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Error Bounds for POD expansions

of parameterized transient temperatures.

M. Azäıez∗, F. Ben Belgacem†, T. Chacón Rebollo ‡

March 19, 2016

Abstract

We focus on the convergence analysis of the POD expansion for the parameterized solution
of transient heat equations. The parameter of interest is the conductivity coefficient. We prove
that this expansion converges with exponential accuracy, uniformly if the conductivity coeffi-
cient remains within a compact set of positive numbers. This convergence result is independent
of the regularity of the temperature with respect to the space and time variables. We present
some numerical experiments to show that a reduced number of modes allows to represent with
high accuracy the family of solutions corresponding to parameters that lie in the compact set
under study.

1 Introduction

Karhunen-Loève’s expansion (KLE) provides a reliable procedure for computing a low dimensional

representation of spatiotemporal signals (see [20, 10]) and is widely used in various communities.

It is referred to as the principal components analysis (PCA) in statistics (see [22, 14, 15]), or called

singular value decomposition (SVD) in linear algebra (see [11]). In computational mechanics where

it is wide-spread, it bears the name of proper orthogonal decomposition (POD) (see [3, 13]). Since

the last decades, it is fitted within the frame of reduced basis methods to perform the numerical

simulations of parameter-depending dynamic systems, which allow substantial savings of compu-

tational costs and makes affordable the solution of problems that need a large amount of data. An

important work may be found in the context of parameterized partial differential equations. We

refer to (see [13, 9, 25, 26, 6, 5]) without being exhaustive

We focus our contribution on the accuracy of the truncated KLE or POD for the transient

temperature functions T , when parameterized by the conduction coefficient γ. This is a continuation

work of [2], where the time was taken as the parameter while the space was the central variable.
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The problem being bivariant, POD is strictly equivalent to decomposition by PGD and so the

results obtained therefore apply for both cases

The study we undertake here aims a bound of the approximation error that decays exponen-

tially fast, in the number of the retained modes. This convergence is uniform in the conductivity

coefficient provided it remains bounded away from zero. Let us point out the important fact that

the smoothness of the temperature with respect to the space-time variables has no impact on the

final estimates. The main theoretical tool is to apply the Courant-Weyl Theorem [19] (also known

as Courant-Fisher min-max principle) to the POD operator whose kernel is the temperature field

T = T (γ). An appropriate approximation of the temperature field by polynomials yields the de-

sired bound on the truncating POD error approximation. The accuracy of such an approximation

requires some smoothness results of the temperature T = T (γ). In spite of their role, the way these

results may be derived is not the heart of our work. Hence, the simplicity option is preferred here

; we call hence for the Fourier analysis to obtain the desired regularity. In case the Fourier basis

is not accessible, alternatives for the investigation of the regularity of T upon γ may be available.

The reader interested in is referred to the highly technical mathematics in [7, 17], where similar

results can be found for elliptic value problems.

We present afterwards some numerical simulations to check out the theoretical convergence rate of

the POD expansion of the solution to the heat equation. We also confirm the dependence of the

convergence rate with respect to the range of thermal diffusivities.

The outlines are as follows. Section 2 recalls the POD or Karhunen-Loève expansion for bi-

parametric functions. Section 3 analyzes the velocity of convergence of the POD expansion when

applied to the solutions of the heat equation. Finally, in Section 4 we present the numerical inves-

tigation.

Notation — Let X ⊂ Rd be a given Lipschitz domain. We denote by L2(X) the space of

measurable and square integrable functions on X. The Sobolev spaces H1(X) contain all the

function that belong to L2(X) together with all its first derivatives (see [1]). Then let G be a

measure space and H a Hilbert space. We denote by L2(G, H) the Bochner space of measurable

and square integrable vector-valued functions from G on H (cf. [8]).
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2 Karhunen-Loève decomposition

The Karhunen-Loève decomposition, also known as Proper Orthogonal decomposition (POD in the

sequel) provides a technique to obtain low-dimensional approximations of parametric functions. For

a rapid description of it, we consider G ⊂ Rd andQ ⊂ Rn two bounded domains, d and n are integers

