SOME INDEFINITE NONLINEAR EIGENVALUE PROBLEMS

A. SUÁREZ*
Dpto. Ecuaciones Diferenciales y Análisis Numérico, Fac. Matemáticas, C/ Tarfia s/n, C.P. 41012,
Univ. Sevilla, Spain
E-mail: suarez@us.es

Dedicated to Prof. Jean Mawhin for his first 60 years of Nonlinear Analysis

In this work we study the structure of the set of positive solutions of a nonlinear eigenvalue problem with a weight changing sign. Specifically, the reaction term arises from a population dynamic model. We use mainly bifurcation methods to obtain our results.

1. Introduction

The aim of this work is to study some nonlinear indefinite eigenvalue problems of the form

$$
\begin{cases}-\Delta u=\lambda m(x) f(u) & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with a regular boundary $\partial \Omega, m \in C(\bar{\Omega})$ changes sign, f is a regular function and λ plays the role of real parameter. We focus our attention on the case $f(0)=0$ and $\lambda>0$; similar results can be obtained for negative values of λ.

Depending of the shape of f, Eq. (1) models different situations: population dynamics, population genetics, combustion theory,... see [10].

In the linear case, i.e., $f(u)=u,(1)$ is the eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda m(x) u & \text { in } \Omega \tag{2}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

[^0]It is well known (see for instance [19] and [23]) that there exist two values of $\lambda_{,} \lambda_{-}(m)<0<\lambda_{+}(m)$, called principal eigenvalues because they have associated positive eigenfunctions. In the present work, given $q \in L^{\infty}(\Omega)$ we denote by $\sigma_{1}^{\Omega}[-\Delta+q]$ (we delete the superscript Ω when no confusion arises) the principal eigenvalue of the problem

$$
-\Delta u+q(x) u=\lambda u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega .
$$

When in (1) the weight does not appear, i.e., $m \equiv 1$, the nonlinear problem

$$
\begin{cases}-\Delta u=\lambda f(u) & \text { in } \Omega, \tag{3}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

has been extensively studied. Classical references are [2] and [21], but many others can be given where, as well as existence results, uniqueness ones are shown: [4], [14], [26], [20], [22] and references therein.

Much less is known for problem (1). In [19], assuming for example that $f^{\prime}(0)>0$, the authors showed that there exists an unbounded continuum of positive solutions bifurcating from the trivial solution at $\lambda=\lambda_{+}(m) / f^{\prime}(0)$.

In [8] the authors assumed that $f: I \mapsto \mathbb{R}_{+}, I \subset \mathbb{R}$, and $f^{\prime \prime}<0$ and showed that every positive solution of (1) is stable. If, moreover, $I=[0,1]$, $f(1)=0$ and $f^{\prime}(0)>0$ they proved that there exists a positive solution if, and only if, $\lambda>\lambda_{+}(m) / f^{\prime}(0)$, and in this case the solution is unique. Similar result was shown in [13], although the authors' motivation was to study the problem in the whole space. Very recently, in [9] the authors analyze the particular cases $f(u)=g_{i}(u), i=1,2$ with

$$
\begin{equation*}
g_{1}(u)=u-u^{2}, \quad g_{2}(u)=u+u^{2} . \tag{4}
\end{equation*}
$$

Observe that the result of [8] can only be applied to g_{1}. In [9], without the assumption that f takes only values in $[0,1]$, the main result of $[8]$ was improved showing (by variational method) that, assuming some restriction in the space dimension, there exists positive solution if $\lambda \in\left(0, \lambda_{+}(m)\right)$. For the case, $f=g_{2}$, they also proved the existence of positive solution for $\lambda \in\left(0, \lambda_{+}(m)\right)$ and that there does not exist positive solution at $\lambda=$ $\lambda_{+}(m)$. In [16] these results have been again completed. We prove for $f=g_{1}$ that there exist at least two positive solutions in $\lambda \in\left(\lambda_{+}(m), \infty\right)$, one of them linearly asymptotically stable and that for $f=g_{2}$ there exists positive solution if, and only if, $\lambda \in\left(0, \lambda_{+}(m)\right)$.

