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In this work we study the structure of the set of positive solutions of a nonlinear
eigenvalue problem with a weight changing sign. Specifically, the reaction term
arises from a population dynamic model. We use mainly bifurcation methods to
obtain our results.

1. Introduction

The aim of this work is to study some nonlinear indefinite eigenvalue prob-
lems of the form

{−∆u = λm(x)f(u) in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ IRN is a bounded domain with a regular boundary ∂Ω, m ∈ C(Ω)
changes sign, f is a regular function and λ plays the role of real parameter.
We focus our attention on the case f(0) = 0 and λ > 0; similar results can
be obtained for negative values of λ.

Depending of the shape of f , Eq. (1) models different situations: pop-
ulation dynamics, population genetics, combustion theory,... see [10].

In the linear case, i.e., f(u) = u, (1) is the eigenvalue problem
{−∆u = λm(x)u in Ω,

u = 0 on ∂Ω.
(2)
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It is well known (see for instance [19] and [23]) that there exist two values
of λ, λ−(m) < 0 < λ+(m), called principal eigenvalues because they have
associated positive eigenfunctions. In the present work, given q ∈ L∞(Ω)
we denote by σΩ

1 [−∆ + q] (we delete the superscript Ω when no confusion
arises) the principal eigenvalue of the problem

−∆u + q(x)u = λu in Ω, u = 0 on ∂Ω.

When in (1) the weight does not appear, i.e., m ≡ 1, the nonlinear
problem

{−∆u = λf(u) in Ω,
u = 0 on ∂Ω,

(3)

has been extensively studied. Classical references are [2] and [21], but many
others can be given where, as well as existence results, uniqueness ones are
shown: [4], [14], [26], [20], [22] and references therein.

Much less is known for problem (1). In [19], assuming for example that
f ′(0) > 0, the authors showed that there exists an unbounded continuum of
positive solutions bifurcating from the trivial solution at λ = λ+(m)/f ′(0).

In [8] the authors assumed that f : I 7→ IR+, I ⊂ IR, and f ′′ < 0 and
showed that every positive solution of (1) is stable. If, moreover, I = [0, 1],
f(1) = 0 and f ′(0) > 0 they proved that there exists a positive solution
if, and only if, λ > λ+(m)/f ′(0), and in this case the solution is unique.
Similar result was shown in [13], although the authors’ motivation was to
study the problem in the whole space. Very recently, in [9] the authors
analyze the particular cases f(u) = gi(u), i = 1, 2 with

g1(u) = u− u2, g2(u) = u + u2. (4)

Observe that the result of [8] can only be applied to g1. In [9], without
the assumption that f takes only values in [0, 1], the main result of [8] was
improved showing (by variational method) that, assuming some restriction
in the space dimension, there exists positive solution if λ ∈ (0, λ+(m)).
For the case, f = g2, they also proved the existence of positive solution
for λ ∈ (0, λ+(m)) and that there does not exist positive solution at λ =
λ+(m). In [16] these results have been again completed. We prove for
f = g1 that there exist at least two positive solutions in λ ∈ (λ+(m),∞),
one of them linearly asymptotically stable and that for f = g2 there exists
positive solution if, and only if, λ ∈ (0, λ+(m)).

In this work, we are going to analyze the following nonlinearities

f1(u) = u− u2 −K
u

1 + u
, f2(u) = u + u2 −K

u

1 + u
, (5)
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where K ∈ IR. Observe that the functions in (4) are included in (5). These
last nonlinearities arise in population dynamics. Indeed, when K = 0, f1

is the classical logistic reaction term and for K 6= 0 the predation one
Ku/(1 + u) is called the Holling-Tanner term, see for example [7] for an
ecological interpretation.

In order to state our main results we need some notations. Specifically,
assume that

M± := {x ∈ Ω : m± > 0}
are open and regular sets, where m± represent the positive and negative
part of m respectively; and suppose that m±(x) ≈ [dist(x, ∂M±)]γ± for x

close to ∂M± and some γ± ≥ 0. The following condition will provide us
with a priori bounds of the solutions

2 < min
{

N + 1 + γ±
N − 1

,
N + 2
N − 2

}
. (6)

Finally, we define for K 6= 1 the values

λ+ :=
λ+(m)
1−K

λ− :=
λ−(m)
1−K

,

and Π : IR× C(Ω) 7→ IR the projection map onto IR, i.e. Π(µ, u) = µ. The
main results are:

Theorem 1.1. Assume that K 6= 1 and (6).

(1) There exists an unbounded continuum C of positive solutions of (1)
bifurcating from the trivial solution at λ = λ+ if K < 1 and λ = λ−
if K > 1.

(2) The bifurcation is supercritical for f = f1 and for f = f2 and
K < −1 or K > 1 and subcritical for f = f2 and K ∈ [−1, 1).

