
November 26, 2007 10:33 WSPC/Trim Size: 9in x 6in for Proceedings CM-ASuarez2

SOME ELLIPTIC PROBLEMS WITH NONLINEAR
BOUNDARY CONDITIONS

C. MORALES-RODRIGO AND A. SUÁREZ∗
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This paper concerns with some elliptic equations with non-linear boundary con-
ditions. Sub-supersolution and bifurcation methods are used in order to obtain
existence, uniqueness or multiplicity of positive solutions.

1. Introduction

In this paper we study positive solutions of some nonlinear elliptic problems
with mixed nonlinear boundary conditions. Throughout it, we consider the
following assumptions:

(1) Ω ⊂ IRN , N ≥ 1, is a bounded domain with boundary ∂Ω of class
C2. Moreover,

∂Ω := Γ0 ∪ Γ1,

where Γ0 and Γ1 denote two disjoint open and closed sets in the
relative topology of ∂Ω.

(2) L is a uniformly elliptic differential operator in Ω of the form

L := −
N∑

i,j=1

aij
∂2

∂xi∂xj
+

N∑

i=1

bi
∂

∂xi
+ c, (1)

with coefficients aij = aji ∈ C2,α(Ω), bi ∈ C1,α(Ω) and c ∈ Cα(Ω),
α ∈ (0, 1).
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(3) We define the mixed boundary operator, B, by

Bu :=
{

u on Γ0,
Bu on Γ1,

(2)

where the operator B := ∂ν + b with ν ∈ C1(Γ1, IRN ) an outward
pointing nowhere tangent vector-field and b ∈ C1,α(Γ1).

In this paper we study the following problems where a is a positive or
negative regular function on Γ1 and 0 < q < 1 < p, r. We first study an
elliptic equation with a logistic term on the boundary





Lu = 0 in Ω,
u = 0 on Γ0,
Bu = µu + a(x)ur on Γ1,

(3)

where µ ∈ IR will be regarded as bifurcation parameter. We do not know
previous works in which (3) was analyzed. We characterize the existence,
uniqueness and stability of positive solution in terms of the parameter µ

(see Theorem 5.2).
Second, we study of the sublinear-superlinear equation




−∆u = λu− up in Ω,
∂u

∂n
= ur on ∂Ω,

(4)

where n is the outward normal vector-field of Ω. (The case −ur instead ur

has been studied in Ref. 8.) Equation (4) has attracted a lot of attention
in the last years with λ = 0, see Refs. 6, 10, 18, 21, 22 and 26, among others,
where basically the equation and its corresponding parabolic problem were
analyzed in the particular case λ = 0, and in Refs. 28, 29 where the local
bifurcation was studied. We complete this study giving existence, non-
existence and stability results in function of λ (see Theorem 5.3).

Finally, we study the concave-convex equation




Lu = λm(x)uq en Ω,
∂u

∂n
= a(x)ur en ∂Ω.

(5)

where m ∈ C(Ω) is nonnegative and non-trivial. (5) was studied previously
in Ref. 14 when Lu = −∆u + u, and m ≡ a ≡ 1 by variational methods.
When a < 0 we prove that there exists a positive solution of (5) if and only
if λ > 0. If a > 0 we complete and improve the results of Ref. 14 (see
Theorems 5.4 and 5.5).
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In order to study these equations we employ mainly sub-supersolution
and bifurcation methods. We present in Sect. 2 results related with princi-
pal eigenvalues associated to these problems. In Sec. 3 we prove a general
result of bifurcation from the trivial solution when the bifurcation parame-
ter appears in both equation and boundary. As consequence, we can use it
for equations (3) and (4). For the study of (5) we need a different result
of bifurcation, where the parameter is in front of a non-linear term. In
Sec. 4 we present results concerning to uniqueness, stability and a-priori
bounds of positive solutions for general equations with nonlinear boundary
conditions. Finally, in Sec. 5 we apply the results to the cited equations.

2. Some Preliminaries Results: eigenvalues problems

Along this paper, we use the positive cone

P := {u ∈ C1(Ω) : u ≥ 0, u 6= 0 in Ω ∪ Γ1, Bu = 0 on ∂Ω},
and we say that u is positive if u ∈ P and that u is strongly positive if
u ∈ int(P ) := {u ∈ P : u > 0 in Ω ∪ Γ1, ∂u/∂n < 0 on Γ0}, where n is the
outward normal vector-field of Ω. On the other hand, the mixed operator
B + m, m ∈ C(Γ1), means a similar operator to (2) with b + m instead of
b in B. Finally, given two functions u, v we write (u, v) > 0 if u, v ≥ 0 and
some of the inequalities non-trivial.

Consider the eigenvalue problem
{

Lϕ = λϕ in Ω,
Bϕ = 0 on ∂Ω.

H. Amann 2 proved the existence of a unique simple eigenvalue, the princi-
pal eigenvalue, whose associated eigenfunction can be chosen strongly pos-
itive in Ω. We denote this eigenvalue by σ1[L,B]. σ1[L,D] and σ1[L,N ]
stand for the principal eigenvalues under Dirichlet and Neumann homoge-
neous boundary conditions, respectively.

Some properties of σ1[L,B] have been studied in details by S. Cano-
Casanova and J. López-Gómez 9 (see also Ref. 4), we state some of them.

Proposition 2.1.

(1) σ1[L, B] > 0 if and only if there exists a positive supersolution of
(L,B, Ω), i.e., a positive function u such that Lu ≥ 0 in Ω and
Bu ≥ 0 on ∂Ω with some inequality strict.

(2) The map q ∈ L∞(Ω) 7→ σ1[L + q,B] is increasing and continuous.
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(3) The map m ∈ C(Γ1) 7→ σ1[L,B + m] is increasing and continuous.
(4) Suppose Γ1 6= ∅ and consider a sequence bn ∈ C(Γ1) such that

limn→+∞minΓ1 bn = +∞. Then,

lim
n→+∞

σ1[L,B + bn] = σ1[L,D].

(5) Suppose Γ1 6= ∅, then σ1[L, B] < σ1[L,D].

Consider now the eigenvalue problem




Lϕ = λm(x)ϕ in Ω,
ϕ = 0 on Γ0,
Bϕ = λr(x)ϕ on Γ1.