In this work, we are going to analyze the following nonlinearities

$$
\begin{equation*}
f_{1}(u)=u-u^{2}-K \frac{u}{1+u}, \quad f_{2}(u)=u+u^{2}-K \frac{u}{1+u} \tag{5}
\end{equation*}
$$

where $K \in \mathbb{R}$. Observe that the functions in (4) are included in (5). These last nonlinearities arise in population dynamics. Indeed, when $K=0, f_{1}$ is the classical logistic reaction term and for $K \neq 0$ the predation one $K u /(1+u)$ is called the Holling-Tanner term, see for example [7] for an ecological interpretation.

In order to state our main results we need some notations. Specifically, assume that

$$
M_{ \pm}:=\left\{x \in \Omega: m^{ \pm}>0\right\}
$$

are open and regular sets, where $m^{ \pm}$represent the positive and negative part of m respectively; and suppose that $m^{ \pm}(x) \approx\left[\operatorname{dist}\left(x, \partial M_{ \pm}\right)\right]^{\gamma_{ \pm}}$for x close to $\partial M_{ \pm}$and some $\gamma_{ \pm} \geq 0$. The following condition will provide us with a priori bounds of the solutions

$$
\begin{equation*}
2<\min \left\{\frac{N+1+\gamma_{ \pm}}{N-1}, \frac{N+2}{N-2}\right\} \tag{6}
\end{equation*}
$$

Finally, we define for $K \neq 1$ the values

$$
\lambda_{+}:=\frac{\lambda_{+}(m)}{1-K} \quad \lambda_{-}:=\frac{\lambda_{-}(m)}{1-K}
$$

and $\Pi: \mathbb{R} \times C(\bar{\Omega}) \mapsto \mathbb{R}$ the projection map onto \mathbb{R}, i.e. $\Pi(\mu, u)=\mu$. The main results are:

Theorem 1.1. Assume that $K \neq 1$ and (6).
(1) There exists an unbounded continuum \mathcal{C} of positive solutions of (1) bifurcating from the trivial solution at $\lambda=\lambda_{+}$if $K<1$ and $\lambda=\lambda_{-}$ if $K>1$.
(2) The bifurcation is supercritical for $f=f_{1}$ and for $f=f_{2}$ and $K<-1$ or $K>1$ and subcritical for $f=f_{2}$ and $K \in[-1,1)$.
(3) If $f=f_{1}$ and $K<1$ (resp. $f=f_{2}$ and $K>1$), then $\Pi(\mathcal{C})=$ $\left(\lambda_{+}, \infty\right)$ (resp. $\left(\lambda_{-}, \infty\right)$). Moreover, if $\left(\lambda, u_{\lambda}\right) \in \mathcal{C}$, then u_{λ} is linearly asymptotically and such that $u_{\lambda} \leq \sqrt{1-K}($ resp. $\sqrt{K}-1)$. Furthermore, there exists another positive solution v_{λ} for all $\lambda>0$.
(4) If $f=f_{1}$ and $K>1$ (resp. $f=f_{2}$ and $K<-1$) then $\Pi(\mathcal{C})=$ $\left(0, \lambda_{*}\right]$ for $\lambda_{*}>\lambda_{-}$(resp. λ_{+}). Moreover, there exist λ_{0} and λ^{*} with $\lambda_{0}<\lambda^{*}$ such that for $\lambda \geq \lambda^{*}$ the problem (1) does not admit positive solutions and it possesses at least two positive solutions for $\lambda \in\left(\lambda_{-}, \lambda_{0}\right)\left(r e s p .\left(\lambda_{+}, \lambda_{0}\right)\right)$.
(5) If $f=f_{2}$ and $K \in[-1,1)$ there exists positive solution for $\lambda \in$ $\left(0, \lambda_{+}\right)$and (1) does not admit positive solutions for $\lambda \geq \lambda^{*}$.
(6) In any case, if there exists a solution v_{λ} for $\lambda>0$, then $\lim _{\lambda \rightarrow 0}\left\|v_{\lambda}\right\|_{\infty}=+\infty$.

Theorem 1.2. Assume $K=1$ and (6). Then there exists at least a solution u_{λ} for $\lambda>0$ and $\lim _{\lambda \rightarrow 0}\left\|u_{\lambda}\right\|_{\infty}=+\infty$.

