
Choosing the Right Protocol Stack for an Open and
Flexible Remote Unit

Jaime Benjumea, Verónica Medina, Isabel Gómez, Enrique Dorronzoro, Gemma Sánchez, Sergio Martín
Departamento de Tecnología Electrónica

 Universidad de Sevilla
benjumea@dte.us.es

Abstract-This paper presents some works made in the
development of communications software for an embedded open
core system. By using a Linux-based processor implemented on a
FPGA, we are developing the appropriate software in order to
implement a remote unit to be used in a telecontrol network. We
present an analysis of the physical devices needed and a
performance report of them. After that, we analyze the
requirements of the telecontrol network and the possibility of re-
using already implemented protocols in Linux instead of using
standard telecontrol protocols.

I. INTRODUCTION

In the field of telecontrol or telemetry networks, the use of
closed systems has been common. These systems usually
implement a series of protocols specified by the International
Electrotechnical Commission (IEC) called IEC-60870 [1]. This
document, which specifies a suit of protocols, is divided into
six parts and specifies an application-level protocol and a link-
layer protocol.

However, as these systems are closed, neither software nor
hardware can be freely used. This leads to two problems; first,
the user is usually tied to a vendor; second, it is not possible to
convert or adapt these systems to a specific need as the user
cannot access the source code of software.

Although open source software is widely used in Internet, it
is not very common in the telecontrol networks area [2]. The
main problem is hardware platforms are also closed so the
development of software for them is difficult due to lack of
information. However recent developments in FGPA’s have
made it possible to implement different architectures
resembling a standard workstation (a PC, for example). One of
these developments has lead to the specification of LEON [3],
a SPARC-based processor, which can be implemented on a
XILINX Spartan-3 FPGA. The main advantage with this kind
of systems (some of them are open cores) is the possibility of
developing software using standard development tools.

The “Open Flexible Unit” project (called OFU), funded by
Junta de Andalucía and “Multimedia Operatives Techniques
applied to Supply Electric Networks” project (called
TOMARES), funded by the Ministry of Education and Science

of Spain, seek the development of a remote unit using other
alternatives, distinct from those usually found in current
networks with this kind of devices.

 In the OFU project, the main purpose is to develop a flexible
unit that may be used in various scenarios with no or little
limitations; to make this possible, both hardware and software
are open and, as a result, the programming environment used is
standard so the software can be easily modified. In fact, since
we used Linux as a software development platform, the
software development kit (SDK) used was Eclipse [4], a
standard SDK available in many platforms.

This paper presents some works made within these two
projects. Even though the purpose of the first project is to
design a flexible unit, it is a good idea to treat it as a remote
unit that will operate on a telecontrol network. By doing that
way, we develop something “tangible” that will allow us to
focus on a specific scenario. Additionally, our software design
could also be used in a telemetry network and other scenarios
so, in fact, we are not deviating from initial first project
expectations.

This paper is organized as follows; first, an introduction to
the available hardware platform (section II) and
communication devices (physical layer) used in our tests
(section III) is given. Once hardware platform is defined, the
raw tests made to physical layer devices (section IV) are
described; from these tests, some interesting conclusions are
extracted. Section V analyzes the standard (serial-port-based)
data-link layer protocol and its possibility of use in our
environment (a telemetry/telecontrol network). At the end,
some conclusions are presented.

II. HARDWARE PLATFORM

Although hardware platform is out of this paper’s interest, it
is necessary to give some details because the hardware used
will constrain the development of software. Hardware platform
is an embedded system, a SoC-type design using FPGA. The
FPGA itself has been programmed with an open core called
LEON, an SPARC compliant system capable of running Linux

for SPARC. The processor is an open core (i.e. an open
hardware) meaning that hardware platform is open, so it is the
operating system running over it (Linux Debian for Sparc has
been installed in the system [5])

So, the system we are working with is, in essence, a Linux-
Sparc system. This means that we may use every program
available for this platform and, more important, we are able to
do the software development in a very similar way than any
standard Linux programming environment.

The hardware has been designed to be very portable (in fact,
it should operate as a remote terminal unit) so the final (not the
development) system itself is very simple: no Ethernet
interface, no VGA card … The only available I/O is a RS232-
like port.

III. CHOOSING A PHYSICAL LAYER

Given the hardware constrains mentioned before and the
portable nature of our system, the next step is to choose an
appropriate physical layer for the unit. As it is expected the
system will operate in a wide area (e.g. telecontrol/telemetry
network system), two alternatives were evaluated. First
alternative was to use Radio Frequency (RF) equipment and
operate in any ISM available band; the second alternative was
to use a standard GSM-based modem.

As RF or GSM considered independently are not always
available or desirable, both physical-layers will be used. This
means that our software must be prepared to run under both
physical-layers. In order to simplify the software development,

both systems will be accessed from a RS232 interface which,
after all, is the only I/O port available in our hardware
platform.