(6)

We suppose the following condition

m ∈ Cα(Ω), r ∈ C1,α(Γ1), ∃µ ≥ 0 such that (c + µm, b + µr) > 0. (7)

The following result provides us the existence of principal eigenvalue of (6).
The second paragraph gives a characterization of the principal eigenvalue of
(6) when m ≡ 0, i.e., an eigenvalue problem at the boundary, the classical
Steklov problem. In our acknowledge this result is new, although it nearly
follows by the results on Ref. 9 (see Ref. 15 where a particular result is
obtained.)

Theorem 2.1. Assume (m, r) > 0. Then:

(1) Under condition (7), the eigenvalue problem (6) has a unique princi-
pal eigenvalue, γ1[L,B], it is simple and its associated eigenfunction
can be chosen strongly positive in Ω.

(2) If m ≡ 0 and r > 0, then, the principal eigenvalue exists for (6),
denoted by λ1[L,B], if and only if σ1[L,D] > 0. Moreover, its
associated eigenfunction can be chosen strongly positive in Ω.

Proof: The first paragraph follows with the same kind of arguments used
in Theorem 2.2 of H. Amann 3 where Γ0 = ∅.

It is clear that λ1 is a principal eigenvalue of (6) with m ≡ 0 if and only
if µ(λ1) = 0 where µ(λ) := σ1[L,B − λr(x)].

We know by Proposition 2.1 that limλ→−∞ µ(λ) = σ1[L,D], µ(λ)
is a decreasing and continuous function. So, it suffices to prove that
limλ→+∞ µ(λ) = −∞. Suppose the contrary, then limλ→+∞ µ(λ) = −l.
Take k ∈ IR large enough such that k + c(x) > 0 and k > l then, first part
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of the Theorem can be applied to the eigenvalue problem




Lϕ + kϕ = µ̃ϕ in Ω,
ϕ = 0 on Γ0,
Bϕ = λr(x)ϕ on Γ1.

Hence, there is a principal eigenvalue λ̃1 that verifies 0 = µ̃(λ̃1) = µ(λ̃1)+k.
This is a contradiction. ¤

The following result will be very useful along this work.

Lemma 2.1. Assume (7) and (m, r) > 0. Then γ1[L,B] > 0 ⇐⇒
σ1[L,B] > 0

Proof: We know by Theorem 2.1 that γ1[L,B] exists, and it is the unique
zero of the application

µ(σ) = σ1[L− σm, B − σr].

Since µ is a decreasing function, then µ(0) > 0 implies µ(σ0) = 0 for
σ0 = γ1[L, B] > 0 and the contrary. ¤

3. Bifurcation Results for Equations with Nonlinear
Boundary

Consider the nonlinear equation




Lu = λm(x)u + f(x, u) in Ω,
u = 0 on Γ0,
Bu = λr(x)u + g(x, u) on Γ1,

(8)

where f ∈ Cα(Ω× IR), g ∈ C1,α(Γ1 × IR), such that

f(x, 0) = 0 ∀x ∈ Ω, g(x, 0) = 0 ∀x ∈ Γ1, (9)

(m, r) > 0 and satisfy condition (7) and λ is a bifurcation parameter.

Remark 3.1. Due to the condition (7) we can assume, adding µm and µr

to both sides of (8), that (c, b) > 0.

Now, we reduce the equation (8) to a suitable equation for compact oper-
ators. Define Cα

Γ0
(Ω) = {v ∈ Cα(Ω) : v|Γ0 = 0} (analogously it can defined

C2,α
Γ0

(Ω)) and the map K1 : Cα
Γ0

(Ω) → C2,α
Γ0

(Ω) by, given f , K1(f) = u where
u is the unique solution of the problem

{
Lu = f in Ω,
Bu = 0 on ∂Ω.
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We can extend this operator to CΓ0(Ω). Thanks to elliptic regularity results,
this new operator, denoted again by K1, is compact as operator from CΓ0(Ω)
to CΓ0(Ω). We define now K2 : C(Γ1) → C2,α

Γ0
(Ω) by, given g, K2(g) = u

with u the unique solution of the problem




Lu = 0 in Ω,
u = 0 on Γ0,
Bu = g on Γ1.

Again, it can be proved that the operator K2 : CΓ0(∂Ω) → CΓ0(Ω) is com-
pact. Denote by γ : C(Ω) → C(Γ1) the trace operator. Following the same
kind of arguments that in Ref. 3, Lemma 4.1, and denoting M , R, F and G

by the Nemitski operators associated to m(x)u, r(x)u, f and g respectively,
we have

Proposition 3.1. u satisfies u = K1[λM(u) + F (u)] + K2[λR(γ(u)) +
G(γ(u))] if and only if u is a classical solution of (8).

Since we are only interested in non-negative solutions of (8), we rewrite
(8) as a problem with only non-negative solutions. Let u+ = max{u, 0}.
Lemma 3.1. If u is a solution of





Lu = λm(x)u+ + f(x, u+) in Ω,
u = 0 on Γ0,
Bu = λr(x)u+ + g(x, u+) on Γ1,

(10)

then u ≥ 0.

Proof: Suppose that the problem (10) possesses solution u such that there
exists a connected component Ω1 ⊂ Ω of the set Ω′ = {x ∈ Ω : u(x) < 0}
such that u < 0 in Ω1. Observe that ∂Ω1 ∩Γ1 6= ∅. Indeed, if Ω1 ⊂ Ω, then

Lu = 0 in Ω1, u = 0 on ∂Ω1.

Since c ≥ 0, then by the maximum principle u ≡ 0 in Ω1. Hence, ∂Ω1∩Γ1 6=
∅. Due to Lu ≥ 0 in Ω1 and c ≥ 0 then, by the maximum principle, the
minimum of u must be attained on ∂Ω1. As u < 0 in Ω1 and u = 0 in
∂Ω1 ∩Γ0 then, minimum must be attained on ∂Ω1 ∩Γ1, but in such points
we have

∂u

∂ν
= −b(x)u ≥ 0,

contradicting Hopf’s Lemma (see Lemma 3.4 in Ref. 16). ¤

Remark 3.2. Lemma 3.1 is still true if f(x, 0) ≥ 0 and g(x, 0) ≥ 0.
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Consider the maps Φλ,Φt
λ : CΓ0(Ω) → CΓ0(Ω) defined by

Φλ(u) = u−K1[λM(u+) + F (u+)]−K2[λR(γ(u+)) + G(γ(u+))],
Φt

λ(u) = u− tK1[λM(u+) + F (u+)]− tK2[λR(γ(u+)) + G(γ(u+))], t ≥ 0.

Thanks to Proposition 3.1 and Lemma 3.1, u is a classical nonnegative
solution of (8) if and only if Φλ(u) = 0 in CΓ0(Ω).