≥ 1. G will be the set of parameters and Q stands for the spatio-temporal domain. Let T be a

given function in the Lebesgue space L2(G×Q) that we want to approximate in a low-dimensional

variety. Define then the integral operator with kernel T expressed as

ϕ 7→ B ϕ, (B ϕ)(z) =
∫

G
T (γ, z)ϕ(γ) dγ. (1)

B belongs to L = L(L2(G), L2(Q)), the space of bounded linear operators mapping L2(G) into

L2(Q) and we have

‖B‖L ≤ ‖T‖L2(G×Q).

The adjoint operator B∗ is defined from L2(Q) into L2(G) as

v 7→ B∗ v, (B∗ v)(γ) =
∫

Q
T (γ, z)v(z)dz. (2)

Let us then consider the POD operator A = B∗B, which is also an integral operator whose kernel

K ∈ L2(G×G) is expressed by

K(γ, µ) =
∫

Q
T (γ, z) T (µ, z) dz. (3)

The operator A is linear, bounded, self-adjoint and compact. This results from the fact that the

operator B is compact by the Kolmogorov compactness criterion in L2(G) (cf. Muller [21], Chap-

ter 2). Consequently, there exists a complete orthonormal basis of L2(G) formed by eigenvectors

(ϕm)m≥0 of A, associated to non-negative eigenvalues (λm)m≥0, that we assume to be ordered in

decreasing value, such that lim
m→∞

λm = 0 . Each non-zero eigenvalue has a finite multiplicity, and

0 is the only possible accumulation point of the spectrum.

Moreover, setting σm = (λm)1/2, the sequence (vm)m≥0 given by

vm =
1

σm
Bϕm,

is an orthogonal basis of L2(Q) , and

B∗vm = σmϕm. (4)

The terms of the sequence (σm)m≥0 are the singular values of B. The positivity of the operator A

makes the kernel K be a Mercer kernel. Using Mercer’s theorem yields the following decomposition

(see [13, Chapter 3.8.2, Proposition 2])

K(γ, µ) =
∑

m≥0

λm ϕm(γ)ϕm(µ), in G×G.
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This statement comes from the Hilbert-Schmidt theorem on the spectral decomposition of self-

adjoint compact operators.

This decomposition results in the POD expansion.

Lemma 2.1 We have that

T (γ, z) =
∑

m≥0

σm ϕm(γ) vm(z), in G×Q, (5)

where the series is convergent in L2(G×Q).

The POD expansion is optimal in the L2-norm (cf. [21], Chapter 2). Indeed, let us denote TM the

truncated POD expansion to the order M ≥ 1. Then , let WM be the subspace Span (w0, · · · , wM ) ⊂
L2(Q). The following holds,

Lemma 2.2 ([13]) The following inequality holds

‖T − TM‖L2(G×Q) ≤ inf
SM∈L2(G,WM )

‖T − SM‖L2(G×Q).
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3 Analysis of parameterized transient temperatures

We focus here on the homogeneous Dirichlet boundary value problem for the heat equation on a

bounded domain Ω ⊂ Rn and a time interval [0, b],

∂tT − γ ∆T = f in Q,

T = 0 in ∂Ω× (0, b),

T (x, 0) = a(x) in Ω,

(6)

where γ > 0 is the thermal conductivity, and we set Q = Ω × (0, b). If f ∈ L2(Q) and a ∈ L2(Ω)

then problem (6) admits a unique solution T ∈ C ([0, b], L2(Ω))∩L2(0, b; H1
0 (Ω)). In particular, the

following stability holds (see [18])

‖T (t)‖L2(Ω) ≤ C(‖a‖L2(Ω) + ‖f‖L2(Q)), ∀t ∈ (0, b).

The constant C depends on b and is independent of γ.

We shall be concerned, in some places, with the thermal conductivity γ ranging in a finite interval

G strongly contained in ]0, +∞[ that is G ⊂ G ⊂]0, +∞[.

