
Implementing IEC 60870-5 data link layer for an
Open and Flexible Remote Unit

Enrique Dorronzoro ∗, Isabel Gómez∗, Ana Verónica Medina∗,
Jaime Benjumea∗, Gemma Sánchez∗, Sergio Martı́n∗ and David Oviedo∗

∗Departamento de Tecnologı́a Electrónica

Universidad de sevilla, Spain

Email: enriquedz@dte.us.es

Abstract—This paper presents an open source implementation
for a data-link layer protocol specified in IEC 60870, protocol
specification for telecontrol networks. It has been tested over
LEON an embedded system with a Linux based operating system.

Protocol engineering methods have been used in order to
implement the protocol. The standard is in natural language so
a formal language is needed to describe its behavior. A prototype
has also been created to simulate the protocol behavior.

The protocol has been tested on a real environment, using
PCs and LEON as primary and secondary stations, and different
physical layers, serial cable, radio frequency and GSM.

I. INTRODUCTION

Nowadays, communications in telecontrol networks are de-

signed for workstations that are rich in resources, high perfor-

mance microprocessors and numerous kinds of interfaces.

Although there are some implementations for embedded

systems, the main problem with these implementations are

that they are not open source. It implies two problems, the

user is tied to a vendor, and there is no access to the source

code, so no adaptation can be made.

Telecontrol protocol stack usually implements the specifi-

cation provided by the International Electrotechnical Com-

mission (IEC) called IEC-60870 [1]. This document, which

specifies a suite of protocols, is divided into six parts and

specifies an application-layer protocol and a data-link layer

protocol. This standard also defines a combination of the

application layer using TCP/IP transport services.

The Open Flexible Unit project (called OFU), funded by

Junta de Andalucı́a and Multimedia Operatives Techniques ap-

plied to Supply Electric Networks project (called TOMARES),

funded by the Ministry of Education and Science of Spain,

seek the development of a remote unit using other alternatives,

distinct from those usually found in current networks with

these kinds of devices.

OFU is focused on open software and hardware. It has

been specified by LEON [2], a SPARC-based processor, which

can be implemented on a XILINX Spartan-3 FPGA. As its

operating system is Linux based (Linux Debian for Sparc has

been installed in the system [3]), it is possible to develop the

software using PC developing tools. On the same way, testing

and debugging are possible using PCs and embedded systems.

For this project a gcc compiler has been used .

OFU is designed to be flexible even on the physical layer.

As it is designed to work on mobile units, Global System for

Mobile communications (GSM) and Radio Frequency (RF)

have been chosen to evaluate the protocol.

GSM infrastructure has established technical support bases.

In metropolitan areas, GSM service provides high reliability

and transmitting power and coverage are constantly increasing.

RF is offered as an alternative to GSM, it reduces cost to

none and can work on areas where GSM has no coverage.

Speed transmission is lower than using GSM, but the main

problem is that RF only works in half duplex mode.

As the hardware in OFU has been designed to be very

portable, the interface of communication to the physical layer

is via the RS-232 port as it is the only I/O interface. Data are

taken from this port by a modem, walkie... keeping transparent

for the data-link layer.

Data-link layer also has some parameters with variable val-

ues, like number of retries. It is important to study the impact

of these values in a communication, in order to get a criteria

to set them to a specific number in the real implementation.

Point-to-point data-link layer protocol (PPP [4]) has been

designed to operate in full duplex. Due to this limitation,

the development of the IEC 870-5 data-link layer has been

necessary.

This paper is organized as follows; first, it describes the IEC

60870 -5 protocol suite (section 2) followed by an introduction

to the IEC 60870-5 data-link layer protocol (section 3),

once the protocol characteristics are described, implementation

steps are explained (section 4). Testing has been made using

RF and GSM over PCs and LEON (section 5). Finally, some

conclusions are presented (section 6).

II. IEC 60870-5 SERIES

This series follows the EPA (Enhanced Protocol Archi-

tecture) model, where there is only a stack of three layers,

application, data link and physical, compared to the OSI model

that has seven layers.