The devices used in the tests were the following:

RF equipment: An ICOM IC-V82 (VHF
transceiver) with the digital unit UT-118. This
device is D-star [6] capable, and can be connected
to any RS232 device for data transmission. The
specifications for this equipment can be found at
[7].
GSM equipment: Wavecom Fastrack M1306B
GSM Modem. It is a device behaving as a standard
AT-command modem via a RS232 port. According
to device’s specification, it allows a data
transmission (GSM) up to 14.400bps [8] but this
feature is dependant on the GSM operator used, so
it might not be available (in fact, our tests ran at
9600bps).

We have undergone tests (next section) in order to verify
each option usefulness in our scenario. The maximum
throughput (i.e. bytes/s) calculation given by device’s
manufacturer is not appropriate because in our scenario, frame
size may be small and, in this case, other factors (as
propagation delay and overheading) have a significant impact
in effective throughput.

0

100

200

300

400

500

600

700

800

900

1000

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

31
0

33
0

35
0

37
0

39
0

41
0

43
0

45
0

47
0

49
0

51
0

53
0

55
0

57
0

59
0

DL_PDU Size (bytes)

Sp
ee

d
(b

ps
)

Max speed
Effective speed
50% speed

Fig 1. RF-RF throughput graph

IV. TESTING THE PHYSICAL LAYER

In order to test raw throughput in both physical media, we
designed a program that allows measuring some important
parameters; to be precise we measured the following:

 Real Data Link Protocol Data Unit (DL_PDU)
transmission time: This parameter measures the
time required to transmit a frame, not considering
overhead introduced by the physical layer.

 Observed (effective) DL_PDU transmission time:
This parameter measures the time required to
transmit a frame but in this case, considering the
overhead introduced by the physical layer. This
parameter is important because in the case of RF,
the physical layer adds some headings (preamble
and synchronization stuff) which size might be
significant compared with upper-layers data size.
As we measure time required for a frame to be
received by the other side, effective DL_PDU
transmission time also includes propagation delay
which in some cases, may be significant. So, this
parameter allows analyzing how a physical layer
behaves when handling small data.

Experimental data shown is used to analyze how a physical
layer behaves when handling small data; this is important
because data size in telecontrol network is about 250 bytes.
The data obtained are in figures 1 and 2 and allows coming to
some interesting conclusions:

 Experimental data for RF: Observed (i.e. effective)
transmission speed for RF is shown in figure 1, is
poor. Some references from the manufacture [9]
states that maximum achievable speed for this band
is 950bps. However, our tests indicate that
DL_PDU of sizes less than 100bytes, are effectively
transmitted at no more than 450bps (efficiency is
about 50%). As the device adds not only physical
layer overhead but also data-link layer protocol
overhead (D-star protocol), further testing must be
carried out with other devices implementing this or
other data-link protocol, to see if the same behavior
is present.

 Experimental data for GSM: Effective transmission
speed for GSM (figure 2) is not good either, 50%
efficiency is only reached with DL_PDU larger than
500 bytes which exceeds the 250 bytes of our
typical DL_PDU size. In this case, the poor
performance is caused by the propagation delay
associated with the use of a GSM network; our tests
indicate a propagation delay in the range of 250-
500ms. If we consider that 250 bytes at 9600 bps
are transmitted in about 200ms, the propagation
delay introduced is too long.

So given the experimental data obtained, it seems that with a
DL_PDU payload (data) of 250 bytes, neither of the systems
are very efficient. RF systems are inherently slow whereas
GSM might be faster but it is not very efficient. Anyway, GSM

Fig 2. GSM-GSM throughput graph

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 25 45 65 85 10
5

12
5

14
5

16
5

18
5

20
5

22
5

24
5

26
5

28
5

30
5

32
5

34
5

36
5

38
5

40
5

42
5

44
5

46
5

48
5

50
5

52
5

54
5

56
5

58
5

DL_PDU size (bytes)

Sp
ee

d
(b

ps
)

Max. speed
Effective speed
50% speed

is still capable of effectively transmitting DL_PDU faster than
RF equipments used.

However, it is important to notice that propagation delay
observed in GSM is very high so, in some cases, GSM could
achieve worse results than RF (for small frames, for example).
In fact, some preliminary tests made with other RF equipments
show us that, for small frames, RF might achieve a better
transmission speed than GSM. This behavior must be taken
into consideration in the following stages of the project (now, it
is too early to know the exact frame average size).