Remark 1.1.

(1) The existence of \mathcal{C} is true without assuming (6). In the cases (4) and (5) of Theorem 1.1, \mathcal{C} could "go to infinity" in a value λ^{0}.
(2) In the particular case $f=f_{2}$ and $K=0$, in [16] it was proved using a Picone inequality that (1) possesses a positive solution if, and only if, $\lambda \in\left(0, \lambda_{+}\right)$.

In Figs. 1 and 2 we have summarized these results (the case $f=f_{2}$ and $K=1$ is similar to $f=f_{1}$ and $K=1$).

a)

b)

c)

Figure 1. Bifurcation diagrams for $f=f_{1}$: a) $K<1$; b) $K=1$; c) $K>1$.

The rest of the paper is organized as follows: Secs. 2 and 3 are devoted to prove Theorems 1.1 and 1.2, respectively.

2. Proof of Theorem 1.1

2.1. Local bifurcation

In this subsection we show the direction of bifurcation from the trivial solution for both cases f_{1} and f_{2}. For that, we write the nonlinearity of the following manner

$$
f(u)=u \mp u^{2}-K \frac{u}{1+u}=u(1-K)+u^{2}\left(\frac{K}{1+u} \mp 1\right) .
$$

Figure 2. Bifurcation diagrams for $f=f_{2}$: a) $K<-1$; b) $K \in[-1,1)$; c) $K>1$.

It is clear that to study (1) is equivalent to find zeros of $\mathcal{L}(\lambda) u-N(\lambda, u)=0$, where

$$
\begin{aligned}
& \mathcal{L}(\lambda) u:=u-\lambda(-\Delta)^{-1} m(x)(1-K) u \\
& N(\lambda, u):=\lambda(-\Delta)^{-1} m(x) u^{2}\left(\frac{K}{1+u} \mp 1\right) .
\end{aligned}
$$

We can prove that

$$
\begin{equation*}
N\left(\mathcal{L}\left(\lambda_{+}\right)\right)=\operatorname{Span}<\varphi^{+}>\quad \text { and } \quad \frac{d}{d \lambda} \mathcal{L}\left(\lambda_{+}\right) \varphi^{+} \notin R\left(\mathcal{L}\left(\lambda_{+}\right)\right) \tag{7}
\end{equation*}
$$

where, given any linear continuous operator $L, N[L]$ and $R[L]$ stand for the null space and the range of L, respectively, and

$$
\begin{equation*}
-\Delta \varphi^{+}=\lambda_{+}(m) m(x) \varphi^{+} \quad \text { in } \Omega, \quad \varphi^{+}=0 \quad \text { on } \partial \Omega \tag{8}
\end{equation*}
$$

The first equality of (7) is trivial, for the second expression we need the following result.

Lemma 2.1. For any $p \geq 2$ we have that

$$
\int_{\Omega} m(x)\left(\varphi^{+}\right)^{p}>0
$$

Proof: Multiplying (8) by $\left(\varphi^{+}\right)^{p-1}$ we get
$\lambda_{+}(m) \int_{\Omega} m(x)\left(\varphi^{+}\right)^{p}=\int_{\Omega}\left(-\Delta \varphi^{+}\right)\left(\varphi^{+}\right)^{p-1}=(p-1) \int_{\Omega}\left|\nabla \varphi^{+}\right|^{2}\left(\varphi^{+}\right)^{p-2}>0$.
\diamond
Now, we show (7). Assume that there exists u such that
$\frac{d}{d \lambda} \mathcal{L}\left(\lambda_{+}\right) \varphi^{+}=-(-\Delta)^{-1} m(x)(1-K) \varphi^{+}=u-(-\Delta)^{-1} m(x) \lambda_{+}(1-K) u$,

6
then

$$
\left(-\Delta-\lambda_{+}(m) m(x)\right) u=-(1-K) m(x) \varphi^{+}
$$

and so, multiplying by φ^{+}we get a contradiction using Lemma 2.1.
Now, we can apply the Crandall-Rabinowitz Theorem [15] and conclude that there exists $\delta>0$ such that in a neighborhood of $\left(\lambda_{+}, 0\right)$ the nontrivial solutions of (1) are of the form

$$
\begin{aligned}
& u(s)=s \varphi^{+}+s^{2} \varphi_{2}+s^{3} \varphi_{3}+o\left(s^{3}\right) \\
& \lambda(s)=\lambda_{+}+s \lambda_{1}+s^{2} \lambda_{2}+o\left(s^{2}\right)
\end{aligned}
$$