Let us consider the POD expansion (5) of the temperature T = T (γ, z) as a function in γ and

z = (x, t). Then, we denote TM , the function given the truncated expansion

TM (γ, z) =
M∑

m=0

σm ϕm(γ)vm(z). (7)

Recall that the sequence TM converges to T in L2(G × Q) with a rate obviously connected with

the asymptotics of the singular values. Our purpose is to prove that the rate of convergence is

exponential. This requires some beforehand preparation.

Let (eℓ = eℓ(x))ℓ≥0 be the orthonormal Fourier basis of L2(Ω), formed by eigenfunctions of the

Laplace operator,
−∆eℓ = λℓ eℓ in Ω,

eℓ = 0 on ∂Ω,

where λℓ > 0 is the eigenvalue associated to eℓ. The sequence (λℓ)ℓ≥0 is ordered so that it is

non-decreasing. We have that limk→∞ λℓ = +∞.

For the calculation of the Fourier series of T , we need first the Fourier decompositions of a(·)
and f(·, t),

a(x) =
∑

ℓ≥0

aℓ eℓ(x), f(x, t) =
∑

ℓ≥0

fℓ(t) eℓ(x).

Their Fourier coefficients are respectively given by

aℓ = (a, eℓ)L2(Ω), fℓ(t) = (f(·, t), eℓ)L2(Ω).

The series are respectively convergent in L2(Ω) and L2(Q), and

‖a‖2
L2(Ω) =

∑

ℓ≥0

|aℓ|2, ‖f‖2
L2(Q) =

∑

ℓ≥0

‖fℓ‖2
L2(0,b).
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Now, based on these Fourier decompositions, the solution of problem (6) can be expressed as

T (γ, x, t) =
∑

ℓ≥0

θℓ(γ, t) eℓ(x),

where the coefficients (θk)k≥0 are determined by

θℓ(γ, t) = aℓ e−γ λℓ t +
∫ t

0
fℓ(s) e−γλℓ(t−s) ds. (8)

This is set, we consider now the temperature field T as a function mapping the segment G =

[γm, γM ] into L2(Q). We have that 0 < γm ≤ γM , and we denote |G| = (γM − γm) the length of G.

Finally we introduce

ρ∗ =
(
√

γm +
√

γM )2

γM − γm
> 1.

The following important approximation result holds.

Theorem 3.1 Assume that f ∈ L2(Q) and a ∈ L2(Ω). The truncated POD series expansion TM

satisfies the error estimate

‖T − TM‖L2(G×Q) ≤ Cρ ρ−M , ∀ρ, 1 < ρ < ρ∗, (9)

where Cρ > 0 is a constant depending on ρ.

As indicated above, the clue of the proof is the asymptotics of the singular values of the integral

operator B, with kernel T . Their decreasing rate is tightly related to the smoothness of the

temperature T with respect to the conductivity γ. The proof is long and technical, we chose to

expose it in several steps. We start by proving the preliminary statement

Lemma 3.2 Let g ∈ L2(0, b) and λ > 0 be given, the function

G : γ 7→
∫ t

0
g(s) e−γλ(t−s) ds,

mapping ]0, +∞[ into L2(0, b) is analytic.

Proof: To check it out, one could use results from the theory of parameter dependent integrals.

We rather follow the direct procedure and show that γ 7→ G(γ) is locally expressed as a convergent

entire or power series. Let γ0 > 0 be fixed. On account of the analyticity of the exponential we

derive that

G(γ, t) =
∑

n≥0

(γ − γ0)n

n!

∫ t

0
g(s)[−λ(t− s)]ne−γ0λ(t−s) ds :=

∑

n≥0

(γ − γ0)n

n!
Gn(t),

This series is absolutely convergent in L2(0, b). Indeed, the integral term being a convolution, then

Young’s inequality can be used which implies that
∑

n≥0

(γ − γ0)n

n!
‖Gn‖L2(0,b) ≤

∑

n≥0

(γ − γ0)n

n!
‖g‖L2(0,b)‖[−λt]ne−γ0λt‖L1(0,∞)

=
1
λ
‖g‖L2(0,b)

∑

n≥0

(γ − γ0)n

(γ0)n
.
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The geometrical series is convergent for γ such that |γ−γ0| < η provided that η < γ0. The function

γ 7→ G(γ) is then analytic in ]0, +∞[ with L2(0, b) as co-domain. The proof is complete.

