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Resumen 

Cuando se trata de clasificar cosas los seres humanos lo hacemos bastante bien. Somos capaces de discernir en 

segundos si un objeto está caliente o frio, si una acción es peligrosa o segura, etc. Es algo que hacemos a menudo 

y de forma muy eficiente. Sin embargo, hacer que los ordenadores sean capaces de realizar estas tareas siempre 

se ha antojado bastante complicado. Instruir a un ordenador para que, sin intervención humana, tome decisiones 

basándose en su conocimiento previo es uno de los grandes objetivos de los algoritmos de Machine Learning. 

Durante la segunda mitad del siglo XX, con el avance de la informática, se crearon nuevos algoritmos de 

clasificación para dar solución a los problemas comunes de la época. 

A grandes rasgos, podemos distinguir 2 tipos de problemas de clasificación: el aprendizaje supervisado, en el 

que tenemos pares entrada-salida del sistema y el aprendizaje no supervisado, en la que únicamente conocemos 

los datos de entrada. Cabe destacar que el aprendizaje no supervisado, comúnmente llamado clustering en los 

problemas de clasificación, suele ser más complejo que su contraparte supervisada. Esto se debe al 

desconocimiento, a priori, del número de agrupaciones o clases que existen en el sistema. Imaginemos un caso 

concreto, ¿Cuantos grupos podemos encontrar si deseamos clasificar gente en función de sus gustos musicales? 

Gente a la que le gusta el rock, el folk, el pop, gente a la que solo le gusta un determinado grupo musical, gente 

a la que le encanta la música de los 80, etc. Las combinaciones son infinitas. 

Por ello, uno de los parámetros que debemos de establecer normalmente en los algoritmos de clusterización más 

tradicionales es el número de clases que deseamos. Esto crea un problema adicional, como en el ejemplo anterior, 

en algunos casos no es posible conocer con anterioridad el número de elementos que compone un sistema. Es 

por ello que, durante el siglo XXI se ha estado trabajando en modelos y algoritmos que no necesitan conocer el 

número de agrupaciones de antemano. Estos modelos van a ir proponiendo diferentes soluciones, con una 

cantidad variable de clases. 

Las herramientas necesarias para poder emplear los modelos no parámetricos son complejas y difíciles de 

desentrañar a primera vista. Entre ellas, podemos encontrar: el proceso de Dirichlet (DP), el proceso del 

restaurante chino (CRP) y el muestreador de Gibbs (un tipo de muestreador basado en las cadenas de Markov). 

Es por ello que, durante este trabajo, realizaremos una introducción detallada de cada una de ellas, en las que 

explicaremos qué son y para que se van a utilizar. Posteriormente, las emplearemos conjuntamente para diseñar 

un algoritmo que nos permita proponer, de manera dinámica, un número de agrupaciones variable para ajustar 

nuestros datos. 

En lugar de determinar mediante el modelo el número de agrupaciones, dejaremos que sean los datos los que 

determinen la cantidad de ellas que mejor los explican. El objetivo no es obtener un número de agrupaciones 

determinado si no, más bien, una estimación de la función masa de probabilidad de su cantidad. La cual 

podremos marginalizar posteriormente para obtener un resultado en conjunto. 

Seguidamente, describiremos empleando UML y propondremos una implementación en Matlab® de este 

algoritmo tratando de sea lo más eficiente posible que finalmente pondremos en práctica con modelos de mezclas 

infinitas de gaussianas pero que podremos emplear con cualquier distribución de probabilidad de nuestros datos 

a través de una interfaz estandarizada. Por último, detallaremos algunos ejemplos para explicar el 

funcionamiento de este algoritmo. 
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Abstract 

When the task is classifying things, we, humans, do it fairly well. We can determine within seconds whether an 

object is hot or cold, if an action is dangerous or safe, etc. We do it very often and very efficiently. But, to instruct 

computers in doing these tasks has always been quite complex. To make a computer make decisions based upon 

its previous knowledge, without human intervention, is one of the main goals of Machine Learning algorithms. 

During the second half of the 20th century, as computers improved, new algorithms were developed to solve 

ordinary problems. 

At first sight, we can distinguish between 2 types of classification problems: supervised learning, in which 

input-output samples exist for our system and unsupervised learning, in which we only know the input data. 

Remark that, unsupervised learning, commonly called clustering for classification problems, is rather more 

complex than its supervised counterpart. This is due to the a priori uncertainty on the number of classes that 

compose the system. For example, how many groups can we find if we are classifying people according to its 

musical likes? There are people who like rock music, people who like pop music, people who only likes one 

artist, people devoted to the 80’s music, etc. The possible combinations are endless. 

For so, one of the parameters that we usually have to configure in the most traditional clusterization algorithms 

is the number of classes we are looking for. This creates an additional problem: as in the previous example, in 

some cases, it is not possible to know beforehand the number of elements that compose a system. Due to this 

limitation, during the 21st century, people have worked on models and algorithms that do not require to set the 

number of clusters. These models are going to propose iteratively different solutions, with a variable amount of 

groups. 

Tools required to make use of this non-parametric models are complex and difficult to work out at a glance. 

Among them, we can find: The Dirichlet process (DP), the Chinese restaurant process (CRP), and the Gibbs 

Sampler (a type of sampler based on Markov Chains). This is the reason why, during this work, we will make a 

detailed introduction on each of these tools, in which we will explain briefly what they are and how are we going 

to use them. Later on, we will use all of them to design an algorithm that will allow us to propose, dynamically, 

a variable number of clusters to fit our data. 

Instead of determining, throughout the model the number of classes, we will let the data define the amount of 

them that better fits it. The objective is not to obtain a given number of clusters but rather, to get an estimation 

of the probability mass function for this quantity. We could later marginalize it to obtain a joint result. 

Next, using UML we will describe and we will propose an implementation of this algorithm using Matlab®, 

trying to make it as efficient as possible. Finally, we will put it into practice with infinite Gaussians mixture 

models. Although, we can use it with every probability distribution for our data through a standardized interface. 

At last, but not least, we will detail some examples to explain how does the algorithm work. 
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Algebra 

𝑨 Matrix (upcase, bold) 

𝒙 Vector (lowercase, bold) 

𝛼 Scalar (lowecase) 

𝒙𝑇 Tranpose 

𝑨−1 Inverse of 𝑨 

|𝑨| Determinant of 𝑨 

𝕀𝐷 𝐷-dimensional identity matrix 

 

Calculus 

𝑒 Number 𝑒 = 2.7182… 
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Probability and statistics 
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1 THE CLASSIFICATION PROBLEM 

“The real problem is not whether machines think 

but whether men do” 

- B.F. Skinner - 

lassifying has always been one of the major commitments of ML algorithms. Teaching a computer to 

make decisions without human interaction based on its previous knowledge is, for sure, one of the most 

interesting applications of Machine Learning in real life. As a matter of fact, everybody unconsciously 

uses them: when we send emails and SPAM classifiers, when we use credit cards and fraud detectors or simply 

when we use our mobile phone, and consequently signal detection. Basically a classification problem is the one 

that assigns a class or label to a datapoint. Therefore, making a decision about the datapoint itself. This datapoint 

could contain different information. For example, a set of characteristics from a given email that helps to 

determine whether it is SPAM or not. Also, in the simplest signal detection systems, classification helps to 

choose if a given signal is either a 0 or a 1. 

This chapter aims to provide a first classification outline on the different classification problem types that we 

can face. Then a traditional classification problem solution, through the Expectation-Maximization algorithm, 

is provided. This is done in order to finally state the disadvantages of this approach in certain cases. 

1.1 Classification Types 

To make it even more interesting; classification systems can also be classified. There have been proposed several 

ways of doing so. Just the most common are listed here. 

1.1.1 Based upon the output 

The first classification type we can introduce states the difference between the diverse output types of the system: 

1. Hard-Classification: We assign to each datapoint a given label, usually a natural number. 

𝐶(ℝ𝐷) → ℕ 

2. Soft-Classification: We assign to each datapoint a real number, indicating likehood to belong to a given 

class. Usually a real positive number 

𝐶(ℝ𝐷) → ℝ+ 

Here 𝐶(·) is our classification system, that takes a 𝐷-dimensional datapoint and produces an output. Though 

different systems comprise different requirements, most of them can be modelled as binary decisors. 

Furthermore, we can model any multi-class classification problem as several smaller binary decisors. Thus, 

previously given models for classifiers become even simpler: 

1. Hard-Classification: 𝐶𝑘(ℝ
𝑛) → {0,1} 

2. Soft-Classification: 𝐶𝑘(ℝ
𝑛) → [0,1] 

Where the index 𝑘 denotes each of the classes for our system. Through this work classes, components and 

clusters are the same: groups of datapoints for our system. 

C 
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Also, every soft-classifier can be converted into its hard counterpart just by adding a decisor after it, as observed 

in Figure 1. This one will assign a label to the datapoint based on the soft classification made in advance. From 

an initial dataset a soft-classifier is built and then a decisor is chained in order to obtain the data labels. 

 

Figure 1 Decision problems block diagram 

1.1.2 Based upon the available data (Clustering vs. Classification) 

Another classification we can introduce is based on the existence of training samples, that is we know the output 

of our system for a set of inputs: 

1. Supervised Problems (Classification): Input-Output samples exist. 

2. Unsupervised Problems (Clustering): Only input samples exist. 

The first type of problems is the one in which, for a given set of inputs, their respective output is known. In some 

cases, for classification problems a regressive model is built using linear or polynomial regression, along with 

some kind of logistic function. Other classification approaches for supervised classification problems include 

SVM or random forests. Although very interesting, this kind of problems is beyond the scope of this document, 

and will no longer be treated. Further references can be found in [1]. We will center in the unsupervised learning 

problems. 

Besides, a brief example of this type of problems, using a logistic regressor, is the shown. Let 

 
�̂� =

1

1 + 𝑒−𝑿𝒘
 (1.1) 

be a logistic function. Here 𝑿 are the input samples, and �̂� is the output of the system. We compute the set of 

weights 𝒘 which provides the minimum MSE between �̂� and the known outputs, 𝒚. The result can be seen 

in the following pictures, where an 8th degrees polynomial function has been used. 

      

Figure 2 Logistic Regression 

Figure 2 shows a typical logistic regression problem. The right picture illustrates the known input-output samples 

and the samples to be computed, where the colour indicates the label, and the gray samples are unknown. Then, 

we only take the training samples and compute a regressor. This is done in order to avoid overfitting and allow 

crossvalidation. Finally, using the rest of the samples, we estimate its likehood of being part of each group, which 

is the picture on the right. 

The second approach is used when no output samples are available. The classification is made upon the 

underlying structure of the data; algorithms such as k-means or DBSCAN fall into this category. 

Nevertheless, k-means or DBSCAN do not impose any restriction on how the samples were generated. But, 
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sometimes this assertion turns out to be too restrictive. Suppose that we already know that data have been 

generated by a statistical model, potentially very complex. Then, better clustering algorithms can be built if we 

can impose some restrictions taking advantage on the underlying statistical model. In these models, we can make 

some assumptions and therefore the model becomes more precise. 

 

Figure 3 Different Clustering algorithms 

As an example, Figure 3 shows the results of different clustering algorithms, the k-means algorithms does not 

suppose any underlying structure and tries to find the clusters by proximity of the datapoints, this sometimes 

conduces to errors, specially when clusters are wrapped by other clusters. The right picture shows the result 

using the underlying model to estimate the maximum a posteriori probability (MAP) for each cluster. 

As a matter of fact, the model used to generate this data was composed by 3 clusters with the following 

parameters and weigths given by 𝝅 = [0.35 0.5 0.15]. 

Cluster 1 Cluster 2 Cluster 3 

𝝁1 = [−2 3]
𝑇 𝝁1 = [2 3]

𝑇 𝝁1 = [0 1]
𝑇 

𝚺1 = [
0.8 0.48
0.48 0.96

] 𝚺2 = [
0.96 −0.48
−0.48 0.8

] 𝚺1 = [
0.8 0
0 0.8

] 

Table 1 Figure 3 parameters 

1.1.3 Based upon the objective 

When a statistical model is used, depending on what we want to learn from it, a problem could be either: 

1. Generative: When we want to learn the generating PDF. 

2. Discriminative: When we want to learn conditional PDFs on the model. 

1.2 GMM Definition 

First, let us describe what Gaussian mixture models are. Gaussian models are highly used in telecommunications 

systems and will be the main subject of this article. A system, in which the output can be modelled as the sum 

of RV, each following a Gaussian distribution, is named Gaussian mixture models (GMM). A GMM is 

composed by a weighted sum of n-dimensional Gaussian PDFs each with a given mean and covariance matrix. 