Introducing these terms in (1), using (8) and a Taylor expression of the function $1 /(1+u(s))$, we get

$$
\left(-\Delta-\lambda_{+}(m) m(x)\right) \varphi_{2}=\lambda_{+} m(x)\left(\varphi^{+}\right)^{2}(K \mp 1)+\lambda_{1} m(x)(1-K) \varphi^{+}
$$

and so,

$$
\begin{equation*}
\lambda_{1}=-\frac{\lambda_{+}(K \mp 1)}{1-K} \frac{\int_{\Omega} m(x)\left(\varphi^{+}\right)^{3}}{\int_{\Omega} m(x)\left(\varphi^{+}\right)^{2}} \tag{9}
\end{equation*}
$$

Observe that in the particular case $f=f_{2}$ and $K=-1, \lambda_{1}=0$, and so we have to calculate λ_{2}. It can be proved that

$$
\begin{equation*}
\lambda_{2}=-\frac{\lambda_{+}}{2} \frac{\int_{\Omega} m(x)\left(\varphi^{+}\right)^{4}}{\int_{\Omega} m(x)\left(\varphi^{+}\right)^{2}} \tag{10}
\end{equation*}
$$

From (9) and (10), we conclude the paragraph (2) of Theorem 1.1. Analogously it can be treated the case λ_{-}.

2.2. Non-existence results

Lemma 2.2. Assume $f=f_{1}$ and $K>1$ or $f=f_{2}$ and $K<1$. Then, there exists $\lambda^{*}>0$ such that for $\lambda \geq \lambda^{*}$ (1) does not have positive solutions.

Proof: Assume $f=f_{1}$ and $K>1$. Firstly observe that

$$
\begin{equation*}
h(x):=x\left(\frac{K}{1+x}-1\right) \leq(\sqrt{K}-1)^{2}, \quad \forall x \geq 0 \tag{11}
\end{equation*}
$$

Let u be a positive solution of (1). Then, using the monotony of the principal eigenvalue with respect to the domain and (11) we get

$$
\begin{aligned}
0 & =\sigma_{1}\left[-\Delta-\lambda m(x)(1-K)-\lambda m(x) u\left(\frac{K}{1+u}-1\right)\right]< \\
& <\sigma_{1}^{M_{-}}\left[-\Delta-\lambda m(x)\left((1-K)+(\sqrt{K}-1)^{2}\right)\right]= \\
& =\sigma_{1}^{M_{-}}[-\Delta-\lambda m(x) 2(1-\sqrt{K})]
\end{aligned}
$$

which is an absurdum for λ large.
Now, assume $f=f_{2}$ and $K<1$. In this case,

$$
\begin{array}{ll}
x\left(\frac{K}{1+x}+1\right) \geq 0, \quad \text { if } K \geq-1, \quad \forall x \geq 0 \\
x\left(\frac{K}{1+x}+1\right) \geq-(\sqrt{-K}-1)^{2}, \quad \text { if } K<-1, \quad \forall x \geq 0 .
\end{array}
$$

So, if $-1 \leq K<1$ we have
$0=\sigma_{1}\left[-\Delta-\lambda m(x)(1-K)-\lambda m(x) u\left(\frac{K}{1+u}+1\right)\right]<\sigma_{1}^{M_{+}}[-\Delta-\lambda m(x)(1-K)] ;$ on the other hand, for $K<-1$,
$0=\sigma_{1}\left[-\Delta-\lambda m(x)(1-K)-\lambda m(x) u\left(\frac{K}{1+u}+1\right)\right]<\sigma_{1}^{M_{+}}[-\Delta-\lambda m(x) 2 \sqrt{-K}]$, in both cases a contradiction for large λ.