Then, we step forth towards the analyticity of the vector-valued function γ 7→ T (γ), subject of

the following

Lemma 3.3 The function γ 7→ T (γ), mapping ]0, +∞[ into L2(Q), is analytic.

Proof: According to (8), the temperature field T is the sum of two contributions, one is due to

the initial condition a(·) and the other is generated by the source f(·, ·). The analyticity is here

checked out for each of them.

i. — Let us begin by the part generated by the initial condition

T (γ, x, t) =
∑

ℓ≥0

aℓ e−γλℓt eℓ(x).

Obviously each of the terms in the series determines an analytic function from ]0, +∞[ into L2(Q).

If the series converges uniformly on each interval [ǫ, +∞[, forall ǫ > 0, then the limit will be analytic

in ]0, +∞[ (see [16, ]). To check this out, let us bound the residual

sup
γ≥ǫ

∥∥∥
∑

ℓ≥L

aℓe
−γλℓt eℓ

∥∥∥
2

L2(Q)
= sup

γ≥ǫ

∑

ℓ≥L

(aℓ)2
∫ b

0
e−2γλℓt dt

= sup
γ≥ǫ

∑

ℓ≥L

(aℓ)2
1− e−2γλℓb

2γλℓ
≤ 1

2ǫλ0

∑

ℓ≥L

(aℓ)2,

for some L > 0. The series is hence uniformly convergent in ]0, +∞[ and the limit T determines

thus an analytic function in γ.

ii. — The second and last step is to investigate the part arisen from the source f , provided by

T (γ, x, t) =
∑

ℓ≥0

(∫ t

0
fℓ(s) e−γλℓ(t−s) ds

)
eℓ(x). (10)

According Lemma 3.2, this is a series of analytical functions we shall cope its uniformly convergent

in [ǫ, +∞[, forall ǫ > 0. Before doing so, it is convenient to denote by Fℓ(γ, t) the integral term in

the infinite sum. Then, for a given L we have that

sup
γ≥ǫ

∥∥∥
∑

ℓ≥L

Fℓ(γ, ·)eℓ

∥∥∥
2

L2(Q)
= sup

γ≥ǫ

∑

ℓ≥L

‖Fℓ(γ, ·)‖2
L2(0,b)

≤ sup
γ≥ǫ

∑

ℓ≥L

‖fℓ‖2
L2(0,b)‖e−γλℓt‖2

L1(0,∞) ≤
1

(ǫλ0)2
∑

ℓ≥L

‖fℓ‖2
L2(0,b).

The last infinite sum decays towards zero when L grows up to infinity. This indicates that the

series (10) of analytic functions is uniformly convergent. As a result, the limit is also analytic. The

proof is complete.

7



Remark 3.1 The analyticity is readily extended to γ belonging to the right half complex plan

(ℜζ > 0). No changes are required in the proof; it is identical.

Another preliminary tool required in our study is related to the polynomial approximation of

regular vector-valued functions. We shall adapt a result by S. Bernstein (in 1912), stated for

complex-valued functions, and improved since then in many works (see for instance [19]). For some

ρ > 1, let the set Eρ in the complex plan be defined as

Eρ =
{
ζ ∈ C; |ζ − 1|+ |ζ + 1| ≤ ρ + ρ−1

}
.

Consider a function F : Eρ → H where H is a Hilbert space. For a given integer number M ≥ 0

let FM be the truncated Chebyshev polynomial series expansion of F of degree M with coefficients

in H. Although the shape of the polynomial FM will be fixed later on, we do not detail the

construction of FM as we do not need it. Following the proof as exposed in [19], we come up with

Lemma 3.4 Assume that F is analytic and bounded in Eρ. There holds that

max
ξ∈[−1,1]

‖F (ξ)− FM (ξ)‖H ≤ Cρ ρ−M .