Also, we must add an additional constraint on the weights, so the output is also a PDF. 

 ∑𝜋𝑘
𝑘

= 1 (1.2) 

 

In a GMM, we can name each generating Gaussian as a class. Thus, sampling the model means sampling over 

the classes obtaining a latent variable 𝑧. And then, taking a sample from the chosen class. 
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More precisely, 

 𝑝(𝑧𝑖 = 𝑘|𝝅) = 𝜋𝑘 (1.3) 

The following picture illustrates an example of the PMF of 𝑝(𝑧𝑖). Which can be described through the following 

equation 

 

𝑝(𝑧𝑖 = 𝑘|𝝅) = ∑𝜋𝑘𝛿(𝑘 − 𝑧𝑘)

𝐾

𝑘=1

 (1.4) 

 

Figure 4 PMF of the latent variable 

Then, we sample a Gaussian by the parameters of its class 

 𝑓(𝒙𝑖|𝑧𝑖 = 𝑘, 𝜽) = 𝑓(𝒙𝑖|𝜽𝑘) (1.5) 

Here 𝜽 stands for the parameters of the whole distribution. Note that, (1.5) is valid not only for Gaussian mixtures 

but also for every mixture of PDFs, as we do not impose any restriction on the PDF of each class. In the case of 

GMM, 𝜽 are the mean and the covariance matrix. Nevertheless, in this article we will dive into GMM but the 

reader is encouraged to find its own particular equations for other PDFs. 

The objective when solving a GMM problem is to find the generating PDFs and the mixing coefficients. As we 

already know that the PDFs are Gaussian. So, we must only find the mean and the covariance matrix for each 

class. When done, we can compute the conditional probabilities of each datapoint of belonging to a given class, 

and finally a decisor based on them can be defined. 

1.3 The EM Algorithm 

A first approach to GMM is the Expectation-Maximization (EM) algorithm. It was first introduced by [2] on 

1977. It defines an iterative process for the computation of maximum-likehood estimates for any PDF. More 

precisely, the algorithm tries to maximize the log-likehood, due to numerical issues. As the log function is a 

monotonically increasing function, both are equivalent. 

We can define the PDF of any mixture model as 

 

𝑓(𝒙𝑖) = ∑𝑓(𝒙𝑖|𝜽𝑘)𝑝(𝜽𝑘)

𝐾

𝑘=1

 (1.6) 

A class, in a GMM, is a Gaussian involved in the mixture. Also, for each class 𝑘, its parameters 𝜽𝑘 are defined. 

Therefore, we can model our system using the following expressions 

 𝑝(𝜽𝑘) = 𝜋𝑘 (1.7) 
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 𝑓(𝒙𝑖|𝜽𝑘) = 𝒩(𝒙𝑖|𝝁𝑘 , 𝚺𝑘) (1.8) 

Thus, the weights or mixing coefficients, are the prior of our data, and the marginal PDFs of each class follow a 

Gaussian distribution with parameters given by its class. 

With EM, we try to invert the mixing process and, given 𝑓(𝒙𝑖), find the following data: 

 𝜋𝑘: The mixing coefficients 

 𝝁𝑘: The mean of each class 

 𝚺𝑘: The covariance matrix 

We have to find the class, or the probability of each datapoint of belonging to each class. This is called the 

datapoint responsibilities and it is the posterior of the data. So, it is computed using the Bayes theorem. 

 
𝛾𝑘(𝒙𝑖) = 𝑝(𝜽𝑘|𝒙𝑖) =

𝑓(𝒙𝑖|𝜽𝑘)𝑝(𝜽𝑘)

𝑓(𝒙𝑖)
 (1.9) 

Substituing (1.7) and (1.8) in (1.9) we obtain 

 
𝛾𝑘(𝒙𝑖) = 𝑝(𝜽𝑘|𝒙𝑖) =

𝜋𝑘𝒩(𝒙𝑖|𝝁𝑘 , 𝚺𝑘)

∑ 𝜋𝑘𝒩(𝒙𝑖|𝝁𝑘 , 𝚺𝑘)
𝐾
𝑘=1

 (1.10) 

 

Figure 5 Marginal PDF and Posterior 

 

Figure 6 Responsibilities evaluation 

We can finally model a decisor based on these responsibilities, for example the MAP decisor will assign a 

datapoint to the class with the highest responsibility or a posteriori probability. 

The Expectation-maximization algorithm tries to iteratively maximize the likehood of a PDF with respect to the 

data provided changing the PDF parameters. In the case of GMM these are the means and covariance matrices. 

On each iteration, the algorithm performs 2 steps: 
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1. Expectation step: To calculate an estimation of the likehood function (𝑓(𝒙𝑖|𝜽𝑘)). That is to say, to 

evaluate each datapoint responsibility which is conditionally dependant on the current parameters 𝜽. 

2. Maximization step: To find the parameters 𝜽 that maximize the likehood, using previous ML results. 

Given all datapoints from a single class, its likehood has the following expression, assuming that they are 

generated independently: 

 

𝑝(𝑿|𝝁, 𝚺) =∏𝒩(𝒙𝑖|𝝁, 𝚺)

𝑁

𝑖=1

 (1.11) 

The former equation conduces to numerical problems, when many of 

the probabilities are close to 0. For so, the log-likehood is used. 

Because, as seen in the picture at the right, the logarithm function is 

monotonically increasing. 

Therefore, as stated before, maximizing the likehood function is the 

same than maximizing the log-likehood. Due to the properties of the 

log function, this method eliminates the numerical issue. 

 

ln(𝑝(𝑿|𝝁, 𝜮)) =∑ln(𝒩(𝒙𝑖|𝝁, 𝜮))

𝑁

𝑖=1

 (1.12) 

 

A more detailed derivation of this function can be found in Appendix A. Where also derivatives with respect 

to the parameters are calculated. Further reference about this kind of approaches can be found in [3].  

These algorithms are proven useful when model is well defined and the number of components 𝐾 is known or 

can be estimated accurately. This is the reason why they are called model-driven clustering algorithms. In 

these models, the objective is to maximize the likehood or posterior as traditional maximum likehood and 

MAP algorithms do. However, the issue is still the same: How many clusters are there? Can we infer its 

characteristics when we do not know how many of them there are? 

  

Figure 7 Logarithm function 
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2 MIXTURE MODELS 

“I just wondered how things were put together” 

- C. C. Shannon - 

nother approach to mixture models is to sample each datapoint parameters from a probability mass 

function, known as the parameters probability mass function. This new approach could be extended 

to a possible infinite number of componets, as we will see in this chapter. This types of algorithms are 

called non-parametric clustering algorithms and will be the main concern of this section. 

Non-parametric models provide a suitable approach to clustering, when the number of components is unknown 

or is not well defined. Instead of sampling from a finite set of possible components, we define a non-parametric 

prior of the components, and then we sample a possibly infinite number of components parameters in order to 

fit our model. 

To do so, we will use a kind of process known as the Dirichlet Process named after Peter Gustav Lejeune 

Dirichlet who first introduced them, along with the Dirichlet Distribution. This will allow our model to fit as 

many clusters as needed for the given data, this approach is sometimes referred as data-driven clustering 

algorithms as it only depends on the available data and makes less assumptions on the statistical data model. 

In this section a non-traditional way to define mixture models will be introduced, their aim is to provide a 

probability mass function (PMF) from where to sample the parameters used for each datapoint, which in 

turn is the assigned class. When the PMF has always the same amount of elements we still have to infer how 

many of them we want. That is to say how many classes compose out system. But if we could make this model 

provide an infinite amount of clusters as we will do we eliminate the dependency on 𝐾. The rest of the section 

is destined to introduce the required tools for using these kind of algorithms.  

2.1 Finite mixture models 

A finite mixture model (FMM) is composed by a given number of components, usually denoted as 𝐾. In a finite 

mixture model we can define, for each datapoint, a hidden or latent random variable 𝑧𝑖 which assigns each 

datapoint to a component of the mixture. This is the traditional approach to mixture models. But there is also 

another way to define these mixture models. For each datapoint, 𝒙𝑖, a component parameter �̅�𝑖 is sampled from 

a parameters PMF, 𝐺(𝜽), composed by all possible parameters and their weights. Having �̅�𝑖 = 𝜽𝑘 is equivalent 

to say that sample 𝑖 belongs to component 𝑘. 

A relationship between both approaches is straightforward using the following equations, as denoted in [3]. 

 𝑝(𝒙𝑖|𝑧𝑖 = 𝑘, 𝜽) = 𝑝(𝒙𝑖| �̅�𝑖 = 𝜽𝑘) (2.1) 

 𝑝(𝑧𝑖 = 𝑘|𝝅) = 𝑝(𝜋𝑘) (2.2) 

 𝑝(𝝅|𝛼) = Dir(𝝅|(𝛼 𝐾⁄ )𝟏𝐾) (2.3) 

 

  

A 
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Under this approach, (2.1) describes the relationship between the cluster assignments and the datapoint 

parameters. In the right hand side of the equation we omit RV 𝑧𝑖 and directly map each sample parameter  �̅�𝑖 to 

its generating set of parameters. Moreover, the probability of a sample belonging to cluster 𝑘, is the same than 

the probability of the sample being generated by component with parameters 𝜽𝑘. 

The second equation is the prior over the cluster assignments. It states that the a priori probability of assigning 

a datapoint to cluster 𝑘 is given by its weight in the mixture 𝜋𝑘. 

Finally, last equation defines the probability of a given set of weights, which follows a Dirichlet Distribution [4]. 

In fact, (2.1) can be seen as a sample generated by a probability function with parameters 𝜽𝑘 

 𝒙𝑖~𝐹(𝜽𝑘) (2.4) 

The set of 𝑁 samples, also denoted as 𝑿, corresponds to the datapoints available. We can also suppose that the 

parameters 𝜽𝒌 are randomly sampled from a prior over the cluster parameters, usually denoted as 𝐻(𝝀). 
Although 𝐻(𝝀) does not have to be discrete we take 𝐾 finite number of samples from it, for a finite number of 

clusters. Thus 

 𝜽𝑘~𝐻(𝝀) (2.5) 

Where 𝐻(𝝀) is chosen to be the conjugate prior1 of 𝐹(𝜽𝑘) so 𝑝(𝒙𝑖) can be written as 

 

𝑝(𝒙𝑖) = ∑𝑓(𝒙𝑖|𝜽𝑘)𝑝(𝜽𝑘|𝜆)

𝐾

𝑘=1

 (2.6) 

Unfortunately, this approach also holds the dependency on the number of components 𝐾, which we want 

to avoid. Finite mixture models are always composed by 𝐾 classes, which is the support for 𝐺(𝜽). The value of 

𝐺(𝜽) for class 𝑘 is 𝜋𝑘 as denoted in (2.2). Therefore, we can define 𝐺(𝜽) as  

 

𝐺(𝜽) = ∑𝜋𝑘𝛿(𝜽 − 𝜽𝑘)

𝐾

𝑘=1

 (2.7) 

Where 𝑝(𝝅|𝛼) follows a Dirichlet Distribution, as stated in (2.3) and 𝜽𝑘~𝐻(𝝀).  

 

Figure 8 Realizations of 𝑮(𝜽) 

Note that all realizations of 𝐺(𝜽) generated the same amount of samples, which is the amount of components 

defined in our model. Then, for each datapoint we will sample 𝐺(𝜽) and obtain a datapoint parameter 𝜃�̅�. 

                                                      
1 Conjugate priors are those in which the posterior of the data are in the same family than the prior. In such cases, the prior is called to be 
conjugate prior of the likehood function. This is in fact an algebraic convenience, thus it provides a closed and integrable form for the posterior. 
Otherwise, numerical methods should be used to compute it. 
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Figure 9 Representations of a Finite Mixture Model (source: [3]) 

The picture above shows the two different ways for modelling a finite mixture. The leftmost diagram shows 

how the model is built using the latent variable 𝑧𝑖 which states the relationship between the datapoint and the 

component parameter 𝜃𝑘 through equation (2.1). The right model represents the mixture where the component 

parameter is sampled from the probability mass function 𝐺(𝜽), obtaining parameters for each datapoint 𝜽�̅�. Also 

remark that, 𝐺(𝜽) is a realization from a Dirichlet Distribution with Gaussian prior, 𝐻(𝝀),and concentration 

parameter 𝛼. Finally, two datapoints are selected where 𝑥𝑖~𝒩(�̅�𝑖, 0.25). 