(3) If f = f1 and K < 1 (resp. f = f2 and K > 1), then Π(C) =
(λ+,∞) (resp. (λ−,∞)). Moreover, if (λ, uλ) ∈ C, then uλ is
linearly asymptotically and such that uλ ≤

√
1−K (resp.

√
K−1).

Furthermore, there exists another positive solution vλ for all λ > 0.
(4) If f = f1 and K > 1 (resp. f = f2 and K < −1) then Π(C) =

(0, λ∗] for λ∗ > λ− (resp. λ+). Moreover, there exist λ0 and λ∗

with λ0 < λ∗ such that for λ ≥ λ∗ the problem (1) does not admit
positive solutions and it possesses at least two positive solutions for
λ ∈ (λ−, λ0) (resp. (λ+, λ0)).

(5) If f = f2 and K ∈ [−1, 1) there exists positive solution for λ ∈
(0, λ+) and (1) does not admit positive solutions for λ ≥ λ∗.
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(6) In any case, if there exists a solution vλ for λ > 0, then
limλ→0 ‖vλ‖∞ = +∞.

Theorem 1.2. Assume K = 1 and (6). Then there exists at least a solu-
tion uλ for λ > 0 and limλ→0 ‖uλ‖∞ = +∞.

Remark 1.1.

(1) The existence of C is true without assuming (6). In the cases (4)
and (5) of Theorem 1.1, C could “go to infinity” in a value λ0.

(2) In the particular case f = f2 and K = 0, in [16] it was proved using
a Picone inequality that (1) possesses a positive solution if, and only
if, λ ∈ (0, λ+).

In Figs. 1 and 2 we have summarized these results (the case f = f2 and
K = 1 is similar to f = f1 and K = 1).

λ

|| . ||                                                                                          

|| . ||
|| . ||

a) b) c) 

+
λ

−λ                                                                   λ                                                             λ

Figure 1. Bifurcation diagrams for f = f1: a) K < 1; b) K = 1; c) K > 1.

The rest of the paper is organized as follows: Secs. 2 and 3 are devoted
to prove Theorems 1.1 and 1.2, respectively.

2. Proof of Theorem 1.1

2.1. Local bifurcation

In this subsection we show the direction of bifurcation from the trivial
solution for both cases f1 and f2. For that, we write the nonlinearity of the
following manner

f(u) = u∓ u2 −K
u

1 + u
= u(1−K) + u2(

K

1 + u
∓ 1).
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Figure 2. Bifurcation diagrams for f = f2: a) K < −1; b) K ∈ [−1, 1); c) K > 1.

It is clear that to study (1) is equivalent to find zeros of L(λ)u−N(λ, u) = 0,
where

L(λ)u := u− λ(−∆)−1m(x)(1−K)u,

N(λ, u) := λ(−∆)−1m(x)u2(
K

1 + u
∓ 1).

We can prove that

N(L(λ+)) = Span < ϕ+ > and
d

dλ
L(λ+)ϕ+ /∈ R(L(λ+)) (7)

where, given any linear continuous operator L, N [L] and R[L] stand for the
null space and the range of L, respectively, and

−∆ϕ+ = λ+(m)m(x)ϕ+ in Ω, ϕ+ = 0 on ∂Ω. (8)

The first equality of (7) is trivial, for the second expression we need the
following result.

Lemma 2.1. For any p ≥ 2 we have that
∫

Ω

m(x)(ϕ+)p > 0.

Proof: Multiplying (8) by (ϕ+)p−1 we get

λ+(m)
∫

Ω

m(x)(ϕ+)p =
∫

Ω

(−∆ϕ+)(ϕ+)p−1 = (p−1)
∫

Ω

|∇ϕ+|2(ϕ+)p−2 > 0.

¦
Now, we show (7). Assume that there exists u such that

d

dλ
L(λ+)ϕ+ = −(−∆)−1m(x)(1−K)ϕ+ = u− (−∆)−1m(x)λ+(1−K)u,



May 13, 2004 10:52 WSPC/Trim Size: 9in x 6in for Proceedings mawhinsuarez

6

then

(−∆− λ+(m)m(x))u = −(1−K)m(x)ϕ+,

and so, multiplying by ϕ+ we get a contradiction using Lemma 2.1.
Now, we can apply the Crandall-Rabinowitz Theorem [15] and conclude

that there exists δ > 0 such that in a neighborhood of (λ+, 0) the nontrivial
solutions of (1) are of the form

u(s) = sϕ+ + s2ϕ2 + s3ϕ3 + o(s3),
λ(s) = λ+ + sλ1 + s2λ2 + o(s2).