Assume that

lim
s→0+

f(x, s)
s

= 0 unif. in Ω, lim
s→0+

g(x, s)
s

= 0 unif. on Γ1. (11)

Finally, denote by γ1 := γ1[L,B], and ξ1 its strongly positive eigenfunction
associated.

Lemma 3.2. Let Λ ⊂ IR be a compact interval such that λ < γ1 for all
λ ∈ Λ. Then, there exists δ > 0 such that Φt

λ(u) 6= 0 ∀u ∈ CΓ0(Ω) with
‖u‖C(Ω) = ‖u‖ ∈ (0, δ), ∀λ ∈ Λ and ∀t ∈ [0, 1].

Proof: Suppose the contrary, that there exist λn, tn ∈ IR and un ∈ CΓ0(Ω)
such that λn → λ, tn → t, ‖un‖ → 0 and Φtn

λn
(un) = 0. By Lemma 3.1,

un ≥ 0 and dividing by ‖un‖ we obtain

vn = tnK1

(
λnM(un) + F (un)

‖un‖
)

+ tnK2

(
λnR(γ(un)) + G(γ(un))

‖un‖
)

,

(12)
where vn = un

‖un‖ . Thanks to (11) we have that the terms inside K1 and K2

are uniformly bounded in Ω and on Γ1, respectively. Since K1 and K2 are
compact operators, then the sequence vn is a relatively compact in C(Ω).
Therefore, we can suppose that vn → v in C(Ω). By (11), we have

F (un)
‖un‖ → 0 in C(Ω),

G(γ(un))
‖un‖ → 0 on C(Γ1).

Passing to the limit in (12), we conclude that

v = t[λK1(M(v)) + λK2(R(γ(v)))].

Thanks to un ≥ 0, ‖vn‖ = 1 and by the maximum principle, v is a strongly
positive function in Ω. Due this fact λt = γ1 but this is not possible because
λt < γ1 by the choice of the set Λ. ¤

We are going to use the following notation: for R > 0, let BR = {u ∈
CΓ0(Ω) : ‖u‖ < R}. Then, deg(Φλ, BR, 0) stands for the degree of Φλ on
BR with respect to 0, and i(Φλ, u0, 0) denotes the index of the solution u0

of the equation Φλ(u) = 0.

Corollary 3.1. If λ < γ1, then i(Φλ, 0, 0) = 1.
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Proof: If λ > 0 consider the interval Λ = [0, λ] in the contrary case
consider Λ = [λ, 0]. Thanks to the Lemma 3.2, we know that ∃δ > 0
such that ∀u ∈ CΓ0(Ω) with ‖u‖ ∈ (0, δ) we have Φt

λ(u) 6= 0, ∀t ∈ [0, 1].
Therefore by homotopy invariance of the degree we obtain

i(Φλ, 0, 0) = deg(Φ1
λ = Φλ, Bδ, 0) = deg(Φ0

λ = I, Bδ, 0) = 1.

¤

Lemma 3.3. Let λ > γ1. Then, there exists δ > 0 such that ∀u ∈ CΓ0(Ω)
with ‖u‖ ∈ (0, δ), Φλ(u) 6= τξ1, ∀τ ≥ 0.

Proof: Assume that there exist sequences τn ≥ 0, un ∈ CΓ0(Ω) such that
‖un‖ → 0 and Φλ(un) = τnξ1. Thanks to Proposition 3.1 and similar
arguments that we have employed in Lemma 3.1, we have that un > 0 is a
classical solution of the problem





Lun = λm(x)un + f(x, un) + γ1τnm(x)ξ1 in Ω,
un = 0 on Γ0,
Bun = λr(x)un + g(x, un) + γ1τnr(x)ξ1 on Γ1.

Since by Remark 3.1 we can assume that (b, c) > 0, positive constants
are supersolutions of (L, B, Ω), and so by Proposition 2.1 it follows that
σ1[L,B] > 0, and so that by Lemma 2.1, γ1 > 0. Thanks to conditions
(11), we obtain





Lun > λm(x)un − εun in Ω,
un = 0 on Γ0,
Bun > λr(x)un − εun on Γ1,

Hence, un is strict positive supersolution of (L−λm(x)+ε,B−λr(x)+ε, Ω),
and then

δε(λ) = σ1[L− λm(x) + ε,B − λr(x) + ε] > 0. (13)

On the other hand, we know that γ1 is the unique zero of the continuous
and decreasing function δ(λ) = σ1[L − λm(x), B − λr(x)]. Since λ > γ1

then δ(λ) < 0. Moreover, by Proposition 2.1, we infer that exists ε > 0
such that δε(λ) < 0, contradicting (13). ¤

Corollary 3.2. If λ > γ1, then i(Φλ, 0, 0) = 0.

Proof: Let ε ∈ (0, δ) where δ is given Lemma 3.3. Since Φλ is bounded
on Bε, then by Lemma 3.3, there exists a > 0 such that Φλ(u) 6= taξ1,
∀u ∈ Bε, ∀t ∈ [0, 1]. Hence,

i(Φλ, 0, 0) = deg(Φλ, Bε, 0) = deg(Φλ − aξ1, Bε, 0) = 0.
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¤
Let C ⊂ IR×CΓ0(Ω) be the closure of the set of positive solutions of (8).

Then,

Theorem 3.1. Assume that (m, r) > 0, (7), (9) and (11). γ1 is a bifur-
cation point from the trivial solution, and it is the only one for positive
solutions. Moreover, there exists an unbounded continuum C0 ⊂ C of posi-
tive solutions emanating from (γ1, 0).

Proof: The result follows by Corollaries 3.1 and 3.2 and Ref. 5, Proposi-
tion 3.5. We only remark that the uniqueness of γ1 follows with the same
kind of arguments as in the proof of Lemma 3.2. ¤

Remark 3.3.

(1) Assume that there exist constants c1, c2 ∈ IR such that

lim
s→0+

f(x, s)
s

= c1 unif. in Ω, lim
s→0+

g(x, s)
s

= c2 unif. on Γ1.

Then, we can apply the above result to the problem L1u = λm(x)u+
f1(x, u) in Ω, u = 0 on Γ0 and B2u = λr(x)u + g2(x, u) on Γ1,
where L1 = L − c1, B2 = B − c2, f1(x, u) = f(x, u) − c1u and
g2(x, u) = g(x, u)− c2u, and so f1 and g2 satisfy (11)

(2) The case that m > 0, r ≡ 0 (i.e. the bifurcation parameter only in
the equation) can be included in the Theorem 3.1. Indeed, if b ≥ 0
then (7) is verified. If b < 0 or changes sign we can perform a change
u = eMψv where ψ is the function that appears on Ref. 20, Proposi-
tion 3.4, and the original problem is transformed into a similar new
problem where the new b, say b̃ > 0.