2.2 Infinite mixture models 

Although the previous approach might seem suitable for a variety of problems; it has the same limitations when 

concerning to the uncertainty of 𝐾 as the traditional way, which is the fact that the number of classes is fixed. 

Unlike this, infinite mixture models (IMM) do not impose any restriction on the number of components of the 

mixture. In fact, they provide more flexible model, which will be used when the number of components involved 

in the mixture is unknown. When using IMM the number of components is dynamically changed to best fit the 

data. This does not mean that IMM detects the number of components involved in the mixture but rather it 

provides an estimation on their amount through a PMF. 

Infinite mixture models can be seen as a generalization of the second approach to FMM described in section 2.1. 

Probability mass function 𝐺(𝜽) is replaced by a random probability measure, known as Dirichlet process (DP). 

The DP is a generalization of the Dirichlet Distribution to infinite dimensions, which will be explained next. 

Instead of using a finite mixture function for generating the PMFs of the components parameter, we will make 

use of the DP which produces a non-deterministic and possibly infinite number of components. This approach 

will make the model more suitable for problems in which the number of components is unknown. 
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Figure 10 Representation of an infinite mixture model (source: [3]) 

Figure 10 shows how IMM are essentially equal to FMM, the only difference strives in the infinite amount of 

possible values of 𝜽𝑘 that can be used and the changes required in 𝐺(𝜽) in order to be able to sample upto 

infinite clusters. Although this can be misleading, this approach does not impose an infinite number of clusters 

but it rather has the ability to provide as many clusters as needed to fit the data.   

2.3 The Dirichlet Process 

As defined below, the probability mass function 𝐺(𝜽), with prior 𝐻(𝝀) and concentration parameter 𝛼, from 

which we will sample the values of 𝜽𝑘 will be sampled from a Dirichlet Process. This is denoted as 

𝐺(𝜽)~𝐷𝑃(𝛼,𝐻). Using the DP, we will be able to sample a PMF. A DP is a kind of stochastic process which 

produces probability mass functions with a different amount of elements. But before going into further details, 

it is better to know what is a Dirichlet Distribution. 

2.3.1 Dirichlet Distribution 

In the previous description of the finite mixture models it was mentioned that 𝐺(𝜽) values, 𝝅, is the result of a 

realization of a Dirichlet Distribution with concentration parameter 𝜶. A PMF is just a function that assigns a 

number to a discrete RV (DRV) value, which in turn is the probability of the event liaised to the value of the 

DRV to happen. That is to say, given a finite set of possible events 𝑆 ∈ {𝑆1, 𝑆2, … , 𝑆𝑛} first a 𝑛-dimensional real 

value is assigned to each event. Secondly, the probability of the event is the value of the PMF at this point. 

Any discrete function can be a PMF, as long as the following two constrains hold 

 ∑𝑝(𝑿 = 𝝎)

Ω

= 1 (2.8) 

 𝑝(𝑿 = 𝝎) ≥ 0 ∀𝝎 (2.9) 

(2.8) states the requirement that, for the whose sample space, Ω, the sum of the values of the PMF equals to 1. 

Also, as stated in (2.9) all the values must be positive or 02.  

                                                      
2 Only the most purists would assign a probability of 0 for an event that will never happen, it would be simpler to just do not take into account 
an event that will never happen. 
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As the PMF models a random set of events, a Dirichlet Distribution is a PMF whose events are PMFs.  

An example of a case where we can use a Dirichlet Distribution would be the following 

We can model the result of rolling a dice (with values between 1 and 6) and non-uniform probabilities (as we 

can say that no dice is perfect) as a PMF. 

We can then put a bunch of dices in a bag, each representing a different PMF, then extract a dice from the 

bag. This gives us a PFM. Therefore, the extraction of the dice can be modelled with a Dirichlet Distribution. 

More formally, as described in [5], we say that a probability mass function with 𝑘 components lies on the (k-1)-

dimensional probability simplex, which is a surface in ℝ𝑘 where (2.8) and (2.9) holds. This is denoted as ∆𝑘. 

 

∆𝑘= {𝑞 ∈ ℝ
𝑘|∑𝑞𝑖 = 1, 𝑞𝑖 ≥ 0 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑘

𝑘

𝑖=1

} (2.10) 

Dirichlet distribution: Let 𝑄 =  [𝑄1, 𝑄2, … , 𝑄𝑘] be a random pmf, that is 𝑄𝑖  ≥  0 for 𝑖 =  1, 2, … , 𝑘 and 

∑ 𝑄𝑖
𝑘
𝑖=1 = 1. In addition, suppose that 𝜶 =  [𝛼1, 𝛼2, . . . , 𝛼𝑘], with  𝛼𝑖 >  0 for each 𝑖, and let 𝛼0 = ∑ 𝛼𝑖

𝑘
𝑖=1 . 

Then, 𝑄 is said to have a Dirichlet distribution with parameter 𝜶, which we denote by 𝑄 ∼ 𝐷𝑖𝑟(𝜶), if it has 

𝑓(𝑞;  𝜶)  =  0 if q is not a PMF, and if 𝑞 is a PFM then 

 

𝑓(𝑞;  𝜶) =
Γ(𝛼0)

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏𝑞𝑖
𝛼𝑖−1

𝑘

𝑖=1

 (2.11) 

 

Figure 11 Examples of a Dirichlet Distribution over the 2D probability simplex for different values of 𝜶 

2.3.2 Dirichlet Process Definition 

As mentioned before, a Dirichlet Process is a type of stochastic process whose realizations are PMF but with no 

limit on the potential number of components. That is the reason why it is used in IMM [6]. It is an extension of 

the Dirichlet Distribution over a possibly infinite set of events. 

As the Dirichlet Distribution models the extraction of a dice (along with its corresponding PMF) from a bag 

filled with 6-sided dices. A Dirichlet Process can be seen as the extraction of a dice from a bag where there 

could be dices with an upto infinite number of sides. 

It is better to see the DP as a model, for example, for querying people about their favourite colour, as there is 

an infinite number of possible colours each person can choose, but and individual will choose from a limited 

set of them. 
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In a more mathematical way, a Dirichlet Process is a type of stochastic process whose realizations are 

distributions over an arbitrary sample space [5]. The Dirichlet Process is specified by 2 components: 

1. A base distribution, which in fact is the expected value of the process. Recall that it returns PMFs. 

2. A concentration parameter 𝜶, which specifies how discretized the process is. In practice, how many 

points are generated by the process. 

Dirichlet process [7]: Let 𝐻 be a distribution over 𝛩 and 𝛼 be a positive real number. Then for any finite 

measurable partition 𝐴1, … , 𝐴𝑟 of 𝛩, the vector (𝐺(𝐴1), … , 𝐺(𝐴𝑟)) is random since 𝐺 is random. We say 𝐺 is 

a Dirichlet Process distributed with base distribution 𝐻 and concentration parameter 𝛼, written 𝐺~𝐷𝑃(𝛼,𝐻), 
if 

  (𝐺(𝐴1),… , 𝐺(𝐴𝑟))~𝐷𝑖𝑟(𝛼𝐻(𝐴1),… , 𝛼𝐻(𝐴𝑟)) (2.12) 

For every finite measurable partition 𝐴1, … , 𝐴𝑟 of 𝛩. 

Note that, here 𝐺(·) indicates a Dirichlet Process and 𝑟 is the number of partitions of the space Θ. Furthermore, 

the concentration parameter 𝛼 is a measure of the discretization of this space. 

As the normal distribution draws real numbers close to the mean value, the DP generates PMFs around the 

base distribution. As the concentration parameter increases the process returns more and more values and when 

𝛼 → ∞ the returned PMFs become the continiuos base distribution. 

Figure 12 illustrates how, as more samples are generated the histograms tends to fit the base distribution, this is 

due to the fact that 𝔼[𝐷𝑃(𝛼,𝐻)] = 𝐻. 

 

Figure 12 Histogram of 𝑮~𝑫𝑷(𝜶,𝑯) with respect to 𝜶.  

2.3.3 Predictive Distribution 

One result that will be used in next sections requires the definition of a predictive distribution for the DP. What 

we want to model is the fact that, as we get more and more samples from the DP, our knowledge about G 

increases. Thus, the predictive distribution takes the form 

 𝑝(𝜽𝑛+1|𝜽𝑛, … , 𝜽1, 𝛼, 𝐻) (2.13) 

We will start by assuming that N samples have been already generated from a DP, named 𝜽1, … , 𝜽𝑁. Let 

𝐴1, … . , 𝐴𝑟 be a finite measurable and arbitrary partition of Θ into R parts, as stated in the definition of the DP. 

And let 𝑛𝑘 = |{𝑖: 𝜃𝑖 ∈ 𝐴𝑘}| be the number of samples within partition 𝐴𝑘. The likehood function is multinomial 

because partitions are finite. By conjugacy of Dirichlet and multinomial, as stated in [4], we have  

 (𝐺(𝐴1),… , 𝐺(𝐴𝑟))|𝜽1, … , 𝜽𝑛~𝐷𝑖𝑟(𝛼𝐻(𝐴1) + 𝑛1, … , 𝛼𝐻(𝐴𝑟) + 𝑛𝑟) (2.14) 

Therefore, since this is valid for any finite partition of Θ, the posterior of the DP over 𝐺(𝜽) is also a DP. Note 

that, all the parameters have a constant sum, which does not depend on the partition scheme: 
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∑(𝛼𝐻(𝐴𝑖) + 𝑛𝑖)

𝑟

𝑖=1

= 𝛼 + 𝑁 (2.15) 

Proof 

 

∑𝛼𝐻(𝐴𝑖) +∑𝑛𝑖

𝑅

𝑖=1

𝑅

𝑖=1

= 𝛼 + 𝑁 (2.16) 

 

𝛼∑𝐻(𝐴𝑖) +∑𝑛𝑖

𝑅

𝑖=1

𝑅

𝑖=1

= 𝛼 + 𝑁 

(2.17) 

Then, the first term is the summation of 𝐻(𝐴𝑖) for the whole sample space, which is always equals to 1, as 𝐻 is 

a PDF. Also, the second sum equals the total number of samples, 𝑁, as we are also summing up the whole 

sample space. 