Introducing these terms in (1), using (8) and a Taylor expression of the
function 1/(1 + u(s)), we get

(−∆− λ+(m)m(x))ϕ2 = λ+m(x)(ϕ+)2(K ∓ 1) + λ1m(x)(1−K)ϕ+,

and so,

λ1 = −λ+(K ∓ 1)
1−K

∫

Ω

m(x)(ϕ+)3

∫

Ω

m(x)(ϕ+)2
. (9)

Observe that in the particular case f = f2 and K = −1, λ1 = 0, and so we
have to calculate λ2. It can be proved that

λ2 = −λ+

2

∫

Ω

m(x)(ϕ+)4

∫

Ω

m(x)(ϕ+)2
. (10)

From (9) and (10), we conclude the paragraph (2) of Theorem 1.1. Analo-
gously it can be treated the case λ−.

2.2. Non-existence results

Lemma 2.2. Assume f = f1 and K > 1 or f = f2 and K < 1. Then,
there exists λ∗ > 0 such that for λ ≥ λ∗ (1) does not have positive solutions.

Proof: Assume f = f1 and K > 1. Firstly observe that

h(x) := x(
K

1 + x
− 1) ≤ (

√
K − 1)2, ∀x ≥ 0. (11)
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Let u be a positive solution of (1). Then, using the monotony of the prin-
cipal eigenvalue with respect to the domain and (11) we get

0 = σ1[−∆− λm(x)(1−K)− λm(x)u(
K

1 + u
− 1)] <

< σ
M−
1 [−∆− λm(x)((1−K) + (

√
K − 1)2)] =

= σ
M−
1 [−∆− λm(x)2(1−√K)],

which is an absurdum for λ large.
Now, assume f = f2 and K < 1. In this case,

x(
K

1 + x
+ 1) ≥ 0, if K ≥ −1, ∀x ≥ 0,

x(
K

1 + x
+ 1) ≥ −(

√
−K − 1)2, if K < −1, ∀x ≥ 0.

So, if −1 ≤ K < 1 we have

0 = σ1[−∆−λm(x)(1−K)−λm(x)u(
K

1 + u
+1)] < σ

M+
1 [−∆−λm(x)(1−K)];

on the other hand, for K < −1,

0 = σ1[−∆−λm(x)(1−K)−λm(x)u(
K

1 + u
+1)] < σ

M+
1 [−∆−λm(x)2

√
−K],

in both cases a contradiction for large λ. ¦

2.3. Multiplicity results

To obtain multiplicity results, we include (1) in the more general equation
{−∆u = µm(x)(1−K)u + λm(x)g(u) in Ω,

u = 0 on ∂Ω,
(12)

where g satisfies

(Hg) g(0) = g′(0) = 0, g′′(u) < 0, lim
s→+∞

g(s)
s2

= β < 0.

Problem (12) has attracted a great deal of attention during last years (see
for example [1], [3], [5], [6], [18] and [24]) when m ≡ 1 in the first term on
the right-hand side of (12) and in [11], [12] and [13] with the right-hand side
of the form µh(x)u + g(x)up and restrictive conditions on h and g which
are not satisfied in our case. In [16] was proved (see Fig. 3):

Proposition 2.1. Assume that g satisfies (Hg), (6), K 6= 1 and fix λ > 0.
Denote by

Λ+ := λ+(m(x)(1−K)), Λ− := λ−(m(x)(1−K)).
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Then, (12) possesses a positive solution if µ > Λ−. Moreover, from the triv-
ial solution u = 0 emanate two unbounded in IR×C(Ω) continua of positive
solutions C+ := {(µ, uµ)} and C− := {(µ,wµ)} at µ = Λ+ and µ = Λ−,
respectively. Both continua bifurcate to the right and Π(C−) ⊃ (Λ−, +∞),
Π(C+) = (Λ+, +∞). Finally, for µ > Λ+, uµ is linearly asymptotically
stable and uµ 6= wµ.

Remark 2.1. Observe that for K < 1,

Λ+ = λ+ and Λ− = λ−,

and for K > 1,

Λ+ = λ− and Λ− = λ+.

Indeed, for example for K > 1, it follows that

Λ+ = λ+(m(x)(1−K)) =
λ+(−m(x))

K − 1
=
−λ−(m(x))

K − 1
=

λ−(m(x))
1−K

= λ−.

µλλ

C

C

|| . ||

+

+

−

−

Figure 3. Bifurcation diagram for (12) and K < 1.

2.4. Proof of Theorem 1.1:

Before proving the result, we generalize a well-known result for m ≡ 1. The
proof is coming from [8].

Lemma 2.3. Assume that f is a regular function and f(0) = 0. Let u0 be
a positive solution of (1) such that f(u0) > 0, it holds:
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(1) If f ′′(u0) < 0, then u0 is linearly asymptotically stable.
(2) If f ′′(u0) > 0, then u0 is unstable.