2.3. Multiplicity results

To obtain multiplicity results, we include (1) in the more general equation

$$
\begin{cases}-\Delta u=\mu m(x)(1-K) u+\lambda m(x) g(u) & \text { in } \Omega \tag{12}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where g satisfies
$\left(H_{g}\right) \quad g(0)=g^{\prime}(0)=0, \quad g^{\prime \prime}(u)<0, \quad \lim _{s \rightarrow+\infty} \frac{g(s)}{s^{2}}=\beta<0$.
Problem (12) has attracted a great deal of attention during last years (see for example [1], [3], [5], [6], [18] and [24]) when $m \equiv 1$ in the first term on the right-hand side of (12) and in [11], [12] and [13] with the right-hand side of the form $\mu h(x) u+g(x) u^{p}$ and restrictive conditions on h and g which are not satisfied in our case. In [16] was proved (see Fig. 3):

Proposition 2.1. Assume that g satisfies $\left(H_{g}\right),(6), K \neq 1$ and fix $\lambda>0$. Denote by

$$
\Lambda_{+}:=\lambda_{+}(m(x)(1-K)), \quad \Lambda_{-}:=\lambda_{-}(m(x)(1-K))
$$

Then, (12) possesses a positive solution if $\mu>\Lambda_{-}$. Moreover, from the trivial solution $u=0$ emanate two unbounded in $\mathbb{R} \times C(\bar{\Omega})$ continua of positive solutions $\mathcal{C}_{+}:=\left\{\left(\mu, u_{\mu}\right)\right\}$ and $\mathcal{C}_{-}:=\left\{\left(\mu, w_{\mu}\right)\right\}$ at $\mu=\Lambda_{+}$and $\mu=\Lambda_{-}$, respectively. Both continua bifurcate to the right and $\Pi\left(\mathcal{C}_{-}\right) \supset\left(\Lambda_{-},+\infty\right)$, $\Pi\left(\mathcal{C}_{+}\right)=\left(\Lambda_{+},+\infty\right)$. Finally, for $\mu>\Lambda_{+}, u_{\mu}$ is linearly asymptotically stable and $u_{\mu} \neq w_{\mu}$.

Remark 2.1. Observe that for $K<1$,

$$
\Lambda_{+}=\lambda_{+} \quad \text { and } \quad \Lambda_{-}=\lambda_{-}
$$

and for $K>1$,

$$
\Lambda_{+}=\lambda_{-} \quad \text { and } \quad \Lambda_{-}=\lambda_{+}
$$

Indeed, for example for $K>1$, it follows that
$\Lambda_{+}=\lambda_{+}(m(x)(1-K))=\frac{\lambda_{+}(-m(x))}{K-1}=\frac{-\lambda_{-}(m(x))}{K-1}=\frac{\lambda_{-}(m(x))}{1-K}=\lambda_{-}$.

Figure 3. Bifurcation diagram for (12) and $K<1$.

2.4. Proof of Theorem 1.1:

Before proving the result, we generalize a well-known result for $m \equiv 1$. The proof is coming from [8].

Lemma 2.3. Assume that f is a regular function and $f(0)=0$. Let u_{0} be a positive solution of (1) such that $f\left(u_{0}\right)>0$, it holds:
(1) If $f^{\prime \prime}\left(u_{0}\right)<0$, then u_{0} is linearly asymptotically stable.
(2) If $f^{\prime \prime}\left(u_{0}\right)>0$, then u_{0} is unstable.

Proof: We have to calculate the sign of the eigenvalue $\sigma_{1}[-\Delta-$ $\lambda m(x) f^{\prime}\left(u_{0}\right)$. Take $\psi:=f\left(u_{0}\right)>0$, then

$$
\left(-\Delta-\lambda m(x) f^{\prime}\left(u_{0}\right)\right) \psi=-f^{\prime \prime}\left(u_{0}\right)\left|\nabla u_{0}\right|^{2}
$$

So, if f is concave (resp. convex) the function ψ is a supersolution (resp. subsolution) of $-\Delta-\lambda m(x) f^{\prime}\left(u_{0}\right)$, and then (see [23]) $\sigma_{1}[-\Delta-$ $\left.\lambda m(x) f^{\prime}\left(u_{0}\right)\right]>0($ resp. $<0)$.

The following result is proved in Theorem 3.4 of [3] and provides us with a priori bounds for the positive solutions of (1).