This stack defines the standards to allow real time telecon-

trol applications to take place. It is mostly used to communi-

cate a primary station with some secondary stations.

It is not a closed standard but there is a set of options. In

order to implement this standard, the first step is decided from

this set the needed functions.

Physical layer is based on ITU-T. It provides binary com-

munication without memory.



Fig. 1. Data-link layer service primitives

Data-link layer is based on a serial transmission bit oriented.

It operates in full duplex or half duplex mode, window size

is equal to one and it is possible balanced or unbalanced

transmission. In unbalanced model stations do not have the

same role. There is a primary station in charge of querying

the secondary ones. In balanced mode, any station can send

data even though the primary station has not polled them.

There are three kinds of services, described in section 3 of

this paper, specified in this layer.

Application layer offers two kinds of services: uncon-

firmed and confirmed. It also defines application functions

that describe the behavior of the standard procedures between

primary and secondary stations.

Although IEC 60870-5 specifies a transmission profile for

messages exchange between a primary and secondary station,

in networks with more than one segment data-link layer

does not work . Because of this, apart from the EPA, IEC

also specifies how to operate with TCP/IP(Internet Protocols).

IEC 60870-5-104 define the similarity between application

functions described in IEC 60870-5-5 and services offered by

TCP/IP.

III. IEC 60870-5 PROTOCOL CHARACTERISTICS

The IEC 60870-5-2 protocol is a specification for a data

link layer. It is used for telecontrol in serial transmissions,

for monitoring and controlling process in wide geographical

areas.

There is a primary station that coordinates the communi-

cation. This station can survey the secondary stations asking

them for information. The windows size of the transmission

is set to 1, this means that the primary station only accepts a

new message, when previous communication is finished, either

with succeed or error.

The IEC 60870-5 can be applied with balanced and unbal-

anced transmissions. Our environment requires an unbalanced

transmission.

As the protocol works on half-duplex mode, it is adecuated

for RF.

There are three different kinds of services and four kinds

of primitives.

The services are:

1) SEND/NO REPLY: Primary station sends a message

to a secondary station. There is no error or success

notification from the secondary station.

2) SEND/CONFIRM: Primary station sends a message to

a secondary station. Primary station waits for a positive

or negative acknowledgment from the secondary station.

In case of error or no notification, an error message is

sent to the application layer.

3) REQUEST/RESPOND: Primary station makes a survey

to the secondary station. If this station has data to

transmit, it sends them to the primary station.

SEND/CONFIRM and REQUEST/RESPOND services im-

ply a dialog between the primary and secondary station. In

this dialog the window size is one.

The primitives (Fig. 1) are:

1) Request Primitive (REQ): a REQ is sent by the appli-

cation layer to request a certain process to the data link

layer.

2) Confirmation Primitive (CON): a CON is sent by the

data link layer to the application layer. It is the response

to a REQUEST primitive.

3) Indication Primitive (IND): an IND is sent by the data-

link layer to inform the application layer that a message

has arrived.

4) Response Primitive (RESP): a RESP is sent by the

application layer as an answer to a previous indication.

When a primitive is sent by the application layer to the

data-link layer, data-link layer generates a service. In case of

a service that requires an acknowledgment the service is sent a

number of times, called retries, until it gets response or it ex-

ceeds the number of maximum retries. This maximum retries

is sent by the application layer in the primitive parameters.

IV. IMPLEMENTATION OF IEC PROTOCOL

In order to develop IEC protocol it is necessary to use

protocol engineering techniques. Using natural language to

describe it creates problems like ambiguity, and it would be

difficult to be sure about its functionality, actually, there is a

extended agreement about using formal description techniques

as an adequate way of describing the behavior of protocols.

Formal Description Techniques (FDT) is used to name any

technique or method that allows to define completely the

behavior of a system (hardware or software) using a language

with formal syntax and semantic. Because of that, it is ideal

to describe the protocol behavior.