Remark 3.2 The constant in the lemma may be fixed to

Cρ =
2

ρ− 1
‖F‖L∞(Eρ).

It diverges as ρ close to unity.

We now need to derive similar approximation estimates for analytic vector valued functions

defined from G into L2(G, L2(Q)). Notice first that polynomials SM with degree ≤ M may be

written under the following form

SM (γ) =
∑

0≤m≤M

Um(γ)wm, ∀γ ∈ G.

The symbol Um is for the polynomial obtained, by transforming to the interval G, the Chebyshev

polynomial of degree m, defined in [−1, 1]. The coefficients (wm)0≤m≤M belong of course to L2(Q).

The following result holds

Lemma 3.5 There exists a polynomial SM ranging from G into L2(Q), with degree ≤ M , such

that: forall ρ (1 < ρ < ρ∗),

max
γ∈[γm,γM ]

‖T (γ)− SM (γ)‖L2(Q) ≤ Cρ ρ−M ,

Proof: We only give a sketch of the proof. Following Lemma 3.3 complemented by Remark 3.1,

the vector-valued function γ 7→ T is analytic in ]0, +∞[. This implies that provided that ρ < ρ∗,

the ellipse

Eρ =
{

ζ ∈ C; |ζ − γM |+ |ζ − γm| ≤
|G|
2

(ρ + ρ−1)
}

,
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is included in the analyticity set of T . Consider thus the coordinates transformation(1)

ζ = τ(ζ̂) :=
|G|
2

ζ̂ + mG =
γM − γm

2
ζ̂ +

γM + γm

2
, ζ̂ ∈ Eρ.

It is affine and bijective from Eρ into Eρ and transforms the reference interval [−1, 1] into G =

[γm, γM ]. This transformation makes it possible to construct such a polynomial SM . In fact,

we start by constructing the truncated Chebyshev series expansion ŜM (ζ̂) of the (transformed)

function T̂ (ζ̂) = T (ζ). Then, back to the interval G, we set SM (ζ) = ŜM (ζ̂). The error estimate is

directly issued from Lemma 3.4. The proof is complete.

Proof of Theorem 3.1: Let SM be the vector-valued polynomial (in γ) constructed in

Lemma 3.5. After applying Lemma 2.2, the following identity holds,

‖T − TM‖L2(G×Q) ≤ ‖T − SM‖L2(G×Q) ≤ |G|1/2 max
γ∈G

‖T (γ)− SM (γ)‖L2(Q).

Applying the result stated in Lemma 3.5 it follows that

‖T − TM‖L2(G×Q) ≤ Cρ ρ−M .

The proof of the theorem is complete.

Remark 3.3 The smoothness of the solution T with respect to z = (t, x) have no effect on the

analaysis conducted here. The fact that T ∈ L2(Q) is enough to procede with the proof. The

rate of the POD-error is only dependent on the regularity of T with repect to the conductivitry γ.

Numerical experiences confirm this fact. Similar observations have been already made for elliptic

problems (see [23, 7]).

Bounds for the singular-values (σm)m≥0 of the POD operator B may be obtained, as a by-product

of the former result.

cor 3.6 There holds that

σM+1 ≤ Cρ ρ−M , ∀ρ, 1 < ρ < ρ∗.

Proof: The proof is based on the Courant-Weyl theorem, deriving bounds of the singular values

from the approximation of a compact linear operator by finite rank operators (see [19, Lemma 1]).

The following bound holds

σM+1 = min
BM∈L, rank BM≤M

‖B −BM‖L. (11)

This result may be encountered under the terminology Schmidt’s approximation theorem which is

actually an extension to the infinite dimension of the widely known Eckart-Young approximation
1The notation mG is for the middle point of G.
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(see [24]).

Now, let B̃M be the integral operator associated to the kernel TM , that is

(B̃Mϕ)(z) =
∫

G
TM (γ, z)ϕ(γ) dγ. ∀z ∈ Q (12)

It is easily seen that rank B̃M ≤ M . According to the estimate (11), we derive that

σM+1 ≤ ‖B − B̃M‖L ≤ ‖T − TM‖L2(G×Q).