V. CHOOSING THE PROTOCOL STACK

In order to make the remote unit to work as a node in a
telecontrol or telemetry networks, a communication system
must be implemented on it, so one can access every node
(remote unit) from a centralized location. There is a protocol
designed specifically for this scenario; the IEC60870-series,
mentioned in the introductory section, specify some protocols
to be used in electrical telecontrol networks. These protocols
are used to transmit telecontrol information within an electric
utility and, on the other hand, might be used in any scenario in
which there is a need to interact between some remote units
and a centralized node (so the remote unit still has its flexible
ability, as required by OFU project).

So, instead of trying to design a new protocol, we have
decided to adapt the IEC protocols in order to suit the
requirements of the projects mentioned before. The IEC
protocols cover the application and the data-link layers in the
OSI model. However, it might be not necessary to implement
or use both because we could use a data-link layer provided by
the operating system installed in our hardware (Linux Debian).

 In addition, current IEC protocols implementations are not
open source so we must implement by ourselves, at least, the
application-layer of the IEC protocols. As for the lower-level
layers, a decision must be made: either use Linux networking
Application Programming Interface (API) or implement these
layers using the IEC specification.

Using Linux as base for the software development gives us a
potential that we usually do not find in other embedded
systems. This means that we could use all the software already
developed and tested including any existing API present in the
Linux Operating System. The main advantage using this option
is the fact that Linux distribution used is completely open
source. What is more, there is a TCP/IP specification of the
IEC protocols that could be used directly over the standard
Linux TCP/IP stack.

Next step is to analyze if it is possible to use this API within
our restricted system. Given the fact that our interface with
outside world (i.e. our “network interface”) is a serial port, the

appropriate link-layer protocol to be used is the Point-to-Point
Protocol (PPP) [10] as it is the standard way to communicate
two computers running Linux thru a serial port. Additionally,
although PPP is the natural data-link layer protocol for TCP/IP
over serial links, it could be used as a data-link layer protocol
by itself (i.e. with any network layer protocol). But before
programming anything some tests must be done in both
interfaces.

A. GSM interface

This interface consists of a standard GSM modem connected
via RS232 to our system. The modem itself behaves as a
standard AT-command modem so it is possible to use standard
Debian applications directly. Speed is restricted to 9600 bps
and propagation delay is very high, so results obtained are not
very compelling; in any case we did some testing.

Preliminary tests shown that speed being achievable were in
the range from 3Kbps to 7Kbps using TCP/IP. These results
were not conclusive because in these tests the GSM-carrier IP
network was used (in the final system, the remote unit would
call the centralized location). While it is true that more tests
should be done, the use of PPP was dropped after the results
shown with RF equipment (see below), so more tests using
PPP and GSM were not necessary.

B. RF interface

As we said in section IV, RF interface used introduces a high
overhead due to the use of the D-star protocol. But in this case
we are not testing RF throughput but its ability to be used with
the PPP implemented under Linux.

In contrast with GSM, RF equipments operate in Half-duplex
mode meaning it is not possible to transmit and receive
simultaneously. This is crucial because PPP requires a Full-
duplex interface in order to operate correctly.

 Tests made show that it is possible to use PPP and RF but if
and only if there are only two nodes in the same radio
frequency and application-layer is aware that a Half-duplex
medium is on operation. This means that although it is possible
to use PPP in some scenarios where network use is somehow
similar to a stop-and-wait protocol, under general conditions it
would not be possible to use PPP in a Half-duplex channel.

No RF throughput tests (with PPP) were made because it
was clear that the main trouble is PPP inability to operate in a
Half-duplex scenario.

C. Discarding PPP

PPP can not be used without being modified in a Half-duplex
scenario. This is true, regardless of the throughput we obtained
in section IV1. Throughput tests will be useful in the upcoming
stages of our project (as we said before), but they are irrelevant
to the fact that PPP can not be used in Half-duplex.

 So, although PPP could be used in GSM, it is not possible to
use Linux PPP implementation in RF. As it is advisable to use
a unique data-link layer protocol, it seems appropriate to
discard the use of Linux PPP in both scenarios (GSM and RF).

 In order to implement a data-link-layer protocol, there are
two options: (a) modify PPP implementation and make it
compliant with a Half-duplex physical medium or (b)
implement IEC data-link-layer.

Both options require to do some programming, in the first
case (a), the modification consists in activating the use of P/F
bit within a PPP-frame, this means modifying PPP
specification; in the second case (b), the implementation of the
IEC data-link layer requires to begin from zero. But even
though time effort could be greater in case (b), our decision
was to implement the IEC data-link layer protocol.

The main reason to do so is the fact that the IEC data-link
protocol is specifically designed for our scenario and PPP is
not. PPP would have been a good option if it did not require to
write a line of code but this is not the case. We believe that
once a programming effort must be done, it is much better to
concentrate on a protocol implementation specifically designed
for our scenario and not to try modifying an already
implemented protocol. It is important to notice that there was a
chance that once modified, the Full-duplex PPP were still not
usable in our scenario.