The Finite State Machine (FSM) was designed from the

IEC 60870-5 standard after reading and studying this standard.



Fig. 2. Primary and secondary FSM

From FSMs is easy to use a formal language like Estelle.

Estelle is a FDT defined by the International Organization for

Standardization (ISO) for protocol specifications [5].

As shown in Fig 2 primary state machine is composed by

three states. At state 1, the initial state, the station can use

any of the services. Only a service with confirm or response

requirement would change the state.

If a REQ primitive is sent by the application layer, a

send/confirm is generated and a transition to state 2 is trig-

gered. In this state the station waits for an acknowledgment to

return to the initial state and the conversation is over. But if a

confirm (demand) is received a transition to state 3 takes place.

At this state the station continues polling the secondary station

until a respond without demand is received or the connection

with the secondary station is lost.

In secondary state machine, Fig. 2, state 1 is the initial state.

It waits until a service is received. Only the state is changed

when a request has arrived. It generates an IND and waits until

the application layer sends a RESP primitive. If there is more

data to send at the application layer buffer, a transition to the

state 2 is triggered.

Once the protocol has been described without any ambi-

guity next step is to proceed to implement a prototype that

simulates the protocol behavior described by the FSM using

a programming language, in our case C.

As the prototype is going to work on a computer, it is



Fig. 3. Process structure

Fig. 4. Bus access example

needed to simulate the primary and the secondary FSM. This

prototype launches different process for each station involved

in the communication, so there is a process for every secondary

station. Each process can communicate with each other using

UNIX message queues; these queues simulate the physical

channel.

The prototype is composed by a main process that launches

and controls the other processes Fig. 3. This process also

creates the message queues. This main process keeps a track on

every process, and also creates a log file useful for debugging

the behavior of the prototype.

In UNIX message queues, a station can write data in it. But

if any station read from the queue, the message is removed

from it, in this case the simulated channel. Because a bus

topology is trying to be simulated, at the moment a station

writes on the channel, any of the others can read and remove

the data of the queue.

On Fig. 4 the message is written by the primary station,

and read and removed by the station 3, so the other stations

cannot read this message. To prevent this from happening, it

is needed to tag the messages with a number, called address.

So a station only reads a message in the queue if it is tagged

with its address.

It is used the message type on UNIX message queuing to

specify the destination station. Only the destination station

reads and removes the message from the queue. As there are

no broadcast frames, it is possibly to assure that no station

will remove a message destinated to another one.

In real implementation the frames are not tagged. The

physical layer is not in charge of coming to a resolution about

which of the station is the destination of the frame. The shared

medium assures that all stations receive the frames and only

Fig. 6. Testing scenarios

the destination station processes it. Only the prototype works

this way.

However, it is not a problem. As the primary station only

keeps one conversation with one secondary station and there is

no broadcast frame, the behavior of the protocol is the same.

Another important problem when implementing FSMs is

that when a FSM is waiting an event it consumes all time

processor. Signals are used to avoid it, each process running

a FSM remains sleep until an event is triggered. The main

process captures the event and wakes up the appropriated

station.

V. FIELD TESTING WITH GSM AND RF

Once the prototype has been debugged and everything

is working on the simulation environment, the next step is

implementing the protocol on a real system.

For testing the protocol the next scenarios have been devel-

oped: two computers connected via a serial cable, RF modem

and GSM modem, and a computer connected via RF modem

to the LEON embedded system.

As not all the stations play the same role on the commu-

nications, unbalanced mode is used, there is different source

code for a primary station and a secondary station.

In the development there is a process for each station, and

the process code is the one that implements the FSM of that

particular station. Separating the code is easy using this model,

because the code of primary and secondary station are in

different files instead of mixed in just one file.

As the application layer is not implemented yet, it has been

simulated. Primary station queries a secondary station and this

station responds with data: there is 80 primitives to send by the

secondary station, so while there is data to send, the secondary

station requests on demand the primary. The primary queries

the secondary station until there is no demand response.

For the tests with RF and GSM the next devices has been

used.