We can try to find a new base distribution 𝐻′ such as, for every partition 

 𝛼𝐻(𝐴𝑖) + 𝑛𝑖 = 𝛼
′𝐻′(𝐴𝑖) ∀𝑖 = 1,… 𝑟 (2.18) 

If it exists, it follows that the predictive distribution also is a DP as stated before, it is easy to see that 

 𝛼′ = 𝛼 + 𝑁 (2.19) 

 
𝐻′(𝜽) =

𝛼𝐻(𝜽) + ∑ 𝛿(𝜽 − 𝜽𝑖)
𝑛
𝑖=1

𝛼 + 𝑁
 (2.20) 

And therefore 

 
𝐺(𝜽)|𝜽1, … , 𝜽𝑛~𝐷𝑃(𝛼 + 𝑁,

𝛼𝐻(𝜽) + ∑ 𝛿(𝜽 − 𝜽𝑖)
𝑛
𝑖=1

𝛼 + 𝑁
) (2.21) 

The proof for this expression can be found in Appendix B. Then, for a new sample 𝜽𝑛+1, its probability to 

belong to partition 𝐴 is 

 
𝑝(𝜽𝑛+1 ∈ 𝐴|𝜽1, … , 𝜽𝑛, 𝛼, 𝐻) = 𝔼[𝐺(𝐴)|𝜽1, … , 𝜽𝑛] =

𝛼𝐻(𝐴) + ∑ 𝛿(𝐴 − 𝜽𝑖)
𝑛
𝑖=1

𝛼 + 𝑁
 (2.22) 

𝛿(𝐴 − 𝜽𝑖) is a generalization of the 𝛿 function, that takes value 1 if 𝜽𝑖 ∈ 𝐴, and 0 otherwise. Provided that, the 

expected value of the DP is the base distribution 𝐻. And taking 𝐴 = 𝜽 we reach the most general expression for 

the predictive distribution 

 
𝑝(𝜽|𝜽1, … , 𝜽𝑛, 𝛼, 𝐻)~

𝛼𝐻(𝜽) + ∑ 𝛿(𝜽 − 𝜽𝑖)
𝑛
𝑖=1

𝛼 + 𝑁
 (2.23) 

2.4 Sampling the DP 

Although describing the Dirichlet Distribution and the Dirichlet Process is helpful, when using IMM we are 

more interested in how to sample the DP, that is, how can we generate random PMFs from a DP. In this section 

we will cover up two different approaches, the Stick-Breaking Construction (SBC) and the Chinese Restaurant 

Process (CRP) which is also known as the Pólya Urn Scheme. 
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2.4.1 The Stick-Breaking Construction 

Let 𝐵𝑒𝑡𝑎(𝛼, 𝛽) be the continuous beta distribution. From a given base distribution 𝐻 and a concentration 

parameter 𝛼. We will define 𝝅 = {𝜋𝑘}𝑘=1
∞ , that is, an infinite sequence of mixture weights derived from the 

following schema [4]: 

 𝛽𝑘~𝐵𝑒𝑡𝑎(1, 𝛼) (2.24) 

 

𝜋𝑘~𝛽𝑘∏(1− 𝛽𝑙)

𝑘−1

𝑙=1

= 𝛽𝑘 (1 −∑𝜋𝑙

𝑘−1

𝑙=1

) (2.25) 

Then, once the weights are obtained, we assign a value for the PMF, sampling the base distribution 𝐻(𝜽) 

 𝜽𝑘~𝐻(𝜽) (2.26) 

 
𝑝(𝜽) = ∑𝜋𝑘𝛿(𝜽 − 𝜽𝑘)

∞

𝑘=1

 (2.27) 

The algorithm for generating samples is as follows, if 휀 is taken as a small number: 

ALGORITHM 1: STICK-BREAKING CONSTRUCTION 

1 Set 𝜋0 = 0, 𝑘 = 1, 𝑙 = 1  

2 while 𝑙 > 휀 

3  Sample 𝛽𝑘 from 𝐵𝑒𝑡𝑎(1, 𝛼) 

4  Compute 𝜋𝑘 = 𝛽𝑘 × 𝑙 

5  Sample 𝜃𝑘 from 𝐻(𝜆) 

6  Decrement 𝑙 by 𝜋𝑘 

7  Increment 𝑘 

8 end 

 

Figure 13 Different realizations of 𝑫𝑷(𝜶,𝑯) where 𝑯(𝝀) = 𝓝(𝟎, 𝟏), 𝜶 = 𝟎. 𝟔 

Figure 13 shows different realizations of the Dirichlet Process using the SBC. Note that, the number of samples 

generated in each turn is different, in the previous example the DP produced 5, 5 and 9 samples respectively. 

Due to its construction scheme, the SBC produces a PMF with ∑ 𝜋𝑘
∞
𝑖=1 = 1 and 𝜽𝑘 following the base 

distribution 𝐻(𝜆). 
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Figure 14 Stick Breaking Construction of the DP 

The further we increment concentration parameter 𝛼, the more samples are generated and the PDF estimation 

(histogram) is closer to the base distribution, this is coherent with the predictive properties defined above. 

An interesting result, which will be used in the next section, is that this construction produces discrete PMFs 

with probability equals to 1 [4]. In fact, if we take samples from 𝐺(𝜽) we will get more and more repetitions 

of previously seen values, although due to the infiniteness of the SBC there is still a small odd of generating a 

new sample not seen before. 

2.4.2 The Chinese Restaurant Process 

Another approach when sampling a DP, which avoids the problem of infinitely breaking a stick into smaller 

chunks, takes advantage of the discreteness of 𝐺(𝜽) and builds the predictive model from it. From (2.23), taken 

all previously generated samples of 𝐺(𝜽), we can model the predictive probability of a new sample as 

 

𝑝(𝜽𝑁+1|𝜽1, … , 𝜃𝑁, 𝛼, 𝐻) =
1

𝛼 + 𝑁
(𝛼𝐻(𝜽) +∑𝑁𝑘𝛿(𝜽 − 𝜽𝑘) 

𝐾

𝑘=1

) (2.28) 

Where 𝑁𝑘 is the number of previous samples equal to 𝜽𝑘. This equation could be easier understood using hidden 

variable 𝑧𝑖 shown before, which assigns a sample and its parameter to a set of parameters. We redefine the 

variable in the following form 

 
𝑧𝑖 = 𝑘

𝑖𝑓𝑓
↔ 𝒙𝑖  𝑤𝑎𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜽𝑘 (2.29) 

Doing so, it allows us to rewrite (2.28) as 

 

𝑝(𝑧𝑖+1 = 𝑞|𝑧1, … , 𝑧𝑖 , 𝛼) =
1

𝛼 + 𝑁
(𝛼𝕀(𝑞 = 𝑘∗) +∑𝑁𝑘𝕀(𝑞 = 𝑘)

𝐾

𝑘=1

) (2.30) 

Where 𝑘∗ indicates a new cluster not seen before and 𝕀(·) is the indicator function, it returns 1 when the inner 

condition holds and 0 otherwise. In other words 

 

𝑝(𝑧𝑖+1 = 𝑞|𝑧𝑖 , . . , 𝑧1, 𝛼) = {

𝑁𝑘
𝛼 + 𝑁

𝑖𝑓 𝑘 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑠𝑒𝑒𝑛 𝑏𝑒𝑓𝑜𝑟𝑒

𝛼

𝛼 + 𝑁
𝑖𝑓 𝑘 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

 (2.31) 

This method is called the Chinese Restaurant Process (CRP) due to the model proposed by Aldous in [8] in 

1983. It is described with an analogy of a Chinese restaurant with an infinite supply of tables. The first customer 

sits on the first table. Whenever a new customer arrives, he sits in an existing table with a probability proportional 

to the number people already sat on that table. However, there is always a small probability of sitting in a new 

table, which is given by the concentration parameter 𝛼, as seen in (2.31).  
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As more clusters appear, the probability of having a new cluster decreases, although it remains bigger than zero. 

Depending on parameter 𝛼, this probability decreases faster or slower. So controlling 𝛼 allows us to 

approximately infer the number of cluster that will define our model. 

Using the CRP, we will be able to sample the DP defining the predictive PMF over the latent variable 𝑧, that is 

 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝛼) (2.32) 

Where 𝒛−𝑖 ≝ {𝑧1, … , 𝑧𝑖}. Which is the same as the predictive PMF over the parameters, as stated in (2.29). 

 

Figure 15 Probability of a new cluster with respect to 𝜶 

Figure 15 shows how the probability of a new clustes quickly decreases when 𝛼 is small. It also shows how, as 

𝛼 increases the probability tends to 0 slower. 

2.5 Collapsed Gibbs Sampling 

Another required tool when using IMM is the Gibbs Sampler. The Gibbs Sampling is an algorithm for 

efficiently obtaining samples from a multivariate probability function. It is used when direct sampling the 

PDF is difficult or computationally too expensive. The Gibbs Sampler belongs to the family of the MCMC 

algorithms as it tries to build a random walk of a Markov Chain for generating the samples. 

2.5.1 Markov Chains 

A Markov Chain is a type of stochastic process which complies with the Markov property, also known as the 

“memoryless property”. This means that each step/sample only depends on the previous one. It is defined by a 

set of states, in a state space in which the Markov Chain can move. More precisely, if we define 𝑿1, 𝑿2, … as 

the possible states of the Markov Chain, then the Markov property says that 

 𝑝(𝑿𝑖 = 𝒙|𝑿1, … , 𝑿𝑖−1) = 𝑝(𝑿𝑖 = 𝒙|𝑿𝑖−1) (2.33) 

Markov Chains that are stationary, also require that 

 𝑝(𝑿𝑖 = 𝒙|𝑿𝑖−1) = 𝑝(𝑿𝑗 = 𝒙|𝑿𝑗−1) ∀𝑖, 𝑗 (2.34) 

That is to say that transition probabilities do not change with time. If these properties hold, then a Markov Chain 

can be defined by a set of transition probabilities 𝑝𝑖𝑗 which determines the probability of moving from state 𝑖 to 

state 𝑗. 
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Figure 16 Graph of a Markov Chain with 3 states 

Recall that, in a Markov Chain, not all transitions are necessarily possible and that the number of states does not 

have to be finite [9]. One property of the stationary Markov Chains is that they have a stationary distribution 

that we can approximated by considering the visited states as samples of this stationary PDF. Figure 17 shows 

how the Markov Chain samples can also be considered as samples of the stationary distribution. Where the upper 

picture shows the Markov Chain process and the bottom picture shows the histogram of the samples and the 

target stationary distribution. That is the reason why MCMC is a widespread family of algorithms for sampling 

complex PDF, the only requirement is that the underlying Markov Chain has the same stationary distribution as 

the target PDF. 

 

Figure 17 Markov Chain and its stationary distribution 

But there is a small drawback in this process. What happens when we start our random walk at a very uncommon 

point? As the Markov Chains obtain the current sample from the previous one, a convergence time has to be 

considered. That is the reason why a burnin period, where samples are discarded, is required when using MCMC 

algorithms. Although it is not the smartest solution, it is simple. Using a burnin period, we just delay the 

beginning of our Markov Chain by 𝑛 steps, but a new question arises. Which is a good starting point for our 

Markov Chain? As stated in [9] 

Any point you do not mind having as a sample is a good starting point. 

To show this issue, a simple Markov Chain has been built considering the following process [9]: 

 𝑥𝑛+1 = 𝜌𝑥𝑛 + 𝑦𝑛 (2.35) 

Where 𝑦𝑛 are i.i.d samples following a 𝑁(0, 𝜏2) distribution and 𝑥1~𝑁(0, 𝜎
2). It is a Markov Chain, because 

the probability of sample 𝑥𝑛+1 only depends on the previous state [𝑥𝑛, 𝑦𝑛]. 
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Figure 18 Example of MCMC burnin period 

Figure 18 shows two different runs of the previous Markov Chain from and for different starting points. One 

with a high probability of happening and the other with a very small one. Note that they only differ in the initial 

phase with the grey background. This is the burnin period we are considering, during this time we will not take 

into account the samples generated by the process. After this period the Markov Chain reaches the equilibrium 

and samples can be considered an accurate result of the stationary PDF. 

2.5.2 Gibbs Sampling 

When using a Gibbs Sampler, we are trying to obtain a sample from a multivariate PDF, as stated before. Instead 

of sampling all the dimensions at the same time, we build a Markov Chain with the conditional probability of 

each variable with respect to the previous one. 

Therefore, if we have a sample, 𝒙𝑖, and we are trying to obtain the next sample, 𝒙𝑖+1, and we have 𝐷 = 3 

dimensions to sample. We make use of the following conditional probabilities. 

 𝑥𝑖+1
(1)
~𝑓 (𝑥(1)|𝑥𝑖

(2), 𝑥𝑖
(3)) (2.36) 

 𝑥𝑖+1
(2)
~𝑓 (𝑥(2)|𝑥𝑖

(3)
, 𝑥𝑖+1
(1)
) (2.37) 

 𝑥𝑖+1
(3)
~𝑓 (𝑥(3)|𝑥𝑖+1

(1) , 𝑥𝑖+1
(2) ) (2.38) 

It easy to extend the previous formulae to the most general 𝐷-dimensional case. What we have to define is 

 𝑝(𝑥𝑖|𝒙−𝑖) (2.39) 

Which is called the full conditional probability for dimension 𝑖. And where 𝒙−𝑖 stands for the samples before 

𝑥𝑖. 

An interesting case is the Collapsed Gibbs Sampler. It is a modification over the traditional Gibbs Sampler where 

some of the dimensions have been marginalized out, turning the algorithm much more efficient [4]. In such case, 

if we can integrate out one or more dimensions of the sample space, the marginalized variables do not belong to 

the Markov Chain and can be removed. 