Calling for Theorem 3.1 yields the result and completes the proof.

Remark 3.4 A similar analysis applies to mixed homogeneous Neumann, Neumann-Dirichlet or

Robin conditions. with the necessary modifications skipped over here. They are not difficult to

understand and their realization seems straightforward.
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4 Numerical experiments

This section is devoted to determining the effective convergence rate of the POD approximation of

some solutions to the transient heat equation when parameterized by the conductivity coefficient.

We first assess the exponential convergence rate and then, we investigate the variation of this rate

with respect to the interval G = [γm, γM ]. We also study the approximation of the heat equation

by the POD expansion in norms stronger than L2(G, L2(Q)). We evaluate the convergence in the

space L2(G, L2(0, b; H1(Ω)). As will be confirmed, we still recover an exponential convergence rate

in all cases.

We consider the time-dependent heat equation in the domain Q = (0, 1)× (0, 1) and we select three

possible pairs of source terms and boundary conditions, given by

Data 1: f(t, x) =
√
|x− t− 0.3|, T0(x) = 0,

Data 2: f(t, x) = 0, T0(x) = |x− 0.4|,
Data 3: f(t, x) =

√
|x− t− 0.3|, T0(x) = |x− 0.4|.

These data have singularities, so the temperature solutions of (6), have a low regularity with respect

to x and t, in particular for t = 0 for the two last data. The heat problem is discretized by an

Euler scheme/Gauss-Lobatto-Legendre spectral method see [4] (the time step is δt = 10−2 and the

polynomial degree is N = 64).

Calculation for the matrix representations of the POD operators B and A are realized by means

of accurate quadrature formulas. Indeed, various integrals (with respect to either γ or (t, x)) are

computed using Gauss-Lobatto quadrature formulas with high resolution in the corresponding in-

tervals. The singular value decomposition is therefore achieved using the iterative PGD procedure

(see [5]). Let us observe that the temperatures computed as solutions of the heat equation by the

numerical procedures are used as the “exact” or “reference” solutions to compute for each case

of the POD expansions.

Test 1: Exponential convergence rate.

To test the exponential convergence speed predicted by Theorem 3.1, we fix the thermal conduc-

tivities interval to G = [1, 100]. We display, in the left panel of Figure 1, the convergence history

of the POD expansion in terms of the number of modes in the expansion, for the three solutions of

the heat equation (7). Here and in the subsequent, all the curves are drawn in a semi-logarithmic

scale. We observe that the POD error, the norm of (T − TM ) in L2(G×Q), decays exponentially

fast according to the theoretical findings. In the right panel we draw the singular values. They

are decreasing exponentially fast. Moreover, we aim to illustrate the POD-error for a cut-off M is

equivalent to the singular-value σM+1 as predicted

‖T − TM‖L2(G×Q) = Cρ ρ−M , σM+1 = ‖T − TM‖L2(G×Q).
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Then, in Figure 2 , are depicted the curves representing the variations of ‖T − TM‖L2(G×Q) and

σM+1 with respect to M . In the range of M(2 ≤ M ≤ 15), they almost coincide. Recall that the

truncation is the sum of (σm)m≥M+1. The fact that it is close to σM+1 is in agreement with the

exponential convergecne rate.
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Figure 1: History for the POD-error (left). Largest singular values (σM ) (right).
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Figure 2: POD-error ‖T − TM‖L2 and the singular value σM+1 (for Data 1).

Test 2: Dependence of the convergence rate with respect to the conductivities range.

The dependence with respect to the interval G of the exponential convergence rate, stated by

Theorem 3.1, is illustrated in Figure 3. We depict the convergence history for Data 3, computed

for three different ranges G = [γm, γM ] of thermal conductivities, that is |G| = (γM − γm) = 1, 3

and 10. The origin of the interval G is located at three possible positions, γm = 1, 5 or 10. Two

facts can be immediately pointed out. First, the convergence rate degrades for longer intervals,

when γM increases. This is in accordance with the fact that

ρ∗ =
(
√

γm +
√

γM )2

γM − γm
,

decrease when γM increases up. The second is that the truncated POD converges faster for greater
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γm. This fact is also predicted since the analyticity domain of T becomes larger and so does ρ∗.