Lemma 2.4. Assume (6). If (λ, u) is a positive solution of (1) and $\lambda \in J$, where J is a compact subset such that $J \subset(0, \infty)$, then there exists a positive constant C (independent from λ) such that

$$
\|u\|_{\infty} \leq C
$$

Finally, the following result is proved in [17].
Lemma 2.5. Assume that $\Sigma \subset I \times C_{0}^{2}(\Omega), I \subset \mathbb{R}$ an interval, is a connected set of positive solutions of (1). Consider $\bar{u}: I \mapsto C_{0}^{2}(\Omega)$ a continuous map of supersolution for each $\lambda \in I$, but not a solution. If $u_{0}<\bar{u}\left(\lambda_{0}\right)$ for some $\left(\lambda_{0}, u_{0}\right) \in \Sigma$, then $u<\bar{u}(\lambda)$ for all $(\lambda, u) \in \Sigma$.

We are ready to prove the result. By subsec. 2.1 we know that there exists bifurcation from the trivial solution at $\lambda=\lambda_{+}$or $\lambda=\lambda_{-}$when $K<1$ or $K>1$, respectively. Moreover, we can apply Theorem 6.4.3 of [25], and conclude that from $\lambda=\lambda_{+}$or $\lambda=\lambda_{-}$bifurcates an unbounded continuum \mathcal{C} of positive solutions of (1). We would like to remark that the a detailed proof that \mathcal{C} is unbounded and it does not satisfy the other alternatives of the above mentioned result will be presented elsewhere.

Now assume $f=f_{1}$ and $K<1$. It is clear that

$$
\bar{u}:=\sqrt{1-K}
$$

is a supersolution of (1). So, we can apply Lemma 2.5 (taking $\lambda_{0}=\lambda_{+}$) and conclude that

$$
\begin{equation*}
\text { for all }\left(\lambda, u_{\lambda}\right) \in \mathcal{C} \text {, we have that } u_{\lambda}<\sqrt{1-K} \tag{13}
\end{equation*}
$$

Moreover, $f_{1}\left(u_{\lambda}\right)>0$ and $f_{1}^{\prime \prime}\left(u_{\lambda}\right)<0$, and so by Lemma 2.3 we get that u_{λ} is linearly asymptotically stable.

Now, we are going to apply Proposition 2.1. Recall that in this case $\Lambda_{+}=\lambda_{+}$and $\Lambda_{-}=\lambda_{-}$. Taking as

$$
g(u)=u^{2}\left(\frac{K}{1+u}-1\right),
$$

we obtain a positive solution for $\mu=\lambda$ and $\lambda \in\left(0, \lambda_{+}\right]$and at least two positive solutions for $\lambda>\lambda_{+}$.

Similarly, it can be considered the case $f=f_{2}$ and $K>1$. Indeed, we only have to write $\mu m(x)(1-K) u+\lambda m(x) u^{2}(K /(1+u)+1)$ as

$$
\mu(-m(x))(K-1) u+\lambda(-m(x)) u^{2}(-K /(1+u)-1)
$$

Observe that $g(u)=u^{2}(-K /(1+u)-1)$ satisfies $\left(H_{g}\right)$ for $K>-1$, and so, Proposition 2.1 is true for

$$
\Lambda_{+}=\lambda_{+}(-m(x)(K-1)), \quad \text { and } \quad \Lambda_{-}=\lambda_{-}(-m(x)(K-1))
$$

And, since $K>1$ it follows by Remark 2.1 that $\Lambda_{+}=\lambda_{-}$.
The paragraphs (4) and (5) follow easily from the existence of \mathcal{C} and Lemmas 2.2 and 2.4.

In order to prove paragraph (6), assume that there exist a sequence $\left(\lambda_{n}, u_{n}\right)_{n \in \mathrm{~N}}$ of positive solution with $\lambda_{n} \rightarrow 0$ and $\left\|u_{n}\right\|_{\infty} \leq C$ for some $C>0$. Since there does not exist positive solution of (1) for $\lambda=0$, we obtain that $\left\|u_{n}\right\|_{\infty} \rightarrow 0$. We claim that this is impossible. Indeed, we define

$$
w_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{\infty}}
$$

then w_{n} is uniformly bounded and, by passing to a suitable sequence again denoted by $w_{n}, w_{n} \rightarrow w^{*}$ as $n \rightarrow \infty$ for some $w^{*} \in C(\bar{\Omega})$ with $\left\|w^{*}\right\|_{\infty}=1$. But,

$$
-\Delta w_{n}=\lambda_{n} m(x) \frac{f\left(u_{n}\right)}{\left\|u_{n}\right\|_{\infty}}
$$

and so $-\Delta w^{*}=0$, which is an absurd. This concludes the proof.