(3) It is also possible to cover the case m ≡ 0, r > 0 (i.e. the bifurcation
parameter only at the boundary). Indeed, if σ1[L,D] ≤ 0 then it
can be proved that bifurcation from the trivial solution does not
occur. Now, assume σ1[L,D] > 0. By Proposition 2.1 there exists
µr with µ enough big such that σ1[L,B + µr] > 0. Then, there
exists a unique solution h > 0 in Ω of the problem





Lh = 1 in Ω,
h = 1 on Γ0,
(B + µr)h = 0 on Γ1.

Now, we perform the change u = hv, which transforms the original
problem into a new problem where the new c, c̃ > 0.
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(4) A similar result can be obtained for bifurcation from infinity.
(5) We have not found in the literature a general result similar to The-

orem 3.1. In Ref. 27 the author studied bifurcation form infinity
for a similar equation with nonlinearities asymptotically linear. In
Ref. 7 the bifurcation method is studied but with nonlinearities only
at the boundary. In both papers, Lu = −∆u + u and b(x) ≥ 0.

In the rest of the section we consider the problem




Lu = λf(x, u) in Ω,
u = 0 on Γ0,
Bu = g(x, u) on Γ1,

(14)

where f ∈ Cα(Ω× IR), g ∈ C1,α(Γ1× IR). Throughout the rest of the section
we assume the following conditions (c, b) > 0, (9) and

lim
s→0+

f(x, s)
s

= +∞ uniformly in Ω, (15)

lim
s→0+

g(x, s)
s

= 0 uniformly on Γ1. (16)

We have that u is a classical nonnegative solution of (14) if and only if
Ψλ(u) = 0 in CΓ0(Ω), where Ψλ : CΓ0(Ω) → CΓ0(Ω) is defined as

Ψλ(u) = u−K1(λF (u+))−K2(G(γ(u+))).

Consider Ψt
λ(u) = u− tK1(λF (u+))− tK2(G(γ(u+))).

Lemma 3.4. If λ < 0 then there exists δ > 0 such that ∀u ∈ CΓ0(Ω) with
‖u‖C(Ω) = ‖u‖ ∈ (0, δ) we have Ψt

λ(u) 6= 0, ∀t ∈ [0, 1].

Proof: Suppose the contrary, then there exist sequences tn ∈ IR, un ∈
CΓ0(Ω) such that tn → t, ‖un‖ → 0 with Ψtn

λ (un) = 0. Dividing by ‖un‖,
we obtain

vn = λtnK1

(
F (un)
‖un‖

)
+ tnK2

(
G(γ(un))
‖un‖

)
,

where vn = un

‖un‖ . Since λ < 0, the fact that ‖un‖ ≥ ‖un‖Γ1 and using (15)
and (16) we get that vn → 0 in C(Ω), a contradiction because ‖vn‖ = 1. ¤

Lemma 3.5. If λ > 0 then there exists δ > 0 such that ∀u ∈ CΓ0(Ω) with
‖u‖ ∈ (0, δ) and ∀τ ≥ 0 we have Ψλ(u) 6= τϕ1, where ϕ1 is a positive
eigenfunction associated to σ1[L,B].
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Proof: Let us assume that for some sequence un ∈ CΓ0(Ω) with ‖un‖ → 0
and numbers τn ≥ 0, Ψλ(un) = τnϕ1. It is clear, by the maximum principle,
that un > 0 and it is a classical solution of the problem





Lun = λf(x, un) + σ1[L,B]τnϕ1 in Ω,
un = 0 on Γ0,
Bun = g(x, un) on Γ1.

Take ε > 0, and M > σ1[L,B+ε]. Since σ1[L,B] > 0 and due to un → 0 in
C(Ω) we have, using (15) and (16), that there exists n0 such that ∀n ≥ n0





Lun = λf(x, un) + σ1[L,B]τnϕ1 > Mun in Ω,
un = 0 on Γ0,
Bun = g(x, un) > −εun on Γ1.

(17)

Therefore, un is a positive strict supersolution of (L −M, B + ε, Ω), then
σ1[L−M, B + ε] > 0, and so M < σ1[L,B + ε], a contradiction. ¤

Theorem 3.2. Under conditions (c, b) > 0, (9), (15) and (16), λ = 0 is
a bifurcation point from trivial solution and it is the only one for positive
solutions. Moreover, there exists an unbounded continuum C0 of positive
solutions emanating from (0, 0).

Proof: It is possible, thanks to Lemmas 3.4 and 3.5, reasoning as The-
orem 3.1 to prove that there exists an unbounded continuum C0. We
only need to prove uniqueness of bifurcation point. By Lemma 3.4 we can
prove that bifurcation from the trivial solution does not occur for points
of the form (λ0, 0), λ0 < 0. Let us assume that there exists a sequence
(λn, uλn) ∈ IR × CΓ0(Ω) verifying (λn, uλn) → (λ0, 0) in IR × CΓ0(Ω) with
λ0 > 0. Then

Luλn = λnf(x, uλn) > λnMuλn , Buλn = g(x, uλn) > −εuλn .

At this point we only need to follow the reasoning of Lemma 3.5 to obtain
a contradiction. ¤

Remark 3.4.

(1) A similar result is obtained under the condition

f(x, s) = m(x)f(s),

with m ∈ Cα(Ω), m(x) ≥ 0, and non-trivial, f ∈ Cα(IR) and
lims→0+

f(s)
s = +∞, instead of (15).
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(2) Simliar results still are true for equations of the form




Lu = h(x, u) in Ω,
u = 0 on Γ0,
Bu = λi(x, u) on Γ1,

where h and i play the same role as g and f , respectively.

4. Stability, uniqueness and a-priori bounds

In this section we present (without proofs) some results concerning to the
stability, uniqueness and a-priori bounds of the solutions of the problem





Lu = f(x, u) in Ω,
u = 0 on Γ0,
Bu = g(x, u) on Γ1,

(18)

where f and g are regular functions.
Let u a non-negative solution of (18). For the study of the stability of

u, we linearize (18) around u and consider the eigenvalue problem:




Lw = fu(x, u)w + γ(u)w in Ω,
w = 0 on Γ0,
Bw = gu(x, u)w + γ(u)w on Γ1.

