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Abstract

The internal organization and functioning of living cells, as well as their cooperation in tissues and higher order structures, can 
be a rich source of inspiration for computer science, not fully exploited at the present date. Membrane computing is an answer to 
this challenge, well developed at the theoretical (mathematical and computability theory) level, already having several 
applications (via usual computers), but without having yet a bio-lab implementation. After briefly discussing some general issues 
related to natural computing, this paper provides an informal introduction to membrane computing, focused on the main ideas, the 
main classes of results and of applications. Then, three recent achievements, of three different types, are briefly presented, with 
emphasis on the usefulness of membrane computing as a framework for devising models of interest for biological and medical 
research.
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. Natural computing

In some sense, the whole history of computer sci-
nce is the history of continuous attempts to discover,
tudy, and, if possible, implement computing ideas, mod-
ls, paradigms from the way nature – the humans in-
luded – computes. For instance, when defining the
omputing model which is currently known as Tur-
ng machine and which provides the standard defini-
ion of what is mechanically (that is, algorithmically)
omputable, Turing (in 1935) explicitly wanted to ab-
tract and model what a clerk in a bank is doing when
omputing with numbers. One decade later, McCullock,
itts, Kleene founded the finite automata theory start-
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ing from modelling the neuron and the neural nets; still
later, this led to the area called now neural computing
(see, e.g., Anderson, 1996)—whose roots can be found
in unpublished papers of the same Turing (see, e.g.,
http://www.AlanTuring.net; Teuscher, 2001). Genetic
algorithms and evolutionary computing/programming
(Koza and Rice, 1992) are already well established (and
much applied practically) areas of computer science.
About 1 decade ago, the history making Adleman’s ex-
periment of computing with DNA molecules was re-
ported (Adleman, 1994), proving that one can not only
get inspired from biology for designing better algorithms
for electronic computers, but one can also use a biologi-
cal support (a bio-ware) for computing. In the last years,
the search of computing ideas/models/paradigms in biol-
ogy, in general in nature, became explicit and systematic
under the general name of natural computing, and this
research area is already well established, with new jour-
nals, series of books, research groups, etc., devoted to it.
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2. Starting from the cell

Membrane computing is a part of this general intel-
lectual journey. Its starting point was the fact that the
cell is the smallest living thing, and at the same time it
is a marvellous tiny machinery, with a complex struc-
ture, an intricate inner activity self-regulated in a quite
efficient way, and a well defined relationship with its
environment—the neighboring cells included, all these
polished during billions of years of evolution. Then, the
observation is that computer science has not sufficiently
considered the cell as an inspiration for computing mod-
els. For instance, the much promising area of DNA com-
puting does not even “see” the cell, but only takes the
DNA molecule as a “processor”, without considering the
natural environment where this “processor” evolves.

Thus, the challenge is to take the cell itself as a sup-
port for computations, to find in the structure and the
functioning of the cell seen as a whole (here we have the
same ambition as systems biology, Kitano, 2002; Tomita,
2001) those elements useful for computations. Compu-
tations in general, at the mathematical level, but with
the hope to bring something useful to practical comput-
ing, either in the same style as genetic algorithms and
neural computing, of improving the use of the existing
computers, or proposing new types of electronic com-
puters, or, possibly (but not very probably at short term)
to lead to ways to use the cells themselves as computing
supports (much similar to the way DNA computing uses
DNA molecules as a genuinely new type of hardware).

plexity of the computation). Then, interesting questions
appear in connection with the organization of cells into
tissues, not to speak about the way the neurons cooperate
in the brain.

All these were noticed several years ago in various
contexts. We recall in this respect a significant paragraph
from Butler et al. (1998):

“Another important feature of computation in biolog-
ical systems is compartmentalization. This controls the
stochastic nature of information being transferred by ran-
dom walks (Hong, 1995). Compartments separate differ-
ent reactions and reduce the search time for an enzyme to
find a substrate. Compartments are formed from mem-
branes which perform a dimensional reduction increas-
ing the likelihood of a signalling molecule reaching a
receptor. The membranes which form compartments can
form distributed systems of control involving conforma-
tional or electronic state changes in receptors or chan-
nels. Another feature is diffusional information process-
ing involving concentration of second messengers such
as cyclic AMP or cyclic GMP acting as fields which con-
trolling nerve impulse activity. A network of cells is a
parallel distributed network which relies on both local
and global interactions to perform associative learning.
The highly interconnected nature of systems of com-
munication in cells allows the cells to recognize com-
binations of environmental inputs and stabilizes the cell
signalling pathways (Bray, 1990). In this way proteins in
the cell can act as both a cellular memory and as a paral-
Note that there was no initial intention to provide mod-
els of real cells, models useful to biologists—although
nowadays the applications in biology are one of the main
directions of investigation in membrane computing (we
will come back to this important issue in the end of this
paper).