2.5.3 Collapsed Gibbs Sampling in FMM 

As stated before, a mixture is defined by a set of PDF parameters, 𝜽𝑘, one for each component in the mixture 

and additionally 𝒛 and 𝝅, which are the latent cluster-assignment variable and the weights of the mixture. If we 

try to build a Gibbs Sampler for the latent variable 𝒛, what we are trying to compute the following equation 

 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝒙, 𝜶, 𝝀) (2.40) 

Where 𝜆 and  𝛼 and are, respectively, the hyperparameters for the data and the class-conditional densities. That 
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is, 𝜶 is only relevant when computing 𝒛 and 𝝀 is only relevant when computing 𝒙. Then, if we split previous 

equation using the Bayes theorem in the following way 

 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝒙, 𝜶, 𝝀) ∝ 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝜶, 𝝀)𝑝(𝒙|𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝜶, 𝝀) (2.41) 

As 𝑝(𝑧𝑖 = 𝑘|… ) does not depend on 𝝀 and 𝑝(𝒙|… ) does not depend on 𝜶 we can remove them from the 

previous expression. 

 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝒙, 𝛼, 𝜆) ∝ 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝜶, 𝝀)𝑝(𝒙|𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) (2.42) 

Furthermore, we can rewrite the second part as 

 𝑝(𝒙|𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) = 𝑝(𝑥𝑖 = 𝑥|𝒙−𝑖, 𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀)𝑝(𝒙−𝒊|𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) (2.43) 

Where 𝑥𝑖 corresponds to the current sample and 𝒙−𝑖 is a vector containing all samples except 𝑖. Then, as 𝒙−𝑖 
does not depend on the current assignment, 𝑧𝑖 it acts as a constant for the equation, thus  

 𝑝(𝒙|𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) ∝ 𝑝(𝑥𝑖 = 𝑥|𝒙−𝑖, 𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) (2.44) 

And finally, we reach the final desired expression 

 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝒙, 𝛼, 𝜆) ∝ 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝜶)𝑝(𝑥𝑖 = 𝑥|𝒙−𝑖, 𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) (2.45) 

The Collapsed Gibbs Sampling algorithm is then described as follows, 

ALGORITHM 2: COLLAPSED GIBBS SAMPLER (SOURCE: [3]) 

1 for each 𝑖 ∈ 1:𝑁 do 

2  Remove 𝒙𝑖 from old cluster 𝑧𝑖 

3  for each 𝑘 ∈ 1:𝐾 do 

4   Compute 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝛼) =
𝑁𝑘,−𝑖

𝛼+𝑁−1
 First term of (2.45) 

5   Compute 𝑝𝑘(𝒙𝑖) =  𝑝(𝒙𝑖|𝒙−𝑖(𝑘)) (2.44). Second term of (2.45) 

6  end 

7  Normalize 𝑝(𝑧𝑖|𝒛−𝑖 , 𝒙, 𝛼)  (2.45) 

8  Sample 𝑧𝑖~ 𝑝(𝑧𝑖|𝒛−𝑖 , 𝒙, 𝛼) 

9  Add 𝒙𝑖 to new cluster 𝑧𝑖 

10 end 

2.6 Collapsed Gibbs Sampling for IMM 

Once all the required tools have been introduced, in this section we will describe how to fit an IMM to some 

datapoints. For so, we will make use of the Collapsed Gibbs Sampler explained above and introduce some 

modifications. Let 

 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝒙, 𝜶, 𝝀) ∝ 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝜶)𝑝(𝒙𝑖|𝒙−𝑖, 𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) (2.46) 

Where 𝒙−𝑖 and 𝒛−𝑖 represent, respectively, the previous samples and the previous cluster assignments. As seen 

in the former section, equation (2.30) gives the probability of a new cluster 

 

𝑝(𝑧𝑖 = 𝑧|𝒛−𝑖, 𝜶) =
1

𝛼 + 𝑁 − 1
(𝛼𝕀(𝑧 = 𝑘∗) +∑𝑁𝑘,−𝑖𝕀(𝑧𝑖 = 𝑘)

𝐾

𝑘=1

) (2.47)3 

Where 𝜶 = 𝛼. A better way to write this equation is to use (2.31) 

                                                      
3 The -1 added to the divisor is due to the fact that, in this case we are taking sample 𝒙𝑖 and not sample 𝒙𝑖+1. 
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𝑝(𝑧𝑖 = 𝑧|𝒛−𝑖, 𝛼) = {

𝑁𝑘,−𝑖
𝛼 + 𝑁 − 1

𝑖𝑓 𝑘 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑠𝑒𝑒𝑛 𝑏𝑒𝑓𝑜𝑟𝑒

𝛼

𝛼 + 𝑁 − 1
𝑖𝑓 𝑘 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

 (2.48) 

The second term is more complex to calculate. First, we will divide datapoints based on the current cluster 

assignments. Let 𝒙−𝑖,𝑐 ≝ {𝑥𝑗: 𝑧𝑗 = 𝑐, 𝑗 ≠ 𝑖} be the datapoints already assigned to the cluster 𝑐, except datapoint 

𝑥𝑖. Then 𝑥𝑖 is conditionally independent to all datapoints not in its current cluster [4], put in other words when 

computing probability of belonging to cluster 𝑘 we only take into consideration samples already in 𝑘. 

 
𝑝(𝑥𝑖|𝒙−𝑖, 𝑧𝑖 = 𝑘, 𝒛−𝑖, 𝝀) = 𝑝(𝑥𝑖|𝒙−𝑖,𝑘 , 𝝀) =

𝑝(𝑥𝑖 , 𝒙−𝑖,𝑘|𝝀)

𝑝(𝒙−𝑖,𝑘 , 𝝀)
 (2.49) 

This is achieved making use of the Bayes theorem, then  

 

𝑝(𝑥𝑖, 𝒙−𝑖,𝑘|𝝀) = ∫𝑝(𝑥𝑖|𝜽𝑘) [ ∏ 𝑝(𝑥𝑗|𝜽𝑘)

 

𝑗≠𝑖:𝑧𝑗=𝑘

]𝐻(𝜽𝑘|𝜆)𝑑𝜽𝑘 (2.50) 

It is the marginal likehood of all data assigned to cluster 𝑘, including 𝑖. It is the numerator of (2.49). Also if 

datapoint 𝑖 is excluded, it becomes the expression for the denominator.  

If no previous samples are assigned to cluster 𝑘, which means that 𝑧𝑖 = 𝑘
∗, the expression becomes simpler 

 
𝑝(𝒙𝑖|𝒙−𝑖, 𝑧𝑖 = 𝑘

∗, 𝒛−𝑖, 𝝀) = 𝑝(𝒙𝑖|𝜆) = ∫𝑝(𝒙𝑖|𝜽)𝐻(𝜽|𝜆)𝑑𝜽 (2.51) 

This is very similar to Collapsed Gibbs Sampler algorithm except for the additional case 𝑧𝑖 = 𝑘
∗.  

ALGORITHM 3: MODIFIED COLLAPSED GIBBS SAMPLER FOR IMM (SOURCE: [3]) 

1 for each 𝑖 ∈ 1:𝑁 do 

2  Remove 𝒙𝑖 from old cluster 𝑧𝑖 

3  for each 𝑘 ∈ 1:𝐾 do 

4   Compute 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝛼) =
𝑁𝑘,−𝑖

𝛼+𝑁−1
 First case of (2.48) 

5   Set 𝑁𝑘,−𝑖 = |𝒙−𝑖,𝑘| 

6   Compute 𝑝𝑘(𝒙𝑖) =  𝑝(𝒙𝑖|𝒙−𝑖,𝑘) (2.49) 

7  end 

8  Compute 𝑝(𝑧𝑖 = ∗ |𝒛−𝑖 , 𝛼) =
𝛼

𝛼+𝑁−1
 Second case of (2.48)  

9  Compute 𝑝∗(𝑥𝑖) =  𝑝(𝑥𝑖|𝜆) (2.51) 

10  Normalize 𝑝(𝑧𝑖|𝒛−𝑖 , 𝒙, 𝛼)   (2.46) 

11  Sample 𝑧𝑖~ 𝑝(𝑧𝑖|𝒛−𝑖 , 𝒙, 𝛼) 

12  Add 𝒙𝑖 to new cluster 𝑧𝑖 

13  If any cluster is empty, remove it and decrease K 

14 end 

2.6.1 Fitting a GMM 

The following section is a particularization of the equations shown above, computed for the Gaussian Mixture 

Model. Now, we will suppose that samples were generated by a Gaussian Mixture as described in section 1.2. 

The only equation that depends on the mixture model is the predictive distribution over the data. In this case, as 

the mean and covariance matrix are unknown, we will use a InverseWishart-Gaussian Distribution in order 

to compute the predictive PDF, as described in (2.49). Because the samples were generated using a DP, the 

values 𝜽𝑘 are discrete, and then, what we have to compute is 

 
𝑝(𝑥𝑖|𝒙−𝑖,𝑘, 𝝀) =

𝑝(𝑥𝑖, 𝒙−𝑖,𝑘|𝝀)

𝑝(𝒙−𝑖,𝑘 , 𝝀)
 (2.52) 
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Then, for each existing cluster, using function 𝑍(·) described in Appendix C, we compute (2.52) using the 

following expression 

 
𝑝(𝑥𝑖|𝒙−𝑖,𝑘 , 𝝀) =

𝑍(𝑑, 𝑛 + 1, 𝑟 + 1, 𝜈 + 1, 𝑆𝑥𝒊,𝒙−𝑖,𝑘)

𝑍(𝑑, 𝑛, 𝑟, 𝜈, 𝑆𝑥−𝒊,𝒌)
 (2.53) 

If we want to obtain the mean and covariance matrix of a given cluster, once we have some samples in the 

cluster, we can use InverseWishart-Gaussian distribution to sample them using the following expressions  

 𝚺𝑘~𝒲
−1(𝑹, 𝜈) (2.54) 

 
𝝁𝑘|𝚺𝑘~𝒩(

∑ 𝑥𝑖
𝑁
𝑖=1

𝑟
,
𝚺𝑘
𝑟
) (2.55) 

Where 𝑹 is the precision matrix of the data, 𝜈 is the degrees of freedom of the distribution and 𝑟 is the relative 

precision of 𝜇 with respect to the data. That is, the precision of 𝜇 is 𝑟𝑹. Further reference can be found in [10]. 

We also have to compute 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝛼), which is always computed using the Chinese Restaurant Process 

results shown in (2.48) 

 
𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖, 𝛼) =

𝑁𝑘,−𝑖
𝛼 + 𝑁 − 1

 (2.56) 

We are now ready to compute (2.46), which is the product of the previous results, (2.53) and (2.56). But the 

probability of the sample being in new unseen cluster has to be calculated too, which is the same as the 

probability of a new cluster. It can be efficiently calculated as the predictive distribution for the Gaussian-

Wishart when no samples are provided, as can be seen in Appendix C. 

 
 𝑝(𝑥𝑖|𝜆) =

𝑍(𝑑, 1, 𝑟 + 1, 𝜈 + 1, 𝑆𝒙)

𝑍(𝑑, 0, 𝑟, 𝜈, 𝑆)
 (2.57) 

And also, compute 𝑝(𝑧𝑖 = ∗ |𝒛−𝑖, 𝛼) 

  𝑝(𝑧𝑖 = ∗ |𝒛−𝑖, 𝛼) =
𝛼

𝛼 + 𝑁 − 1
 (2.58) 

Finally, we normalize the probabilities obtained. Recall that we are obtaining proportional values of the real 

probability, as described in (2.46). The next step is to sample the new cluster assignment 𝑧𝑖 for the sample 𝒙𝑖 
using the probabilities considered before and add 𝒙𝑖 to its new cluster.  

As this process is done using the Collapsed Gibbs Sampler method explained above, as in other MCMC based 

methods, the initial samples have to be discarded. 
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3 ALGORITHM IMPLEMENTATION 

“The best big idea is only going to be as good as its 

implementation” 

- J. Samit - 

lthough the mathematical aspects of this article are important, a further work has been done to “make it 

happen”. An implementation of the modified Collapsed Gibbs Sampler for IMM has been developed 

using Matlab®, the details of this implementation will be the main topic of this chapter. This algorithm 

is based on the implementation made by Yee Whye Teh [11]. 

This section will cover up implementation details for the algorithm 3 proposed above. The first part of this 

chapter includes an introduction on OOP, in order to introduce some necessary concepts. Also UML, a standard 

for programming design, will be introduced. The second part comprises the explanation of the program 

architecture and behaviour described using UML. 