(19)

Thanks to Theorem 2.1, we know that the eigenvalue problem has a unique
principal eigenvalue γ1(u) = γ1[L− fu(x, u), B − gu(x, u)].

Theorem 4.1. Let u a nonnegative solution of (18).

(1) If γ1(u) > 0, then u is linearly asymptotically stable (l. a. s.).
(2) If γ1(u) < 0, then u is unstable.

In general, determinate the sign of γ1(u) is not easy. Due this fact, we give
the following characterization using the following related problem:





Lw = fu(x, u)w in Ω,
w = 0 on Γ0,
Bw = gu(x, u)w on Γ1.

(20)

Using Lemma 2.1 and Proposition 2.1, we get

Theorem 4.2. γ1(u) > 0 (resp. γ1(u) < 0) if and only if the problem (20)
admits a positive strict supersolution (resp. subsolution).
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With respect to the uniqueness, we have:

Theorem 4.3. Assume f ∈ C1(Ω × [0,+∞)) and g ∈ C1(Γ1 × [0, +∞))
and that

t 7→ f(x, t)
t

, t 7→ g(x, t)
t

are nonincreasing functions in t > 0,

and at least one of them is a decreasing function. Then, problem (18)
admits at most one positive solution.

We assume f ∈ C(Ω× [0, +∞)), g ∈ C1,α(Γ1× [0,+∞)) and there exists
p ∈

(
1, N+2

N−2

)
, q ∈

(
1, N

N−2

)
that verifies

lim
t→+∞

f(x, t)
tp

= h(x), (21)

uniformly in Ω with h ∈ C(Ω) a positive function and

lim
t→+∞

g(x, t)
tq

= i(x), (22)

uniformly on Γ1 with i ∈ C1,α(Ω) a positive function.

Theorem 4.4. Let u ∈ C2(Ω)∩C1(Ω) a nonnegative solution of the problem
(18). Suppose that one of the following conditions is satisfied:

(1) (21), (22) and p 6= 2q − 1;
(2) The maximum of u is attained on ∂Ω, (22), (21) is satisfied for any

function h and p < 2q − 1.

Then, there exists C(p, q,Ω) is a positive constant depending on p, q and Ω
such that for all x ∈ Ω

u(x) ≤ C(p, q, Ω).

Remark 4.1.

(1) The condition p 6= 2q − 1 appears in other papers, see Ref. 12 and
it is necessary to apply a Gidas-Spruck argument.

(2) The proofs of Theorems 4.1, 4.3 and 4.4 can be found in Ref. 23.
Theorem 4.1 complements and improves Theorem 5.6.2 of Ref. 25

and Theorem 3.1 of Ref. 28. Theorem 4.3 is proved in Ref. 24 where
other uniqueness’ results can be found. Finally, a-priori results have
been shown in Ref. 30 with nonlinearities only at the boundary (see
also Ref. 12 for systems) and Ref. 14 for particular nonlinearities in
the equation and on the boundary.
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5. Some applications

In this section we are going to study some equations with nonlinear bound-
ary. The first equation is





Lu = λu in Ω,
u = 0 on Γ0,
Bu = a(x)ur on Γ1.

(23)

where r > 1 and a ∈ C1,α(Γ1).

Theorem 5.1.

(1) Assume that a < 0. (23) has a positive solution if and only if
σ1[L, B] < λ < σ1[L,D]. Moreover, if the solution exists, it is
unique and l. a. s.

(2) Assume that a > 0. If u is a positive solution of (23) then, λ <

σ1[L, B]. If 1 < r < N
N−2 then there exists at least a positive solution

of (23) for all λ < σ1[L,B]. Moreover, all positive solutions of (23)
are unstable.

Proof: (1) Assume a < 0. Suppose u is a nonnegative solution of (23),
then, by the strong maximum principle, u is strongly positive, and so,
λ = σ1[L,B − a(x)ur−1]. Applying Proposition 2.1, we obtain

σ1[L,B] < λ = σ1[L, B − a(x)ur−1] < σ1[L,D].

Now, we construct a sub-supersolution for the problem (23). Fix λ0 ∈
(σ1[L,B], σ1[L,D]). By Proposition 2.1 there exist k1 and k2 such that
σ1[L,B + k2] > λ0 > σ1[L,B + k1]. Now, the pair u = εϕ1 and u = Mϕ2

with ε little and M large enough, and ϕi a strongly positive eigenfunction
associated to σ1[L,B + ki], is a sub-supersolution of (23).

Uniqueness follows by Theorem 4.3. For the stability we use Theo-
rem 4.2. Choose u = u with u solution of (23) then, (L − λ)u = 0 in Ω,
and

u = 0 on Γ0, (B − a(x)rur−1)u > Bu− a(x)ur = 0 on Γ1,

i. e. u is a positive strict supersolution of the linearized problem around u,
(L− λ,B − ra(x)ur−1, Ω).

(2) Assume now that a > 0. If u is a nonnegative solution of (23)
then λ = σ1[L,B − a(x)ur−1] < σ1[L,B]. By Theorem 3.1, there exists
a unbounded continuum C0 emanating from (σ1[L,B], 0). Its direction is
subcritical by the limitation of λ and, under condition 1 < r < N

N−2 ,



November 26, 2007 10:33 WSPC/Trim Size: 9in x 6in for Proceedings CM-ASuarez2

15

Theorem 4.4 proves us that the projection of C0 on λ-axis Pλ(C0) =
(−∞, σ1[L,B]). Positive solutions of (23) are unstable because if u is a
positive solution then,

σ1[L− λ,B − ra(x)ur−1] < σ1[L− λ,B − a(x)ur−1] = 0.

¤

Remark 5.1. In the case a < 0 and thanks to the subsolution that we
have built, it could be proved that for K a compact subset of Ω \ Γ0,

lim
λ→σ1[L,D]−

min
K

uλ = +∞.

5.1. Elliptic equation with a logistic term at the boundary

From the results obtained of the equation (23), we can deduce results for
the equation (3).

Theorem 5.2.

(1) If σ1[L,D] ≤ 0, (3) does not have positive solutions.
(2) Assume σ1[L,D] > 0.

(a) If a < 0, then (3) has positive solutions if and only if

µ > λ1[L,B].

Moreover, if the positive solution exists, is unique and l. a. s.
(b) If a > 0 and there exists a positive solution of (3), then

µ < λ1[L,B]. Moreover, under condition 1 < r < N
N−2 ,

there exists at least one positive solution if µ < λ1[L, B].
Furthermore, positive solutions of (3) are unstable.