• RF equipment: An ICOM IC-V82 (VHF transceiver) with

the digital unit UT-118. This device is D-star [6] capable,

and can be connected to any RS232 device for data

transmission, with a data transmission speed of 1200bps.

The specifications for this equipment can be found at [7]



Fig. 5. Simulated example log

• GSM equipment: Wavecom Fastrack M1306B GSM Mo-

dem. It is a device behaving as a standard AT-command

modem via a RS232 port. According to devices specifica-

tion, it allows a data transmission up to 14.400bps [8] but

this feature is dependent on the GSM operator used, so it

might not be available (in fact, our tests run at 9600bps).

As it is mentioned previously on this paper, LEON I/O

interface is a serial interface. In testing field, LEON acts as

a secondary station and communication with the PC, primary

station, is by RF.

A. Testing on serial cable
Channel is error free, so no frames are lost. No timeout is

expired on this test.
A trace from the test is in Fig. 5, the secondary station (SEC

2) reply to a previous query sending data, and because it has

more data to send the reply is a respond (demand). While the

secondary station has data to send, primary station continues

requesting the data.
At the primary station Fig. 5, tabbed to the left in the trace,

is at state 3. A respond (demand) is received, because of this, a

request is generated and sent to the secondary station. Primary

station FSM remains at the same state waiting for the requested

data.
Secondary station, receives the request at state 2 and gener-

ates an IND. Its state changes to state 3 where it waits for the

RESP from the application layer. When the RESP is received

a respond is sent to the primary station and its state changes

to state 1.
When all the data has been transferred, the dialog finishes.

B. Testing on RF
It has been tested RF communication connecting at the serial

ports of two PCs two ICOM IC-V82, and every service has

been tested getting the right results.

As the number of retries is an option available at the

application layer, it is interesting trying to get the optimal

number for best performance.

Channel errors have been simulated in order to control the

quality of the communication. By modifying the source code

it is possible to change an error parameter. This parameter

expresses the percent of frames that are incorrect, both they

are lost or they are wrong.

Changing these parameters (number of retries and error rate)

it is possible to get some statistics in order to decide how many

number of retries are produced for a given error rate. Each time

the number of retries is exceeded data-link layer generates an

indication to the application layer that can handle this error

sending the information again or deciding not to do it.

Number of retries cannot be a very high number because

while the data-link layer is trying to send the frame, com-

munications are stuck. In an unbalanced mode only one

transmission can be working at one moment.

A low number of retries generates a big number of indica-

tions. If the application layer decides to resend the data, the

delay will be increased because application layer would have

to process the data again and send it back to the data-link

layer.

A big amount of traffic is generated for testing purpose,

that is why at the application layer of the secondary station

a big quantity of primitives have been generated. When the

secondary station is polled it sends the information given

by the application layer but if it has more data to send, it

also demand the primary station for being asked for more

information. Once all the data are transmitted, the polling is

finished.

At this point it is recorded how many times the number of

retries is exceeded. Based on this number and the penalty for

an indication it is possible to choose the right limit.



TABLE I
PERCENT OF INDICATIONS GENERATED

Error rate 10% 20% 30% 40% 50%

Retries 0 9 22 29 42 52

Retries 1 1 3 5 12 15

Retries 2 0 2 3 4 7

Retries 3 0 0 0,8 1,3 2

Retries 4 0 0 0,8 1,3 2

Table I has been built from experimental simulation. It

shows the number of indication generated depending on the

percent of errors in the channel.

For example, with a error rate of 20% and a number of

retries set to 1, it gets a 10% of indications. Because there

is no real application layer, it is not possible to measure the

penalty for each indication. But there is important information

on Table I, it is a reference to check the estimated indications

that a transmission would generate. When operating in the

complete protocol stack with the application layer it will be

possible to estimate the appropriate maximum retries.

Choosing a number of retires set to 1, instead of 0 in a

medium with an error percent of 30, the number of indications

will be reduced from a 25% to a 5%. But when trying more

times to get an answer from a station it increases the time

to poll another station. When dealing with important events

stopping too much time on a station could be critical.