Also, a detailed description of the interface requirements is explained. This allow users to change the data 

probability function without having to change the algorithm itself. Under this assumption, a user can concentrate 

only on designing the required functions and does not have to care on how the algorithm is programmed. 

3.1 General concepts 

3.1.1 OOP 

Object oriented programming (OOP) is a programming paradigm that encapsulates software behavior into 

objects. Objects are entities that represent either real things or logical aspects of the software being developed. 

All objects are composed by: 

 Attributes: Properties of the object 

 Methods: Operations that the object can perform. 

For example, a Vehicle could be an object in a system. Some of its attributes could be the number of wheels 

or the current speed. Some methods could be to accelerate, to break or to turn, etc. Objects are also called classes. 

Methods in an object are called by other objects, therefore objects talk among them. The calling class knows 

nothing about how the method is internally implemented. This property is called encapsulation, and is one of 

the most interesting properties of OOP because it allows different developers to work easily on the same project 

without having to know the implementation details for every class in the system. 

OOP also allows objects to be “children” for other objects. For example, a car or a motorbike could be “children 

objects” or subclasses of the Vehicle object shown above, which is called superclass. They inherit the 

properties and methods of their “parent”. This is known as object inheritance. It is a representation of an “is a” 

relation. Therefore, a car “is a” vehicle and also a motorbike “is a” vehicle, so class Car and class Motorbike 

are subclasses of Vehicle. 

Also, most objects could be instantiated. An instance is a particularization of an object to a given set of 

properties. Each object instantiation or instance, has its own values for the properties described on its 

A 
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corresponding class, that may change or not. 

For example, your own car could be an instance 

of the Car class described above and your 

colleague’s car could be another instance. 

Some other objects cannot be directly 

instantiated, because either an instance for the 

object does not make logical sense or instances 

are made through particular subclasses. For 

example, in a given system, an instance of an 

abstract vehicle is not useful. But, it possible to 

instantiate Car X from class Car, which in fact 

“is a” vehicle. This means that it is also an 

instance, through inheritance of class 

Vehicle. These type of objects are also 

referred as abstract objects and are very useful 

when defining interfaces. 

An interface is a set of methods which an 

implementing class MUST provide to other 

classes. Consequently, an interface guarantees that the implementing objects will respond as defined to the set 

of methods described in the interface. An interface does not impose any restriction on how these methods are 

finally implemented but rather on how they are called and what they do return. 

Interfaces allow to create modular code, that can call methods from different classes, provided that they 

implement the corresponding interfaces. Interfaces are sometimes referred as -able classes, thus Driveable or 

Turnable could be interfaces implemented by the Vehicle abstract class, and thereby by its subclasses. 

In OOP the concept of interfaces and abstract classes are confusingly similar, but the latest is preferred for 

methods inherently belonging to an entity in opposition to added funtionality. An example of these abstract 

classes is class Vehicle which has methods such as: turn, accelerate and brake inheretely belonging to 

a vehicle. Interfaces are often used when the functionality provided is an addition to the behavior of a class. For 

example, implementing interface Gearable makes a class provide methods such as GearUp and GearDown. 

However, these operations are not exclusively referred to a particular class but they are an additional 

functionality to a ManualCar or a Motorbike. An example of the shared behavior of abstract classes and 

interfaces is the fact that in Matlab®, interfaces are always defined by abstract classes. 

3.1.2 UML 

The Unified Modelling Language (UML) is a common language for software modelling, it is language-agnostic 

and allows many developers to implement better software which is simpler, more reliable and easier to maintain. 

As a conclusion, when programming software, the design process should be taken carefully into consideration 

and UML diagrams help in this process as they describe software architecture and behavior. 

3.2 Algorithm description 

3.2.1 Class Diagrams 

The class diagrams are used for describing software architecture. When developing using OOP, class diagrams 

provide a general view of the system and the relationships among the objects that compose it. 

In a class diagram, inheritance is represented by a solid arrow with an empty pointer which goes from the 

subclass to the superclass. Interface realizations are represented by dashed arrows with an empty pointer, which 

goes from the implementing class to the interface definition. 

Methods are represented by their signature, which in turn is a composition of: the calling parameters, the returned 

value type and its visibility. Also, attributes are represented by their name, their type and their visibility. The 

visibility of a method, class or attribute declares which classes can access them. In Matlab® 3 types of visibility 

are declared [11]: 

Figure 19 UML example of classes and interfaces 
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 Public (+): Unrestricted access 

 Protected (#): Access from class or subclasses 

 Private (-): Access by class members only (no subclasses) 

As Matlab® provides support for OOP, and due to the advantages of 

using OOP (reusability, inheritance, encapsulation, …)  in software 

development, the implementation of the algorithm 3, explained in 

chapter 2, has been made using this programming paradigm. 

Although the system is composed by many classes, just the most 

relevant for the correct implementation of the algorithm will be 

described. 

3.3 Implementation of the Modified Collapsed Gibbs Sampler Algorithm 

Algorithm 3 is the final result for the modified Collapsed Gibbs Sampler algorithm, thoroughly described in 

Chapter 2.  

As we mentioned before, the only model-dependent aspects of the algorithm are those concerning the internal 

calculations for the predictive distributions, (2.49). So, we will define the ClusterDistribution abstract 

class in order to support modularization. 

As long as the classes used for modelling a particular probability distribution inherit from 

ClusterDistribution class, the algorithm will work. This allows to separate the algorithm itself from the 

data model. 

The general model is as follows 

 

Figure 21 General Class Diagram 

Figure 20 Cluster Distribution Abstract Class 
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Package dist contains the DPM class and the GaussianWishart class which is a subclass of 

ClusterDistribution, and thereby it can be used from class DPM, which implements the algorithm itself. 

Methods gibbs(nIter: integer) and plotDPM() make use of the ClusterDistribution declared 

methods without taking into consideration implementation specific details for each probability function. In fact, 

other classes, implementing different probability models, can be created and used, as long as they implement 

abstract class ClusterDistribution. Moreover, although uncommon, different data models can be used for 

different clusters in the same program. 

3.3.1 Methods description 

Next, a detailed explanation of all methods is described. Note that all methods are publicly visible. 

3.3.1.1 +logpredictive(x: Datapoint): double 

This method computes the logarithm of equation (2.46) for a given cluster. As said previously, the logarithm 

calculation allows to avoid numerical errors. 

3.3.1.2 +addItem(x: Datapoint): void 

This method adds a datapoint to the cluster, which is added to the 𝒙−𝑖 data vector. Therefore, it will be used for 

future calculations. Diverse distributions can operate in a different way when a new datapoint is added. 

3.3.1.3 +delItem(x: Datapoint): void 

This method removes a datapoint from a cluster. The datapoint is therefore removed from vector  𝒙−𝑖 and will 

no longer be used for future calculations. 

3.3.1.4 +plot(): Graphics 

This method plots the cluster. It is a completely implementation-dependent method; as diverse distributions can 

be plotted differently. 

3.3.1.5 +results(): Struct 

This method returns a set with the selected results for each run. There are not any constrains in the returned 

values. Further processing is beyond the scope of the algorithm itself because it is conditioned by the 

implementation specific details. 
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3.3.2 Activity Diagram 

Activity diagrams are behaviour diagrams that 

describe the flow of the system from a certain point. 

Activity diagrams are composed by both: activity 

nodes, in which some operations are made, and 

decision nodes, in which, upon a given condition, the 

flow is directed to a different path. 

In the first activity diagram, right, the upper level of 

the algorithm is described. 

First, a set of hyperparameters are initialized and 

computed. Also, the maximum number of iterations 

for the Gibbs sampler and some random seeds are set. 

Defining the random seeds allow to make every run 

of the algorithm determinant. 

The next step is to create some synthetic data to run 

the algorithm, this is made by using the 

hyperparameters defined previously.  

Then, for each defined seed the algorithm is run. The 

DPMM is initialized and until the maximum number 

of iterations is reached, a Gibbs iteration is run and 

the results of it are stored. 

Finally, the results are plot. Recall that, in here we do 

not define the burnin step which has to be made in 

order to avoid using the first non-precise samples. 

We have not defined yet the algorithm itself, which is 

run inside the gibbs() function. The next step is to 

describe the inner activity diagram. 

Figure 22 General Activity Diagram 
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First step is to initialize some variables, such as the number of current components (𝐾), the number of datapoints 

(𝑁), the current iteration, a vector with the current number of datapoints in each cluster (𝒏), etc. 

Then, until the maximum number of iterations is reached, for each sample we do the following. 

First, we remove the sample from the current cluster, at the beginning there is only one cluster in which all the 

samples are. Thus, we remove the sample using the deItem(x: Datapoint) function and decrement the 

number of samples in the component. 

If the number of components is 0, that is, the cluster is empty, we remove it from the list. Then, for each 

remaining cluster, we compute (2.46) making use of the logpredictive(x: Datapoint) function. Finally, 

we normalize the probabilities obtained and sample the new cluster assignment from it. If the sampled cluster is 

new, we create it and finally we add the sample to the selected cluster using the addItem(x: Datapoint) 

function. 

Note that, we have not made any assumption on how the data is distributed, as long as the called classes inherits 

from ClusterDistribution and implements the required methods the algorithm will work. This allows to 

split the algorithm itself from the data distribution details and use different distribution classes without changing 

the algorithm. 

  

Figure 23 Activity Diagram for DPMM 
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4 EXAMPLES 

“Setting an example is not the main means of 

influencing others, it is the only means” 

- A. Einstein - 

Some examples have been made in order to prove how does the algorithm behave with different data. This 

data was generated following a mixture of Gaussian PDFs as explained above. Thus, equations particularized 

from Appendix C were used. On each example, the hyperparameters used are described. 

4.1 Example 1: First Run 

In this example we have set up 𝐾 = 5 clusters easily 

separable at a glance. Thus, we have configured the 

following parameters: 

 Cluster separability (𝜎𝐻
2 𝜎𝑑

2⁄ ): 50 

 Data variance (𝜎𝑑
2): 1 

 GaussianWishart degrees of freedom: 5 

 maxIter: 400 

 Concentration parameter (𝛼): 1 

 Number of samples (𝑁): 100 

We run the algorithm for a set of 2-D samples generated 

randomly from a mixture of Gaussians with random means. 

Parameters are sampled from a Gaussian Prior with 𝝁𝜇 =

𝟎 and Σ𝝁 = 𝜎𝐻
2 · 𝕀𝐷, the D-dimensional identity matrix. 

Mixture coefficients are uniform 𝝅 =
[0.2 0.2 0.2 0.2 0.2]𝑇. For the target run we obtain the data at the right. 

The target means we are looking for, in this example, are  

𝜽 = [
−17.4239 −3.3386 −10.0413 −8.8018 5.1565
−12.4305 −2.7492 9.464 −7.0588 −2.5941

]
𝑇

 

Then, we run the algorithm for 450 iterations, and discard the first 50 as burnin period. The following table 

indicates the times the algorithm has proposed each number of clusters (𝐾∗) and its relative frequency. 

  

Figure 24 Example 1: Input data 
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𝑲∗ 𝒇𝒂𝒃𝒔 𝒇𝒓𝒆𝒍 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 164 0.4090 

6 182 0.4539 

7 42 0.1047 

8 12 0.0299 

9 1 0.0025 

𝑻𝒐𝒕𝒂𝒍 401 1 

Table 2 Histogram data for K 

This results are coherent with the data generated, 

although the algorithm tends to propose more 

clusters than the existing amount. This characteristic 

helps the algorithm escape from poor local optima 

[3]. In fact, the algorithm estimates the probability 

of each cluster cardinality. 

Once we have chosen the number of clusters we 

have we can run parametric clustering algorithm to 

infer the data means. As a matter of fact, k-means 

algorithm has been run for the mean samples 

generated before. 

Note that, although the k-means algorithm provides an approximate value for the mean, the number of clusters 

selected might differ from their real amount, making k-means estimation dependant on the selection of the real 

cluster measure. 

 

It is far more interesting to infer the PDF for the hyperparameters, conditioned to the data. In this example we 

are more interesting in the mean. Once we had chosen a value for 𝐾∗ we can compute 𝑝(𝜽𝐾|𝑿,𝐾 = 6). To do 

this we will use a Normal kernel smoothing function to approximate the PDF from the samples that we have 

obtained from Collapsed Gibbs Sampler. 