In Table 1, we present the computed exponential rates ρ = ρc (by calculating the exponential

regression) and the theoretical ones given by ρ = ρ∗. We observe that the computed convergence

rate increases as the theoretical one increases. Notice that ratio of both convergence rates suggests

that the effective convergence is two times faster than the theoretical one. A possible explanation

is that the truncated POD expansion gives an approximation more accurate than the truncated

Chebyshev series expansion, on which the result of Theorem 3.1 relies. The convergence is twice

faster for the POD-approximation.
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Figure 3: Variation of the POD-errors. Each diagram corresponds to a different location of γm = 1, 5 or
10. In each plot three cases are considered, the conductivities range equals 1, 3 or 10.

|G| ρ∗ ρc Ratio
1 5.82 12.81 2.20
3 3.00 6.36 2.12
10 1.86 4.06 2.18

ρ∗ ρc Ratio
9.40 21.95 2.25
8.55 19.49 2.28
3.73 8.41 2.25

ρ∗ ρc Ratio
41.97 96.54 2.29
15.26 35.51 2.32
5.83 14.01 2.40

Table 1: Convergence rates, with γm = 1, 5 and 10 (for Data 3).
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Test 3: Approximation in stronger norms.

The target is the numerical assessment of the convergence rate of the POD approximation with

respect to the natural energy norm of L2(G; L2(0, b; H1(Ω))). We intend to find out the variations

of the following error correspondence

M 7→
[∫

G

∫

Q
|∇x(T − TM )|2(γ, z) dγ dz

]1/2

.

The case selected is related to Data 3. Figure 4 plots the convergence history of the above function

together with the (T −TM ) measured in the Lebesgue space L2(G, L2(Q)) already provided in Fig-

ure 1. Calculations have been done for two sets of discretizations. Mesh 1 corresponds to δt = 10−2,

N = 64 and 100 values of the conductivity coefficient while mesh 2 is given by δt = 10−3, N = 72

and 200 values of the conductivity coefficient. In any case, we still recover the optimal exponential

convergence rate although the proof is still missing for the stronger (energy) norm.
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Figure 4: POD-error in norms of L2(G, L2(Q)) and L2(G; L2(0, b; H1(Ω))) (for Data 3).

5 Conclusion

We have studied the approximation of the solutions of the heat equation, understood as a parame-

trized fields with respect to the conductivity parameter. We have proved that the POD expansion

converges with exponential accuracy in the natural L2 norms associated with the POD expansion.

Our analysis can readily be extended to parabolic equations with symmetric elliptic operators.

Extension to higher order decompositions and multi-parameters is under study.
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[2] Azäıez, M. and Ben Belgacem, F., Karhunen-Loève’s truncation error for bivariate functions,

Computer Methods in Applied Mechanics and Engineering, Vol 290, pp 57-72, 2015

[3] Berkoz, G. and Holmes, P. and Lumley, J. L., The proper orthogonal decomposition in the

analysis of turbulent flows, Annu. Rev. Fluids Mech., Vol 25, pp 539-575, 1993

[4] Bernardi, C. and Maday, Y., Approximations spectrales de problèmes aux limites elliptiques,

Mathématiques et applications, Springer, Paris, Berlin, Heidelberg, 1992

[5] Chinesta, F. and Keunings, R. and Leygue, A., The Proper Generalized Decomposition for

Advanced Numerical Simulations: A Primer, Springer Publishing Company, Incorporated,

2013

[6] Chinesta F., Ladevese P. and Cueto E., A Short Review on Model Order Reduction Based

on Proper Generalized Decomposition, Archives of Computational Methods in Engineering,

Vol 18, pp 395-404, 2011

[7] Cohen, A. and DeVore, R. A. and Schwab Ch., Analytic regularity and polynomial approx-

imation of parametric and stochastic elliptic PDEs, Analysis and Applications, Vol 09, pp

11-47, 2011

[8] Diestel, J. and Uhl, J. J. , Vector measures, AMS, 1977

[9] Epureanu, B. I. and Tang, L. S. and Paidoussis, M. P., Coherent structures and their influence

on the dynamics of aeroelastic panels , International Journal of Non-Linear Mechanics , Vol

39, pp 977-991, 2004

[10] Ghanem, R. and Spanos, P. , Stochastic finite elements: a spectral approach. Springer-Verlag.