C. Testing on GSM

The protocol behavior has been tested over GSM. For the

test two computers have been connected via modem over a

GSM network. The modem is connected through the serial port

and no change has to be made in the protocol implementation

as it follows RS232 standards.

Protocol behavior has been equal than previous test as there

is no application layer, or an important amount of information

to be sent. The only difference is that over RF faster speeds

are appreciated .

D. Testing on LEON(RF)

The protocol has been tested over LEON. As this embedded

system works over a SPARC processor the PC compiled code

it is not executable. A compilation on LEON has been needed.

LEON has a compact flash card, so it is possible to write

the source code of the protocol on it using a card writer. The

access to LEON is via a hyperterminal program, minicom, and

the source is compiled using gcc.

The protocol works the same way as in a PC. As RF and

GSM have the same I/O interface, the protocol behavior is

similar.

VI. CONCLUSSIONS

On this paper an approach to telecontrol network commu-

nications is made. The IEC 60870 standard has been studied

in order to get an open source implementation of a telecontrol

protocol.

Developing an implementation for the IEC 60870-5-2 data-

link layer is the first step in order to develop an application

layer. The protocol implementation of the data-link layer has

been made using FDT. A prototype has been developed in

order to confirm the right protocol behavior.

As it is showed in section V, number of retries is not

a standard value that can be configured the same in each

implementation. It depends on the application layer, and it is a

future line of research. However the protocol works correctly

with different types of communications channels, as point to

point, GSM and RF, and in an embedded systems like LEON

(same PC source code compiled and executed in this platform).

Other future lines of research:

The IEC 60870-5-5 specifies an application layer for the

IEC-60870 protocol suite. It defines basic application functions

that perform procedures for telecontrol systems. The defined

application procedures use standard services of the application

layer. No all services have to be implemented so the required

functions will be chosen depending on where the developed

system is applied.

Future testing implies getting an optimal number of retries

based on the channel error rate, that can be get by SNR

and BER, and based on the application requirements. With

those results it is possible to set minimum retries value in an

automatic mode.

In order to work with other technologies and testing other

options it is also been developed an application layer working

with TCP/IP using transport services instead of data link layer.

ACKNOWLEDGMENT

This work has been undertaken in the framework of two

research projects: OFU (EXC-2005-TIC-1023) - Open Flex-

ible Unit funded by Junta de Andalucı́a and TOMARES

(TEC2006-08430) -Multimedia Operatives Techniques applied

to Supply Electric Networks funded by the Ministry of Edu-

cation and Science of Spain..

REFERENCES

[1] International Electrotechnical comission, International Stardard IEC-
607870-5 (6 parts)

[2] http://www.gaisler.com., GRLIB/LEON3 manual”
[3] A. Muñoz, E. Ostúa, P. Ruiz, M. J. Bellido, J. Viejo, A. Millan; J. Juan,

D. Guerrero, Un ejemplo de implementación de una distribución Linux
en un SoC basado en hardware Linux Actas de las IV jornadas de
computación reconfigurable y aplicaciones (JCRA07), pp. 85-92, Sep-
2007.

[4] http://www.networksorcery.com/enp/default0903.htm, ”PPP RFC.”
[5] Verónica Medina, Isabel Gómez, Joaquı́n Luque, Sergio Martı́n, ES-

TELLE: A Method to Analyze Automatically the Performance of Telecon-
trol Protocol in SCADA Systems

[6] http://www.arrl.org/FandES/field/regulations/techchar/D-STAR.pdf,
”Dstar system”

[7] http://www.icom.co.jp/ world/products/pdf/IC-V82 U82 LM.pdf, ”ICOM
IC-V82 brochure”

[8] http://wavecom/media/files//support/Hard platforms/Modems/Fastrack
M1306/User manual/Fastrack M1306B Userguide rev003.pdf , Wavecom
Fasttrack 1306M User Manual