Figure 25 Histogram for K 
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Figure 26 Example 1: Estimation of 𝒇(𝜽𝑲|𝑲
∗ = 𝟔) 

 We can also try to infer the marginal PDF as 

 

 𝑓(𝜽𝐾 , 𝑿) = ∑ 𝑝(𝐾∗ = 𝑘)𝑓(𝜽𝐾|𝑿,𝐾
∗ = 𝑘)

max (𝐾∗)

𝑘=1

 (4.1) 

 

Figure 27 Example 1: Estimation of 𝒇(𝜽𝑲) 

4.2 Example 2: Changes in 𝜶 

The following example will address the different results we may expect when changing the value of the 

concentration parameter 𝛼. To do so, we will compare Example 1, run for 𝛼 = 1, with a new run where we will 

only change the value of 𝛼 to 0.25 and 5 respectively. 

We can see that the main change comes from the PMF of 𝐾∗. With a low value of 𝛼, the PMF becomes sharper 

and estimations tend to concentrate on 1 value. When a high value for 𝛼 has been used, the PMF becomes 

smoother and estimations on the clusters quantity tend to change within a range. 
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Figure 28 PMF changes with 𝜶. Left, 𝜶 = 𝟎. 𝟐𝟓. Right, 𝜶 = 𝟓 

As a conclusion, we can use low values of 𝛼 when our certainty about the real number of clusters is high, and 

we can use high values of 𝛼 in other case. Note that, as the algorithm tends to propose more clusters that its real 

quantity, when using a high value of 𝛼 the assessment is often overestimated. 

Also, when using a low value of 𝛼, as the estimation of K is more precise, the k-means algorithm for finding the 

means, conditioned to the maximum value of K provides a better approximation to the real means. Furthermore, 

when using a low value of 𝛼, the samples from the mean tend to be more concentrated. 

 

Figure 29 Samples from the mean. Left, 𝜶 = 𝟎. 𝟐𝟓. Right, 𝜶 = 𝟓 

Changes on the marginal PDF and conditional PDF with respect to 𝐾∗ are also notable but not as much as the 

changes in the PMF of 𝐾∗.  

 

Figure 30 Estimations of the conditional PDF. Left, 𝜶 = 𝟎. 𝟐𝟓. Right, 𝜶 = 𝟓 
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Figure 31 Estimations of the marginal PDF. Left, 𝜶 = 𝟎. 𝟐𝟓. Right, 𝜶 = 𝟓 

4.3 Example 3: Changes in the number of samples 

Good algorithms also have to take into 

consideration the complexity. Algorithmic 

complexity is defined as the amount of resources 

needed to run the algorithm. In our case we are 

mostly interested in the time to run a set of 

iterations for the Modified Collapsed Gibbs 

Sampler algorithm introduced in Chapter 2. A 

simple way of determining algorithm complexity 

includes order estimation. This method provides an 

approximate estimation of the time required to run 

a given program with respect to the number of 

samples. 

Picture at the right shows different complexity 

types, note that there are 3 great groups of 

algorithms. The best ones are those who are either 

constant or logarithmic but not all problems allow 

these type of solutions. 

Worst cases include loglinear, quadratic and 

exponential complexities, these algorithms require 

extra effort to make input size small enough to run in reasonable time. Exponential algorithms are wanted when 

working with cryptography problems. Linear algorithms are not good nor bad, but if the input size grows too 

much execution time can become excessive. 

Typical algorithm complexities include 

Complexity Notation Example 

Constant 𝒪(1) Determine whether 𝑎 is divisible by 𝑏. 

Logarithmic 𝒪(log 𝑛) Binary search 

Linear 𝒪(𝑛) Unsorted list search 

LogLinear 𝒪(𝑛 log 𝑛) FFT 

Quadratic 𝒪(𝑛2) Direct Convolution 

Exponential 𝒪(𝑐𝑛), 𝑐 > 1 Password brute force guessing 

Table 3 Complexities types (source: Wikipedia) 

Figure 32 Complexities Types (source: Wikipedia) 
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In order to analyse complexity, the algorithm exposed in Chapter 2 was run for different input sizes. Also, to 

avoid error in the measure the process was run for 5 times and the results averaged. 

N Run 1 (s) Run 2 (s) Run 3 (s) Run 4 (s) Run 5 (s) Mean (s) 

100 19.1049 23.9021 20.8796 25.5997 20.4665 21.9906 

200 35.8320 40.3250 41.7959 51.5123 37.8293 41.4589 

300 54.1714 69.6148 56.4610 67.0042 59.2365 61.2976 

400 71.8522 78.3678 83.7282 90.6732 78.0339 80.5311 

500 95.2873 103.2718 101.6166 99.3961 101.1522 100.1448 

600 102.2152 119.3735 120.4352 130.7740 113.2382 117.2072 

700 141.0298 138.1776 154.8046 159.3398 143.6061 147.3916 

800 150.8409 150.9645 158.9645 181.5060 144.5494 157.3650 

900 177.9492 169.5415 162.7490 174.7029 151.6819 167.3249 

1000 191.0107 194.2392 213.8180 193.1364 214.4593 201.3327 

Table 4 Execution Time results 

 

Figure 33 Modified Collapsed Gibbs Sampler Algorithm complexity 

Results show that the algorithm runs in linear time. 
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5 CONCLUSIONS 

“All in all, it is just another brick in the wall” 

- Pink Floyd- 

In conclusion, once the main aspects concerning ML clustering algorithms have been detailed, it is clearly visible 

that, sometimes, when the number of componets involved is unknown, the traditional models fall back and new 

ways for solving clustering problems must be proposed. 

ML algorithms applied to clustering problems, when no training samples exist, always lack some of the 

flexibility that classification algorithms have. This is due to the lack of a priori knowledge about how many 

components are involved in the mixture.  

Then, a new way for describing mixture models using the Dirichlet Distribution was introduced. But there still 

was the same issue than before, the number of classes had to be known or estimated beforehand. Instead of that, 

we squeezed the previous model a bit and introduced the Dirichlet Process, an infinite dimensional extrapolation 

of the Dirichlet Distribution, which allowed us to propose clusters dynamically, finding the amount that better 

fits our data. 

Whilst working with infinite-dimensional density functions might prove to be difficult, the predictive properties 

described later allowed us to easily use the Dirichlet Distribution for our befenit. The Chinese Restaurant Process 

allowed us to sample the Dirichlet Process. But a last tool was necessary, the Collapsed Gibbs Sampler allowed 

to fit our data. 

Finally, not only the mathmathics behind the scenes are described but also a flexible implementation is provided. 

This allows you, the readed, to find the equations describing your system. After that, the implemented software 

would allow you to use this algorithm for your own benefits, provided that you comply with the required 

interface.  

This work is not intended to be self-contained but rather to be a good starting point for people facing similar 

problems as me, the uncertainty in the number of components involved. 

Lack of time prevented us for using this algorithm for “real life problems”, mathematics concerning this issues 

is always harsh and time required to completely understand them is much. You are highly encouraged to use 

this algorithm for real situations. Without having to know exactly everything about the mathematics behind it 

and while concentrating in your own problem, rely on this work and use it, while understanding what you are 

doing.  
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Appendix A - Normal Log-Likehood 

A.1 Normal Log-Likehood 

Derivation of the normal, log-likehood function where 𝑿(𝑘) are the samples in cluster 𝑘 and 𝝁𝑘 and 𝚺𝑘 are the 

mean and covariance matrix for this cluster. 

𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘) =∏𝒩(𝒙𝑖
(𝑘)
|𝝁𝑘, 𝚺𝑘)

𝑁𝑘

𝑖=1

 

Taking 𝑙𝑛(·) in both sides 

ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = ln(∏𝒩(𝒙𝑖
(𝑘)
|𝝁𝑘 , 𝚺𝑘)

𝑁𝑘

𝑖=1

) 

Given that the logarithm of the product is the sum of the product of the logarithms 

ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) =∑ln(𝒩 (𝒙𝑖
(𝑘)
|𝝁𝑘 , 𝚺𝑘))

𝑁𝑘

𝑖=1

 

Substituting 𝒩(𝒙𝑖|𝝁, 𝜮) by its expression, where 𝐾 denotes the number of dimensions 

ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) =∑ln(
1

√(2𝜋)𝐾|𝚺𝑘|
𝑒
−
1
2
(𝒙𝑖
(𝑘)
−𝝁𝑘)

𝑇
𝚺𝑘
−1(𝒙𝑖

(𝑘)
−𝝁𝑘))

𝑁𝑘

𝑖=1

 

Applying logarithm to the inner expression we obtain 

ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) =∑−
1

2
ln|𝚺𝑘

−1| −
𝐾

2
ln 2𝜋 −

1

2
(𝒙𝑖
(𝑘)
− 𝝁𝑘)

𝑇
𝚺𝑘
−1 (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑁𝑘

𝑖=1

 

Taking into account that the first 2 terms don’t depend on the index I, we can extract then from the inner sum. 

ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = −
𝑁𝑘
2
ln|𝚺𝑘

−1| −
𝑁𝑘𝐾

2
ln 2𝜋 −

1

2
∑(𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑇
𝚺𝑘
−1 (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑁𝑘

𝑖=1

 

From here, we can compute the derivatives with respect the parameters 

A.2 Mean derivative 

From the log-likehood calculation, we can take the first derivative with respect to the mean 

∂

𝜕𝝁𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) 

Taking into account that, the first 2 terms do not depend on the mean 
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∂

𝜕𝝁𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = −

𝜕

𝜕𝝁𝑘

1

2
∑(𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑇
𝚺𝑘
−1 (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑁𝑘

𝑖=1

 

Then, deriving 

∂

𝜕𝝁𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = −∑𝚺𝑘

−1 (𝒙𝑖
(𝑘)
− 𝝁𝑘)

𝑁𝑘

𝑖=1

 

If we then, make the derivative equals to 0, to find the minimum, it follows 

∂

𝜕𝝁𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = −∑𝚺𝑘

−1 (𝒙𝑖
(𝑘)
− 𝝁𝑘)

𝑁𝑘

𝑖=1

= 0 

∂

𝜕𝝁𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) =∑(𝒙𝑖

(𝑘)
− 𝝁𝑘) = 0

𝑁𝑘

𝑖=1

 

𝝁�̂� =
1

𝑁𝑘
∑𝒙𝑖

(𝑘)

𝑁𝑘

𝑖=1

 

Where 𝑁𝑘is the amount of samples in cluster 𝑘. This is, the mean for class 𝑘 is computed only with the datapoints 

assigned to the class 𝑘, as the arithmetic mean of the subset. 

A.3 Covariance matrix derivative 

Now we are interested in the calculation of the covariance matrix derivative 

∂

𝜕𝚺𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) 

Taking the closed form of ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)), and as that the second term does not depend on 𝚺𝑘. We reach 

the following expression 

∂

𝜕𝚺𝑘
ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) =

𝜕

𝜕𝚺𝑘
(−

𝑁𝑘
2
ln|𝚺𝑘

−1| −
1

2
∑(𝒙𝑖

(𝑘) − 𝝁𝑘)
𝑇
𝚺𝑘
−1 (𝒙𝑖

(𝑘) − 𝝁𝑘)

𝑁𝑘

𝑖=1

) 

We can define the matrix trace as  

𝑡𝑟[𝑨] =∑𝐴𝑖𝑖
𝑖

 

This operation satisfies the cyclic permutation property [12] 

𝑡𝑟[𝑨𝑩𝑪] = 𝑡𝑟[𝑩𝑪𝑨] = 𝑡𝑟[𝑪𝑨𝑩] 

We can make use of the trace trick which states the following4 

𝒙𝑻𝑨𝒙 = 𝑡𝑟[𝒙𝑻𝑨𝒙] = 𝑡𝑟[𝒙𝑻𝒙𝑨] 

Therefore, we can reorder ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) 

ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = −
𝑁𝑘
2
ln|𝚺𝑘

−1| −
1

2
∑𝑡𝑟 [(𝒙𝑖

(𝑘) − 𝝁𝑘)
𝑇
𝚺𝑘
−1 (𝒙𝑖

(𝑘) − 𝝁𝑘)]

𝑁𝑘

𝑖=1

 

                                                      
4 𝒙𝑻𝑨𝒙 = 𝑡𝑟[𝒙𝑻𝑨𝒙] as the product is in ℝ1𝑥1 and therefore it is equal to its trace. 
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ln (𝑝(𝑿(𝒌)|𝝁𝑘 , 𝚺𝑘)) = −
𝑁𝑘
2
ln|𝚺𝑘

−1| −
1

2
∑𝑡𝑟 [(𝒙𝑖

(𝑘)
− 𝝁𝑘) (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑇
𝚺𝑘
−1]

𝑁𝑘

𝑖=1

 

 

Taking into account that 

𝜕

𝜕𝑿
(𝑡𝑟[𝑨𝑿]) = 𝑨𝑇

𝜕

𝜕𝑿
ln |𝑿| = (𝑿𝑇)−1 = (𝑿−1)𝑇 

 

We can compute easily the result applying the chain rule, taking 𝑹𝑘 = 𝚺𝑘
−1. 