3. The particular case $K=1$

In this case, the bifurcation from the trivial solution disappears. Consider

$$
\begin{cases}-\Delta u=\mu u+\lambda m(x) g(u) & \text { in } \Omega, \tag{14}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where

$$
g(u)=u^{2}\left(\frac{1}{1+u}-1\right) \quad \text { or } \quad g(u)=u^{2}\left(\frac{1}{1+u}+1\right)
$$

Proposition 3.1. There exists a positive solution of (14) for $\mu=0$.
In particular, for all $\lambda>0$ there exists a positive solution of (1).

Proof: It easy to prove that this problem is in the setting of some works, see for example [3] and references therein, and then there exists an unbounded continuum \mathcal{S} of positive solutions of (14) bifurcating from $\mu=\sigma_{1}[-\Delta]$ and it satisfies that $\Pi(\mathcal{S}) \supset\left(-\infty, \sigma_{1}[-\Delta]\right)$ (see Theorem 7.1 in [3]). This concludes the proof.

References

1. S. Alama, G. Tarantello, On the semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1 (1993), 439-475.
2. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
3. H. Amann, J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.
4. A. Ambrosetti, P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl., 73 (1980), 411-422.
5. H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Superlinear indefinite problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.
6. H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 553-572.
7. J. Blat, K. J. Brown, Global bifurcation of positive solutions in some system of elliptic equations, SIAM J. Math. Anal., 17 (1986) 1339-1353.
8. K. J. Brown, P. Hess, Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differential Integral Equations, 3 (1990), 201-207.
9. K. J. Brown, B. Ko, The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problem, Nonlinear Anal., 39 (2000), 587-597.
10. N. Y. Các, J. A. Gatica, Y. Li, Positive solutions to semilinear problems with coefficient that changes sign, Nonlinear Anal., 37 (1999), 501-510.
11. S. Cano-Casanova, Compact components of positive solutions for superlinear indefinite elliptic problems of mixed type, to appear in Topol. Meth. Nonl. Anal.
12. S. Cano-Casanova, J. López-Gómez, M. Molina-Meyer, Isolas, submitted.
13. S. Cingolani, J. L. Gámez, Positive solutions of a semilinear elliptic equation on \mathbb{R}^{N} with indefinite nonlinearity, Adv. Differential Equations, 1 (1996), 773-791.
14. P. Clément, G. Sweers, Existence and multiplicity results for a semilinear
elliptic eigenvalue problem, Annal. Scuola Norm. Sup. Pisa, Cl Sci., 4 (1987), 97-121.
15. M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
16. M. Delgado, A. Suárez, On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem, to appear in Proc. Am. Math. Soc.
17. J. L. Gámez, Sub- and super-solutions in bifurcation problems, Nonlinear Anal., 28 (1997), 625-632.
18. R. Gómez-Reñasco, J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.
19. P. Hess, T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5 (1980), 999-1030.
20. P. Korman, J. Shi, New exact multiplicity results with an application to a population model, Proc. Royal Soc. Edin., 131A (2001), 1167-1182.
21. P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.
22. Z. Liu, Positive solutions of a class of nonlinear elliptic eigenvalue problems, Math. Z., 242 (2002), 663-686.
23. J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations, 127 (1996), 263-294.
24. J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems, Comm. Partial Differential Equations, 22 (1997), 1787-1804.
25. J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics 426, CRC Press, Boca Raton, 2001.
26. T. Ouyang, J. Shi, Exact multiplicity of possitive solutions for a class of semilinear, Parts I and II, J. Differential Equations, 146 (1998), 121-156 and 158 (1999), 94-151.

[^0]: *Supported by the Spanish Ministry of Science and Technology under grants BFM20000797 and BFM2003-06446.