Proof: We only need to put λ = 0 and b̃(x) = b(x) − µ in Theorem 5.1.
If a < 0, (3) possesses a positive solution if and only if σ1[L,B − µ] < 0 <

σ1[L,D]. By the definition of λ1[L,B], the result follows. Analogously the
case a > 0. ¤

5.2. A sublinear-superlinear equation

Now, we study the equation (4).

Theorem 5.3. (0, 0) is the unique point of bifurcation from the trivial
solution, and there exists an unbounded continuum C0 of positive solutions
emanating from (0, 0). Moreover,
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(1) Respect bifurcation direction:

(a) If p < r (resp. p > r) then bifurcation direction is super-
critical (resp. subcritical).

(b) If p = r bifurcation direction is supercritical (resp. subcriti-
cal) for |Ω| > |∂Ω| (resp. |Ω| < |∂Ω|).

(2) If p = r and |Ω| ≤ |∂Ω|, (4) does not have positive solutions for
λ ≥ 0.

(3) If p < 2r−1, (4) does not have positive solutions for λ large enough.
(4) If p ≤ r and λ ≤ 0 every positive solution is unstable.
(5) If p < 2r − 1 and r < N

N−2 then every positive solution is bounded
in L∞ norm.

(6) If p > 2r − 1, there exists solution for all λ ≥ 0.

Proof: Due to Theorem 3.1, we have a unbounded continuum C0 of positive
(4) emanating from (σ1[−∆,N ] = 0, 0). We study the bifurcation direc-
tion. Consider λn → σ1[−∆,N ] and its solutions associated un. Then,
multiplying the equation by ϕ1 = c > 0, the eigenfunction associated to
the eigenvalue σ1[−∆,N ], we obtain

(σ1[−∆,N ]− λn)
∫

Ω

unϕ1dx =
∫

∂Ω

ur
nϕ1dσ −

∫

Ω

up
nϕ1dx. (24)

Assume for example that p < r, multiply (24) by ‖un‖−p

C(Ω)
and taking into

account that un

‖un‖C(Ω)
→ ϕ1 in C(Ω) (see the proof of Lemma 3.2), it follows

Sg(σ1[−∆,N ]− λn) = Sg

(
−

∫

Ω

ϕp+1
1 dx

)
,

hence, σ1[−∆,N ] < λn. All results related to local bifurcation can be
proved by the same way.

Let u a positive solution of (4) with p = r. Then, if we multiply the
equation (4) by 1/ur, and integrating by parts, we get

−r

∫

Ω

u−r−1|∇u|2 − |∂Ω|+ |Ω| = λ

∫

Ω

u1−r.

Then, paragraph (2) follows.
Assume that the problem (4) has a positive solution for every λ > 0.

Consider the parabolic problem




wt −∆w = −wp in Ω× (0, T ),
∂w

∂n
= wr on ∂Ω× (0, T ),

w(x, 0) = w0 in Ω.

(25)
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We know by Ref. 6, Theorem 2.3, that if p < 2r − 1 then all positive
solutions of (25) blow-up in finite time for w0 with large L∞ norm. Take
uλ a solution of (4), if we prove that uλ is supersolution of (25) for large
λ, then uλ(x) > w(x, t) for all t ∈ (0, T ) which is a contradiction. In order
to prove this, we only need that uλ > w0. It is clear that for λ > 0 uλ is
supersolution of the problem



−∆v = λv − vp in Ω,
∂v

∂n
= 0 on ∂Ω.

(26)

As solutions of (26) are, for λ > 0, λ1/(p−1) then

uλ > λ1/(p−1). (27)

Now, there exists λ > 0 large enough such that ‖w0‖∞ < λ1/(p−1) < uλ,
this concludes paragraph (3).

Let u a positive solution, we are going to prove that under condition
p ≤ r this solution is unstable. For that, thanks to Theorem 4.2, we have
to show that

σ1[−∆− λ + pup−1,N − rur−1] < 0. (28)

For this fact we choose as subsolution, u = uq, where q will be fixed later.
We have that

∂u

∂n
− rur−1u = (q − r)uq+r−1 on ∂Ω,

and in Ω,

(−∆− λ + pup−1)u = q(1− q)uq−2|∇u|2 + λuq(q − 1) + up+q−1(p− q).

Choosing q such that p ≤ q ≤ r, it follows (28), so that paragraph (4).
By (27), u attains its maximum on ∂Ω. So, paragraph (5) follows by

Theorem 4.4.
For the last paragraph we only need to find a sub-supersolution of (4)

for every λ ≥ 0. We choose as subsolutiona

u = εe−δφ1

where ε, δ > 0 can be chosen later and φ1 is the positive eigenfunction
associated to σ1 = σ1[−∆, D] with ‖φ1‖∞ = 1/2. After some calculations
we obtain

∇u = −εδe−δφ1∇φ1, ∆u = −εδe−δφ1(−δ|∇φ1|2 + ∆φ1).

aThis subsolution appears on Ref. 18 for the particular case λ = 0.
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Thanks to Hopf’s Lemma, it follows that

max
x∈∂Ω

|∂φ1

∂n
| = C1, C1 > 0. (29)

Since, φ1 = 0 on ∂Ω, we only need to verify on the boundary that

δC1 ≤ εr−1. (30)

In the equation we must check that

−δ2|∇φ1|2 − δσ1φ1 + εp−1e−δφ1(p−1) ≤ λ. (31)

Observe that if λ > 0, we only need to choose ε and δ positive and small
enough for that (30) and (31) hold. So that, we are going to study the case
λ = 0. From (30) we choose δ = εr−1

C1
, so that (31) transforms into

−ε2(r−1)

C2
1

|∇φ1|2 − εr−1

C1
σ1φ1 + εp−1e−

εr−1
C1

φ1(p−1) ≤ 0. (32)

Now, due to φ1 = 0 on ∂Ω, but on the boundary ∂φ1/∂n < 0, there exist
some constants C2, C3 > 0 such that

|∇φ1| ≥ C2 en Ω1 := {x ∈ Ω : φ1(x) ≤ C3}. (33)

In this way, in Ω1 for that the condition (32) must be fulfilled we need
that p− 1 > 2(r − 1) thus p + 1 > 2r.