Proof: We have to calculate the sign of the eigenvalue σ1[−∆ −
λm(x)f ′(u0)]. Take ψ := f(u0) > 0, then

(−∆− λm(x)f ′(u0))ψ = −f ′′(u0)|∇u0|2.
So, if f is concave (resp. convex) the function ψ is a supersolution
(resp. subsolution) of −∆ − λm(x)f ′(u0), and then (see [23]) σ1[−∆ −
λm(x)f ′(u0)] > 0 (resp. < 0). ¦

The following result is proved in Theorem 3.4 of [3] and provides us with
a priori bounds for the positive solutions of (1).

Lemma 2.4. Assume (6). If (λ, u) is a positive solution of (1) and λ ∈ J ,
where J is a compact subset such that J ⊂ (0,∞), then there exists a
positive constant C (independent from λ) such that

‖u‖∞ ≤ C.

Finally, the following result is proved in [17].

Lemma 2.5. Assume that Σ ⊂ I × C2
0 (Ω), I ⊂ IR an interval, is a con-

nected set of positive solutions of (1). Consider u : I 7→ C2
0 (Ω) a continuous

map of supersolution for each λ ∈ I, but not a solution. If u0 < u(λ0) for
some (λ0, u0) ∈ Σ, then u < u(λ) for all (λ, u) ∈ Σ.

We are ready to prove the result. By subsec. 2.1 we know that there
exists bifurcation from the trivial solution at λ = λ+ or λ = λ− when K < 1
or K > 1, respectively. Moreover, we can apply Theorem 6.4.3 of [25], and
conclude that from λ = λ+ or λ = λ− bifurcates an unbounded continuum
C of positive solutions of (1). We would like to remark that the a detailed
proof that C is unbounded and it does not satisfy the other alternatives of
the above mentioned result will be presented elsewhere.

Now assume f = f1 and K < 1. It is clear that

u :=
√

1−K

is a supersolution of (1). So, we can apply Lemma 2.5 (taking λ0 = λ+)
and conclude that

for all (λ, uλ) ∈ C, we have that uλ <
√

1−K. (13)

Moreover, f1(uλ) > 0 and f ′′1 (uλ) < 0, and so by Lemma 2.3 we get that
uλ is linearly asymptotically stable.
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Now, we are going to apply Proposition 2.1. Recall that in this case
Λ+ = λ+ and Λ− = λ−. Taking as

g(u) = u2(
K

1 + u
− 1),

we obtain a positive solution for µ = λ and λ ∈ (0, λ+] and at least two
positive solutions for λ > λ+.

Similarly, it can be considered the case f = f2 and K > 1. Indeed, we
only have to write µm(x)(1−K)u + λm(x)u2(K/(1 + u) + 1) as

µ(−m(x))(K − 1)u + λ(−m(x))u2(−K/(1 + u)− 1).

Observe that g(u) = u2(−K/(1 + u) − 1) satisfies (Hg) for K > −1, and
so, Proposition 2.1 is true for

Λ+ = λ+(−m(x)(K − 1)), and Λ− = λ−(−m(x)(K − 1)).

And, since K > 1 it follows by Remark 2.1 that Λ+ = λ−.

The paragraphs (4) and (5) follow easily from the existence of C and
Lemmas 2.2 and 2.4.

In order to prove paragraph (6), assume that there exist a sequence
(λn, un)n∈IN of positive solution with λn → 0 and ‖un‖∞ ≤ C for some
C > 0. Since there does not exist positive solution of (1) for λ = 0, we
obtain that ‖un‖∞ → 0. We claim that this is impossible. Indeed, we
define

wn =
un

‖un‖∞ ,

then wn is uniformly bounded and, by passing to a suitable sequence again
denoted by wn, wn → w∗ as n →∞ for some w∗ ∈ C(Ω) with ‖w∗‖∞ = 1.
But,

−∆wn = λnm(x)
f(un)
‖un‖∞ ,

and so −∆w∗ = 0, which is an absurd. This concludes the proof. ¦

3. The particular case K = 1

In this case, the bifurcation from the trivial solution disappears. Consider
{−∆u = µu + λm(x)g(u) in Ω,

u = 0 on ∂Ω,
(14)

where

g(u) = u2(
1

1 + u
− 1) or g(u) = u2(

1
1 + u

+ 1).
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Proposition 3.1. There exists a positive solution of (14) for µ = 0.
In particular, for all λ > 0 there exists a positive solution of (1).

Proof: It easy to prove that this problem is in the setting of some works, see
for example [3] and references therein, and then there exists an unbounded
continuum S of positive solutions of (14) bifurcating from µ = σ1[−∆]
and it satisfies that Π(S) ⊃ (−∞, σ1[−∆]) (see Theorem 7.1 in [3]). This
concludes the proof. ¦
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