Staying at the level of computability theory and of
existing computers, there are many things which we
can learn from cells. Distribution, parallelism, non-
determinism, (de)centralization, (non)synchronization,
coordination, communication, robustness, scalability,
self-healing are only a few keywords related to current
difficulties of computer science which have found (some-
times surprisingly efficient) solutions in biology. For in-
stance, a problem which cannot be easily solved in terms
of silicon engineering, but which was very efficiently
solved by nature at the level of the cell is related to the
coordination of processes, the control pathways which
keep the cell alive, apparently without a high cost of
coordination (in parallel computing the communication
complexity, needed for coordinating parallel computing
agents, is sometimes higher than the time and space com-
lel distributed processing network. These networks per-
form information processing tasks such as amplification
of small signals or adaptation when receptors become
sensitized to large signals. To summarize, the individ-
ual components or devices used in biological systems
are much smarter than digital devices. They can perform
operations like counting or have internal memories. In
many cases they can perform highly specific shape based
recognition; in other cases fuzzy categorization. They
act in stochastic networks to perform distributed pro-
cessing. Based on these observations, it is possible to
propose some system considerations for unconventional
biological computation.”

Rather convincing, with a broad panoply of sugges-
tions for cell-inspired computability.

Membrane computing can be seen as a possible an-
swer to this general challenge. The systematic investiga-
tions started (in (Păun, 2000)), with the paper circulated
already through Internet already in 1998; a comprehen-
sive introduction can be found in Păun (2002) and recent
information at MC Website (2005); a presentation of ap-
plications can be found in Ciobanu et al. (2005)) with the



explicit goal of abstracting computing models from the
structure and the functioning of a living cell. Because the
membranes play a crucial role both in the cell architec-
ture (from separating it from the environment to defining
the internal compartmentalization) and in cell biochem-
istry, the theory developed under the name of membrane
computing. The literature of the domain is very large
(already in 2003, Thompson Institute for Scientific In-
formation, ISI, has qualified the initial paper as “fast
breaking” and the domain as “emergent research front
in computer science”—see http://www.esi-topics.com)
and the progresses rather rapid, so that the presentation
here is general, focusing only on central aspects (notions
and results) and on some recent developments, with a
special emphasis on applications. Especially, we want to
illustrate the fact that membrane computing is a useful
framework for devising models of interest for biologists
and for medical research. These applications are based
on the fact that many biological processes (especially,
at the level of the cell) can be successfully approached
in terms of multiset processing, with results at least as
relevant as those provided by the tools based on differ-
ential equations, and with a series of advantages related
to scalability, understandability, modularity, etc.

We will discuss these important issues in some detail
after introducing the basic notions of membrane com-
puting.

3. Elements of membrane computing
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Fig. 1. A membrane structure.

selves chosen in a non-deterministic manner. In this way,
we can define transitions from a configuration to another
configuration of our system, hence we can define com-
putations. A computation which halts (reaches a config-
uration where no rule is applicable) provides a result, for
instance, in the form of the number of objects present in
the halting configuration in a specified compartment, or
in the form of a special object, yes or no, sent to the en-
vironment in the end of the computation (thus answering
a decision problem the system had to solve).

There are many variants of this very basic type of a
computing device, currently called membrane system or
P system. In all cases, one of the fundamental ingredients
is that of a membrane structure.

The meaning of this notion is illustrated in Fig. 1 and
this is what we can see when looking to a cell through
“mathematical glasses”, hence abstracting as much as
necessary in order to obtain a formal model, and then
generalizing, for instance, considering arbitrarily many
membranes arranged in arbitrarily many levels.