On the other hand, in Ω \ Ω1 we need that p− 1 > r − 1.
The supersolution follows by Ref. 22, it was used also in Ref. 18, in both
cases for the particular case λ = 0. We choose

u := MA[2− (1− φ1)B ]C ,

where M > 0 will be chosen large and A,B and C will be fixed later.
Observe that

∇u = BCMA[2− (1− φ1)B ]C−1(1− φ1)B−1∇φ1,

∆u = BCMA[2− (1− φ1)B ]C−2(1− φ1)B−2·{
(C − 1)(1− φ1)B |∇φ1|2 + [2− (1− φ1)B ]∆φ1(1− φ1)−

[2− (1− φ1)B ](B − 1)|∇φ1|2
}

.

Taking into account (29), on the boundary it must be verified (observe that
φ1 = 0 and so that [2− (1− φ1)B ] = 1):

−BCMA(1−r) ≥ 1
C1

. (34)



November 26, 2007 10:33 WSPC/Trim Size: 9in x 6in for Proceedings CM-ASuarez2

19

For the equation, we need that

λ ≤ −BC(C − 1)[2− (1− φ1)B ]−2(1− φ1)2(B−1)|∇φ1|2
−BC[2− (1− φ1)B ]−1∆φ1(1− φ1)B−1

+BC(B − 1)[2− (1− φ1)B ]−1(1− φ1)B−2|∇φ1|2
+MA(p−1)[2− (1− φ1)B ]C(p−1).

(35)

Take A > 0, C = −1/C1 and B = M b, with b to be fixed later. With
this choice, for condition (34) it will be needed

b + A(1− r) ≥ 0. (=⇒ b > 0). (36)

Now, we study the term (35). First term in the right hand tends to −∞ or
zero (the term (1−φ1)2(B−1) can tend to zero). Second term is similar, we
remind that −∆φ1 = σ1[−∆, D]φ1. Third term tends to −∞ with order
M2b and the last one to +∞ with order MA(p−1), so we have to impose
A(p−1) > 2b. This last inequality and (36) are possible because p+1 > 2r.

¤

Remark 5.2. Except paragraphs (2) and (3), Theorem 5.3 is true for more
general operators L and B.

5.3. The concave-convex equation

Finally, we consider (5). Assume the following conditions

c > c0 > 0 en Ω, with c0 ∈ IR. (37)

We distinguish two different cases: a negative and positive.

Theorem 5.4. Assume that a < 0. The problem (5) has a positive solution
vλ if and only if λ > 0. For λ > 0, it is the unique positive solution, it is
l. a. s. and

lim
λ→0+

‖vλ‖∞ = 0. (38)

Proof: Thanks to the maximum principle (5) does not posses nonnegative
solutions for λ ≤ 0. By Theorem 3.2, there exists a continuum C0 ema-
nating from (0, 0) supercritically. On the other hand, v = Mϕ1 is, for M

large enough, supersolution of (5) where ϕ1 is the positive eigenfunction
associated to σ1[L,N ]. This is true because σ1[L,N ] > 0, which it follows
by (37). Since M can be chosen large enough that Mϕ1 > vλ for λ > 0
small, where vλ denotes the solution of the problem founded by bifurcation.
Then, we have a family of supersolutions such that a solution belonging to
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the continuum is smaller than the supersolution. Now, adapting the proof
of main theorem of Ref. 13, we have that there exists at least a positive
solution for all λ > 0. Finally, for λ > 0

0 = σ1[L−λm(x)vq−1
λ ,N−a(x)vr−1

λ ] < σ1[L−λqm(x)vq−1
λ ,N−ra(x)vr−1

λ ],

so the stability follows. Uniqueness follows by Theorem 4.3. ¤

Theorem 5.5. Assume that a > 0.

(1) From (0, 0) emanates supercritically an unbounded continuum C0 of
positive solutions. Moreover, it is the unique bifurcation point from
the trivial solution.

(2) There exists λ∗ > 0 such that for λ > λ∗ problem (5) does not have
positive solutions.

(3) There exists δ > 0 such that there exists at most a positive solution
uλ of (5) such that ‖uλ‖∞ ≤ δ.

(4) Moreover, if L is self-adjoint and r < N
N−2 then:

(a) Pλ(C0) = (−∞, Λ], for some Λ < +∞.
(b) There exists at least two positive solutions in (0, Λ).
(c) There exists a unique positive solution in (0,Λ) l. a. s.

Proof: Since the proof follows the same lines that Theorem 6.9 in Ref. 11,
we only sketch it.

The existence of the continuum C0 follows by Theorem 3.2. We prove
now that the bifurcation direction is supercritical. Assume that there exist
λn ≤ 0 and uλn ∈ C(Ω), uλn ≥ 0 such that (λn, uλn) → (0, 0) in IR× C(Ω).
Then, for n ≥ n0 we get

Luλn ≤ 0 in Ω,
∂uλn

∂n
= a(x)ur

λn
< εaMuλn on ∂Ω,

where aM = max∂Ω a. On the other hand, since σ1[L,N ] > 0 then, for ε > 0
small, σ1[L,N − εaM ] > 0, and applying the strong maximum principle we
obtain that uλn ≡ 0, a contradiction.

Now, we are going to prove paragraph (2). Suppose that there exists
positive solution uλ of (5) for all λ, in particular for λ > 1. Let v1 be the
unique positive solution of





Lu = m(x)uq in Ω,
∂u

∂n
= 0 on ∂Ω.

(39)
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Since uλ/λ is supersolution of (39) for λ > 1, then uλ > λv1 for λ > 1. On
the other hand, since uλ is a positive solution of (5), we get

0 = σ1[L− λm(x)uq−1
λ ,N − a(x)ur−1

λ ] < σ1[L,N − λr−1ar−1
0 vr−1

1 ],

where a0 = min∂Ω a(x). This is an absurdum. Indeed, since r > 1, we have

lim
λ→+∞

σ1[L,N − λr−1ar−1
0 vr−1

1 ] = −∞.

Now, define

Λ := sup{λ ∈ IR : (5) has a positive solution}.
We have proved that 0 < Λ < +∞. Moreover, it is not difficult to prove
the existence of a minimal solution uλ for all λ ∈ (0,Λ).

The following result shows properties of the principal eigenvalue, de-
noted by γ1(λ), of the linearized around the minimal solution uλ, i.e.





Lξ − λqm(x)uq−1
λ ξ = γ1(λ)ξ in Ω,

∂ξ

∂n
− ra(x)ur−1

λ ξ = γ1(λ)ξ on ∂Ω,
(40)

or equivalently, the unique zero of the map

β(σ) = σ1[L− λqm(x)uq−1
λ − σ,N − ra(x)ur−1

λ − σ].

Lemma 5.1.