Currently, the IEC data-link layer implementation is under
test and the IEC application layer implementation is under
development.

VI. CONCLUSIONS

Choosing the right protocol stack for an embedded system to
be used in a telecontrol or telemetry network is crucial for the
development of two research projects we are involved in. As
one of the project’s constrains is that software in use must be
open source, we can not use already implemented protocols
due to its closed nature.

On the other hand, the IEC-60870 protocol suit is an
appropriate application level protocol because it is specifically
designed for telecontrol networks. But the data-link layer could

1 It is worth mentioning that our tests were made using a half-duplex
application layer.

be any of data-link layer protocols already implemented under
Linux.

We have shown that the standard PPP cannot be used as
data-link layer protocol in our scenario because PPP is not
designed to be used in a Half-duplex physical layer. This
prohibits the use of PPP if physical layer is a RF system and as
a result, the use of PPP for the whole system is discouraged.

On the other hand, modifying PPP or using some link layer
protocols as X.25, Amateur X.25 or HDLC, means adapting
(reprogram) parts of the original Linux implementation. As
IEC protocols specify a data-link layer protocol designed for
this specific scenario, we believe it is more appropriate to
implement both the IEC data-link protocol and application
protocol.

As the IEC data-link protocol already implements any
service required by the upper layers, there is no need to have a
device that implements its own data-link layer protocol. This is
important for RF devices because commercially available RF
devices (radio-modems) usually implement a data-link layer
protocol on their own which, for our scenario, only adds
useless overhead. By using the IEC data-link protocol, the only
heading needed is the necessary to support physical layer
synchronization.

On the other hand, it is important to mention that GSM high
propagation delay could make this device slower (in effective
terms) than certain RF equipments, especially if frame size is
small. At the current stage of our project, it is not possible to
know if this will be an issue or not.

Finally, the use of Linux on the final system has allowed us
to make the initial software development in a standard PC,
using a standard SDK. Also, initial tests were made with a PC
(and not the final system) because all programming used
standard C I/O functions. Only in final tests the same source
code program was cross-compiled in the PC in order to be
transferred into the final system. This is good because there is
no need to compile software on the FPGA itself.

To sum up, the stack of protocols to be used in our scenario
will consist on implementing both application and data-link of
the IEC suit instead of trying to adapt already implemented
link-layer protocols. On the other hand, as the implemented
data-link protocol offers all services required by the application
layer, it is not necessary (and even not advisable) to use
equipment that already uses a data-link protocol. However, it
might be difficult to find commercial RF equipment that
implements no data-link protocol at all. Finally, GSM
propagation delay must not be dismissed and should be taken
into consideration if we use faster RF-equipment (as RF could
surpass GSM for small frame size).

ACKNOWLEDGMENTS

This work has been undertaken in the framework of two
research projects: OFU (EXC-2005-TIC-1023) - Open Flexible
Unit funded by Junta de Andalucía and TOMARES (TEC2006-
08430) -Multimedia Operatives Techniques applied to Supply
Electric Networks funded by the Ministry of Education and
Science of Spain.

REFERENCES
[1] International Electrotechnical comission, “International Standard IEC-

60870-5” (6 parts).
[2] Jaime Benjumea, Francisco Pérez, Joaquín Luque: "Encouraging the use

of Open Source Software in high-sensitive environments", CIGRE, Study
Committee D.2, Colloquium. Rio de Janeiro (Brasil), Sep, 2003.

[3] “GRLIB/LEON3 manual”, http://www.gaisler.com
[4] “Eclipse - an open development platform”, http://www.eclipse.org
[5] A. Muñoz, E. Ostúa, P. Ruiz, M. J. Bellido, J. Viejo, A. Millán, J. Juan,

D. Guerrero, “Un ejemplo de implemetación de una distribución Linux en
un SoC basado en hardware Linux”, Actas de las IV jornadas de
computación reconfigurable y aplicaciones (JCRA’07), pp. 85-92, Sep-
2007.

[6] “Dstar system”, http://www.arrl.org/FandES/field/regulations/techchar/D-
STAR.pdf

[7] “ICOM IC-V82 brochure”, http://www.icom.co.jp/world/products/
pdf/IC-V82_U82_LM.pdf

[8] “Wavecom Fastrack 1306M User Manual”,
http://www.wavecom.com/media/files/support/Hard_platforms/Modems/
Fastrack_M1306B/User_manual/Fastrack_M1306B_User_Guide_rev003.
pdf

[9] “ICOM D-star technical specification”, http://www.icomcanada.com/
dstar/dstar7.htm

[10] W. Simpson, “The Point-to-Point Protocol (PPP)”, ftp://ftp.rfc-
editor.org/in-notes/rfc1661.txt

1673