𝜕

𝜕𝚺𝑘
𝑓(𝑹𝑘) =

𝜕𝑹𝑘
𝜕𝚺𝑘

𝜕

𝜕𝑹𝑘
𝑓(𝑹𝑘)  

We can take derivatives with respect to 𝑹𝑘 

𝜕𝑹𝑘
𝜕𝚺𝑘

𝜕

𝜕𝑹𝑘
(−

𝑁𝑘
2
ln|𝑹𝑘| −

1

2
∑𝑡𝑟 [(𝒙𝑖

(𝑘)
− 𝝁𝑘) (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑇
𝑹𝑘]

𝑁𝑘

𝑖=1

) 

𝜕𝑹𝑘
𝜕𝚺𝑘

(−
𝑁𝑘
2
(𝑹𝑘

−1)
𝑇
 −
1

2
∑(𝒙𝑖

(𝑘)
− 𝝁𝑘) (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑇
𝑁𝑘

𝑖=1

) 

But, as the result has to be equal to 0. We can simplify 

𝜕𝑹𝑘
𝜕𝚺𝑘

(−
𝑁𝑘
2
(𝑹𝑘

−1)
𝑇
 −
1

2
∑(𝒙𝑖

(𝑘)
− 𝝁𝑘) (𝒙𝑖

(𝑘)
− 𝝁𝑘)

𝑇
𝑁𝑘

𝑖=1

) = 0 

 

(−
𝑁𝑘
2
(𝑹𝑘

−1)
𝑇
 −
1

2
∑(𝒙𝑖

(𝑘) − 𝝁𝑘) (𝒙𝑖
(𝑘) − 𝝁𝑘)

𝑇
𝑁𝑘

𝑖=1

) = 0 

Changing back  𝑹𝑘
−1 = 𝚺𝑘. And due to the fact that 𝚺𝑘 is symmetric, and therefore 𝚺𝑘 = 𝚺𝑘

𝑇. The previous 

expression yields 

(−
𝑁𝑘
2
𝚺𝑘  −

1

2
∑(𝒙𝑖

(𝑘) − 𝝁𝑘) (𝒙𝑖
(𝑘) − 𝝁𝑘)

𝑇
𝑁𝑘

𝑖=1

) = 0 

𝚺�̂� =
1

𝑁𝑘
∑(𝒙𝑖

(𝑘) − 𝝁𝑘) (𝒙𝑖
(𝑘) − 𝝁𝑘)

𝑇
𝑁𝑘

𝑖=1
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Appendix B - Proof of Dirichlet 

Process Posterior  

Let 𝜽1, … , 𝜽𝑛 be samples generated following a DP with concentration parameter 𝛼 and base distribution 𝐻(𝜽), 
that is 𝐺(𝜽)~𝐷𝑃(𝛼,𝐻). Let 𝐴1, … , 𝐴𝑟 be a finite measurable partition of sample space Θ. Then, due to (2.14) 

(𝐺(𝐴1),… , 𝐺(𝐴𝑟))|𝜽1, … , 𝜽𝑛~𝐷𝑖𝑟(𝛼𝐻(𝐴1) + 𝑛1, … , 𝛼𝐻(𝐴𝑟) + 𝑛𝑟) 

We will prove that this posterior also follows a DP with parameters 

𝛼′ = 𝛼 + 𝑁 

𝐻′(𝜽) =
𝛼𝐻(𝜽) + ∑ 𝛿(𝜽 − 𝜽𝑖)

𝑁
𝑖=1

𝛼 + 𝑁
 

The problem is reduced to prove that 

𝛼𝐻(𝐴𝑖) + 𝑛𝑖 = 𝛼′𝐻′(𝐴𝑖) 

Start by assuming that 𝛼′ = 𝛼 +𝑁, where 𝑁 is the total number of samples 

𝛼𝐻(𝐴𝑖) + 𝑛𝑖 = (𝛼 + 𝑁)𝐻′(𝐴𝑖) 

Then, isolate 𝐻′(𝐴𝑖) 

𝐻′(𝐴𝑖) =
𝛼𝐻(𝐴𝑖) + 𝑛𝑖
𝛼 +𝑁

 

We need a way to define 𝑛𝑖, as defined previously 𝑛𝑖 = |{𝑘: 𝜽𝑘 ∈ 𝐴𝑖}|, if we take 𝐴𝑖 = 𝜽, to get the more 

general expression 𝐻′(𝜽), we can define 𝑛𝑖 = |{𝑖: 𝜽𝑘 = 𝜽}|, making use of the 𝛿 function 

𝑛𝑖 =∑𝛿(𝜽 − 𝜽𝑘)

𝑁

𝑘=1

 

Then,  

𝐻′(𝜽) =
𝛼𝐻(𝜽) + ∑ 𝛿(𝜽 − 𝜽𝑘)

𝑁
𝑘=1

𝛼 + 𝑁
 

Finally, we can conclude 

𝐺(𝜽)|𝜽𝑖 , … , 𝜽𝑛~𝐷𝑃(𝛼 + 𝑁,
𝛼𝐻(𝜽) + ∑ 𝛿(𝜽 − 𝜽𝑖)

𝑁
𝑖=1

𝛼 + 𝑁
)∎ 
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Appendix C - Expressions for 

Gaussian-Wishart Distribution 

The following Gaussian-Wishart Distribution expressions are considered [10]. 

Posterior Hyperparameters 

𝒓′ = 𝒓 + 𝒏 

𝝂′ = 𝝂 + 𝒏 

𝒎′ =
𝒓𝒎+∑𝒙𝒊
𝒓 + 𝒏

 

𝑺𝒙 = 𝑺 +∑𝒙𝒊𝒙𝒊
𝑻 + 𝒓𝒎𝒎𝑻 − 𝒓′𝒎′𝒎′𝑻 

Marginal Probability 

𝑝(𝒙) = 𝜋−𝑛𝑑 2⁄
𝑟𝑑 2⁄ |𝑆|𝜈 2⁄

𝑟′𝑑 2⁄ |𝑆𝒙|
𝜈′ 2⁄

∏ Γ(
𝜈′ + 1 − 𝑖

2 )𝑑
𝑖=1

∏ Γ(
𝜈 + 1 − 𝑖

2
)𝑑

𝑖=1

 

Predictive Probability 

We are interested in efficiently computing the predictive distribution for the Gaussian-Wishart Distribution, 

given a new sample 𝑦. Precisely, we want to compute 

𝑝(𝑦|𝒙) =
𝑝(𝒙, 𝑦)

𝑝(𝒙)
 

Thus, using the marginal probability formula we reach the following expression, where 𝑛 is the number of 

elements 

𝑝(𝑦|𝒙) =

𝜋−(𝑛+1)𝑑 2⁄ 𝑟𝑑 2⁄ |𝑆|𝜈 2⁄

(𝑟 + 𝑛 + 1)𝑑 2⁄ |𝑆𝒙,𝑦|
(𝜈+𝑛+1) 2⁄

∏ Γ(
𝜈 + 𝑛 + 2 − 𝑖

2 )𝑑
𝑖=1

∏ Γ(
𝜈 + 1 − 𝑖

2 )𝑑
𝑖=1

𝜋−𝑛𝑑 2⁄ 𝑟𝑑 2⁄ |𝑆|𝜈 2⁄

(𝑟 + 𝑛)𝑑 2⁄ |𝑆𝒙|
(𝜈+𝑛) 2⁄

∏ Γ(
𝜈 + 𝑛 + 1 − 𝑖

2 )𝑑
𝑖=1

∏ Γ(
𝜈 + 1 − 𝑖

2 )𝑑
𝑖=1

 

Simplifying the previous equations 

𝑝(𝑦|𝒙) =

𝜋−(𝑛+1)𝑑 2⁄
∏ Γ(

𝜈 + 𝑛 + 2 − 𝑖
2 )𝑑

𝑖=1

(𝑟 + 𝑛 + 1)𝑑 2⁄ |𝑆𝒙,𝑦
′ |

(𝜈+𝑛+1) 2⁄

𝜋−𝑛𝑑 2⁄
∏ Γ(

𝜈 + 𝑛 + 1 − 𝑖
2 )𝑑

𝑖=1

(𝑟 + 𝑛)𝑑 2⁄ |𝑆𝒙
′ |(𝜈+𝑛) 2⁄

 

Then, we can define a function 𝑍(𝑑, 𝑛, 𝑟, 𝜈, 𝑆) in the following form 
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𝑍(𝑑, 𝑛, 𝑟, 𝜈, 𝑆) = 𝜋−𝑛𝑑 2⁄
∏ Γ(

𝜈 + 𝑛 + 1 − 𝑖
2 )𝑑

𝑖=1

(𝑟 + 𝑛)𝑑 2⁄ |𝑆|(𝜈+𝑛) 2⁄
 

And, therefore rewrite the predictive probability as 

𝑝(𝑦|𝒙) =
𝑍(𝑑, 𝑛 + 1, 𝑟 + 1, 𝜈 + 1, 𝑆𝒙,𝑦)

𝑍(𝑑, 𝑛, 𝑟, 𝜈, 𝑆𝒙)
 

Another interesting result is that, we can define the marginal probability as 

𝑝(𝒙) =
𝑍(𝑑, 1, 𝑟 + 𝑛, 𝜈 + 𝑛, 𝑆𝒙)

𝑍(𝑑, 0, 𝑟, 𝜈, 𝑆)
 

Which can be explained as the predictive probability when no previous samples exist. 

Proof 

Let 

𝑍(𝑑, 𝑛, 𝑟, 𝜈, 𝑆) = 𝜋−𝑛𝑑 2⁄
∏ Γ(

𝜈 + 𝑛 + 1 − 𝑖
2

)𝑑
𝑖=1

(𝑟 + 𝑛)𝑑 2⁄ |𝑆|(𝜈+𝑛) 2⁄
 

Then, 𝑍(𝑑, 0, 𝑟, 𝜈, 𝑆) equals to 

𝑍(𝑑, 0, 𝑟, 𝜈, 𝑆) =
∏ Γ(

𝜈 + 1 − 𝑖
2

)𝑑
𝑖=1

(𝑟)𝑑 2⁄ |𝑆|𝜈 2⁄
 

Therefore, as 𝜈′ = 𝜈 + 𝑛 and 𝑟′ = 𝑟 + 𝑛 

𝑝(𝒙) =
𝑍(𝑑, 1, 𝑟 + 𝑛, 𝜈 + 𝑛, 𝑆𝒙)

𝑍(𝑑, 0, 𝑟, 𝜈, 𝑆)
=

𝜋−𝑛𝑑 2⁄
∏ Γ(

𝜈′ + 1 − 𝑖
2

)𝑑
𝑖=1

𝑟′𝑑 2⁄ |𝑆𝒙|
𝜈′ 2⁄

∏ Γ(
𝜈 + 1 − 𝑖

2 )𝑑
𝑖=1

𝑟𝑑 2⁄ |𝑆|𝜈 2⁄

 

Finally, rewriting 

𝑝(𝒙) =
𝑍(𝑑, 1, 𝑟 + 𝑛, 𝜈 + 𝑛, 𝑆𝒙)

𝑍(𝑑, 0, 𝑟, 𝜈, 𝑆)
= 𝜋−𝑛𝑑 2⁄

𝑟𝑑 2⁄ |𝑆|𝜈 2⁄

𝑟′𝑑 2⁄ |𝑆𝒙|
𝜈′ 2⁄

∏ Γ(
𝜈′ + 1 − 𝑖

2 )𝑑
𝑖=1

∏ Γ(
𝜈 + 1 − 𝑖

2 )𝑑
𝑖=1

∎ 

 