(1) If uλ is the minimal solution of (5), then γ1(λ) ≥ 0.
(2) If γ1(λ0) > 0, for some λ0 > 0, then the set of positive solutions of

(5) can be parametrized in a neighborhood of (λ0, u0) by a regular
and increasing function on λ.

(3) If γ1(λ0) = 0, for some λ0 > 0, then the set of positive solutions of
(5) can be parametrized by a new parameter s ∈ (−ε, ε), such that
(λ(s), u(s)) is a positive solution of (5) and

λ(s) = λ0+s2λ2+o(s3), u(s) = uλ0 +sΦ0+s2Ψ0+o(s3), (41)

where Φ0 is the positive eigenfunction associated to γ1(λ0) and∫
Ω

Φ0Ψ0 = 0. Moreover,

Sg(λ′(s)) = Sg(γ1(u(s))). (42)

Finally, if L is self-adjoint,

λ2 < 0, (43)

where λ2 is defined in (41).
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Remark 5.3. Except the first paragraph, the result is true for any positive
solution u not necessarily being the minimal.

Proof: (1) Assume that γ1 < 0 and denote by φ1 the positive eigenfunction
associated to γ1. It is not difficult to show (see Ref. 11) that uλ − αφ1 is
supersolution of (5), for α > 0 small. Since uλ > vλ, where vλ is the unique
positive solution obtained in Case 1 (a(x) < 0), and vλ is subsolution of (5),
it follows the existence of a solution u < uλ of (5), an absurdum because
uλ is the minimal solution.

(2)-(3) Except (43), these two paragraphs follow by el Propositions 20.6,
20.7 and 20.8 of Ref. 1. Using (41) and the definition of Φ0, we get

λ2 =

∫

Ω

λ0
q(1− q)

2
m(x)uq−2

λ0
Φ3

0 +
∫

∂Ω

r(1− r)
2

a(x)ur−2
λ0

Φ3
0

∫

Ω

m(x)uq
λ0

Φ0

.

To determine the sign of λ2, we use the Picone’s identity, see for instance
Lemma 4.1 in 19. Taking Ψ(t) = t2, v = Φ0 and u = uλ0 we get

∫

Ω

λ0(1− q)m(x)uq−2
λ0

Φ3
0 +

∫

∂Ω

(1− r)a(x)ur−2
λ0

Φ3
0 < 0, (44)

whence it follows that λ2 < 0. ¤
As an easy consequence we obtain:

Corollary 5.1. Assume L self-adjoint and let (λ0, u0) be a positive solution
of (5) with λ = λ0 > 0, such that γ1(λ0) = 0 Then, there exists ε > 0
such that for each λ ∈ (λ0 − ε, λ0), (5) has two positive solutions, one of
them l. a. s and the other one linearly unstable. Moreover, there exists a
neighborhood of (λ0, u0) such that (5) does not have a positive solution for
λ > λ0.

Now, we will prove paragraph (3) of Theorem 5.5. Assume that there
exists a second solution

w = uλ + v

where v > 0 and ‖w‖∞ < δ.

Consider v1 the solution of (39). Then, there exists β > 0 such that

0 = σ1[L−m(x)vq−1
1 ,N ] < β < σ1[L− qm(x)vq−1

1 ,N ]. (45)

We claim that

σ1[L− qm(x)vq−1
1 ,N − aMrδr−1] < 0, (46)
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which is an absurdum with (45). In order to prove (46), it suffices to prove
that v is a positive subsolution of (L−qm(x)vq−1

1 ,N−aMpδp−1, Ω). Indeed,
since w is solution of (5) and by the concavity of the map tq, it follows that

Lv ≤ λm(x)quq−1
λ v.

But, since λ1/(1−q)v1 is subsolution of (5), then uλ > λ1/(1−q)v1, and hence

(L− qm(x)vq−1
1 )v < 0.

On the other hand, a(x)[(uλ + v)r − ur
λ] ≤ aMrδr−1v, whence

∂v

∂n
− aMrδr−1v ≤ 0.

¤
The following result shows that all the positive solution of (5) are un-

stable for λ ≤ 0.

Lemma 5.2. If u is a positive solution of (5) for λ ≤ 0, then u is unstable.

Proof: It suffices to prove that

σ1[L− λqm(x)uq−1,N − a(x)rur−1] < 0.

First, observe that the first eigenvalue is well defined because minΩu >

0. It remains to find a positive subsolution of (L − λqm(x)uq−1,N −
a(x)rur−1, Ω).

It is hot hard to show that u = up
λ with 1 < p ≤ r is the desired

subsolution. ¤
We are going to finish the proof of the Theorem. Since r < N

N−2 , by
Theorem 4.4, we have that Pλ(C0) = (−∞, Λ].

We consider the set

Γ := {(λ, uλ) : λ > 0, γ1(λ) > 0}.
We claim that Λ = supΓ. By Lemma 5.1, the uniqueness of solution with
small norm and Corollary 5.1, it follows that sup Γ = λ̃ > 0. It is clear
that λ̃ ≤ Λ. Assume that λ̃ < Λ, then there exists λ0 > λ̃ such that uλ0

is supersolution of (5) for all λ ≤ λ0. Since we always can build small
subsolutions, then there exists a solution uλ for λ < λ0. Since uλ is built
by the sub-supersolution, then γ1(uλ) ≥ 0, and so, by Lemma 5.1 and
Corollary 5.1 we have that there exists λ > λ̃ such that

γ1(uλ) > 0.
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Now, we can continue this solution to the left, we call

Γ0 := {(λ, uλ) : λ < λ}
to this new set. It can occur four possibilities. First, there exists λ2 ∈ (0, λ̃)
such that uλ2 = uλ2 , which is not possible because around a l.a.s. solution
there is not another solution. Second, there exits λ3 such that uλ3 = 0. Re-
call that the unique bifurcation point is λ = 0, so this is not possible. Third,
there exists uλ for all λ ≤ λ0, a contradiction with Lemma 5.2. Finally,
there exists λ4 such that γ1(uλ4) = 0, which is impossible by Lemma 5.1
and Corollary 5.1. This proves that λ̃ = Λ.

With a similar reasoning it can be proved the uniqueness of l. a. s.
positive solution. For the existence of two positive solutions for all λ ∈
(0,Λ) it is used the fixed point index respect to the positive cone. Basically,
the total index is zero and the index of uλ equals one: other positive solution
must exist, see Refs. 11 and 17. ¤
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19. J. López-Gómez, Comm. Partial Differential Equations, 22, 1787 (1997).
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