1991.

[11] Golub, G. H. and Loan, C. F. Van, Matrix Computations 3rd, The Johns Hopkins University

Press, 1996.

[12] Haasdonk, B., Convergence Rates of the POD-Greedy Method, Modlisation Mathmatique et

Analyse Numrique, M2AN, Vol 47, pp 859-873, 2013

[13] Holmes, P. and Lumley, J. L. and Berkooz, G. , Coherent Structures, Synamical Systems and

Symmetry , Cambridge Monographs on Mechanis, Cambridge University Press, Cambridge,

1996

15

https://www.researchgate.net/publication/234151059_The_Proper_Orthogonal_Decomposition_in_the_Analysis_of_Turbulent_Flows?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/234151059_The_Proper_Orthogonal_Decomposition_in_the_Analysis_of_Turbulent_Flows?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/245469208_Approximations_Spectrales_De_Problemes_Aux_Limites_Elliptiques?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/245469208_Approximations_Spectrales_De_Problemes_Aux_Limites_Elliptiques?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/265782749_The_proper_generalized_decomposition_for_advanced_numerical_simulations_A_primer?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/265782749_The_proper_generalized_decomposition_for_advanced_numerical_simulations_A_primer?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/265782749_The_proper_generalized_decomposition_for_advanced_numerical_simulations_A_primer?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/236243169_A_Short_Review_on_Model_Order_Reduction_Based_on_Proper_Generalized_Decomposition?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/236243169_A_Short_Review_on_Model_Order_Reduction_Based_on_Proper_Generalized_Decomposition?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/236243169_A_Short_Review_on_Model_Order_Reduction_Based_on_Proper_Generalized_Decomposition?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/228623523_Analytic_regularity_and_polynomial_approximation_of_parametric_and_stochastic_elliptic_PDE'S?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/228623523_Analytic_regularity_and_polynomial_approximation_of_parametric_and_stochastic_elliptic_PDE'S?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/228623523_Analytic_regularity_and_polynomial_approximation_of_parametric_and_stochastic_elliptic_PDE'S?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/223414308_Coherent_structures_and_their_influence_on_the_dynamics_of_aeroelastic_panels?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/223414308_Coherent_structures_and_their_influence_on_the_dynamics_of_aeroelastic_panels?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/223414308_Coherent_structures_and_their_influence_on_the_dynamics_of_aeroelastic_panels?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/230872901_Stochastic_Finite_Elements?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/230872901_Stochastic_Finite_Elements?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/265976917_Convergence_Rates_of_the_POD-Greedy_Method?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==
https://www.researchgate.net/publication/265976917_Convergence_Rates_of_the_POD-Greedy_Method?el=1_x_8&enrichId=rgreq-6b82f87e4655969c931fa6d4de4bc494-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3NTEwODtBUzozNDg5NDkxNzQwNzk0ODhAMTQ2MDIwNzM3NDMyMA==


[14] Hotelling, H., Analysis of a complex of statistical variables into principal componentse, Jour-

nal of Educational Psychology, Vol 24,pp 417-441, 498-520 , 1933

[15] Jolliffe, I. T., Principal Component Analysis, Springer, 1986

[16] Knopp, K. and Bagemihl, F. Theory of Functions, Vol. 1, Dover books on mathematics, Dover

Publications 1996

[17] Kunoth, A. and Schwab, Ch., Analytic Regularity and GPC Approximation for Control

Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs, SIAM Journal on

Control and Optimization, Vol 51, pp 2442–2471, 2013
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