (grey line) at a train speed v = 298 km/h travelling on: (a,e,i) section
A, (b,f,j) section B, (c,g,k) section C, and (d,h,l) section D.
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No. of carriages No. of axles Lt[m] Lb[m] La[m] Mu[kg] Mt[kg]
Traction cars 2 4 22.15 14.00 3.00 2048 17185
End carriages 2 3 21.84 18.70 3.00 2003 11523

Central carriages 6 2 18.70 18.70 3.00 2003 15523

Table 1: Geometrical and mass characteristics of the HST.
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k1 c1 k2 c2

×106[N/m] ×103[Ns/m] ×106[N/m] ×103[Ns/m]
Traction cars 1.2 10 2.45 40
Passenger car 0.7 5 0.82 48

Table 2: Dynamic characteristics of the primary and secondary suspension of the HST.
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Rail pad type krp crp

×106[N/m] ×103[Ns/m]
Stiff 360 13.5

Medium 150 13.5
Soft 60 13.5

Table 3: Rail pad properties.
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Soil type Cs [m/s] Cp [m/s] CR [m/s]
Stiff 250.0 499.6 232.9

Medium 150.0 299.8 139.7
Soft 80.0 150.0 74.1

Table 4: Soil properties.
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