The typical evolution rule is of a multiset-rewriting
type, hence of the form u → v, where u and v are multi-
sets of objects (this is much like a usual equation describ-
ing a chemical reaction), with several variants. A rule
of the general form is called cooperative, when u con-
sists of a single object the rule is called non-cooperative
(this corresponds to context-free rules in Chomsky gram-
mars), while an intermediate (interesting) case is that of
catalytic rules, of the form ca → cv, where c is an ob-
ject which behaves like a catalyst, it never changes, but
The basic idea is to consider a distributed and paral-
el computing device, structured, like a cell, by means
f a hierarchical arrangement of membranes which de-
imit compartments where various chemicals (we call
hem objects, to be free of any interpretation) evolve ac-
ording to local reaction rules. These objects can also
ass through membranes, under the control of specific
ules. (We ignore at this stage the fact that many reactions
hich take place in a cell are controlled by proteins em-
edded in membranes, that the membranes not only de-
imit “protected reactors”, but they are also supports for
eactions. This aspect, of reactions taking place on mem-
ranes, central for instance to brane calculi developed in
ardelli (2005), started to be considered also in mem-
rane computing, and we will return to this case later.)
ecause the chemicals from the compartments of a cell
re swimming in an aqueous solution, the data structure
e consider is that of a multiset—a set with multiplicities

ssociated with its elements. Also, in close analogy with
hat happens in a cell (see, e.g., Alberts et al. (2002)), the

eaction rules are applied in a parallel manner, with the
bjects to evolve by them and with the reactions them-
only helps object a to get transformed into multiset v.
The objects from multiset v can have associated target
indications, of the form out (meaning that the respective
object has to exit the membrane where it is produced, thus
becoming an element of the surrounding region—the en-
vironment, if the rule was applied in the skin region), or
in (meaning that the object has to enter one of the imme-
diately inner membranes, non-deterministically chosen,

http://www.esi-topics.com


if any exists, otherwise the rule cannot be applied). Thus,
a typical rule is of the form ab → c(d, out)(e, in): a re-
acts with b, and as result of the reaction we produce one
c (which remains in the same region where the reaction
takes place), one d which goes out, and one e which goes
to an inner membrane. The target indications play an im-
portant role, as they “integrate” the “computing agents”
from compartments into a “computer” which behaves as
a whole, as a system.

From this point of view, of ensuring the communi-
cation among parts, a very important type of rules are
those which correspond to symport and antiport trans-
membrane processes known in biology: we write (x, in)
or (x, out) for a symport moving the objects of multi-
set x inside, or outside a membrane, respectively, and
(x, out; y, in) for an antiport which moves the objects
of x outside at the same time with bringing the ob-
jects of y inside. (Note that we consider symport and
antiport rules of a general form, passing through a mem-
brane not only couples of objects, as usual in biol-
ogy, but multisets of objects which can be arbitrarily
large.)

Furthermore, we can have rules for handling mem-
branes (creating, destroying, dividing, merging, etc.), the
rules can have promoters or inhibitors, their use can be
regulated by a priority relation, the permeability of mem-
branes can be controlled by the used rules (no object can
pass through a membrane which is made non-permeable,
and then rules which ask for moving objects through
such a membrane cannot be used), and so on and so

discrete model is augmented with continuous ingredi-
ents), which leads to a hybrid model, able in this way to
capture not only the multiset rewriting-like features of
biochemical reactions themselves, but also quantitative
features, usually handled in applications by systems of
differential equations.

For details, both concerning the theoretical develop-
ments and the applications, we refer the reader to the
monograph (Păun, 2002), the volume (Ciobanu et al.,
2005), and to MC Website (2005).

We close this section by mentioning that besides cell-
like P systems, there were considered also tissue-like
and neural-like systems, inspired by the way the cells
cooperate in tissues and the neurons work together in
neural nets. A related notion is that of population P
systems (Bernardini and Gheorghe, 2004), with inspi-
ration in skin-like cell structures, populations of bacte-
ria, etc. We do not enter into details here about such
systems, with cells placed in the nodes of an arbitrary
graph (dynamically defined in the case of population
P systems), although certainly they deserve our atten-
tion (in particular, variants of these types of systems
deserve to be considered as suggested by the liver or-
ganization and functioning, with appealing differences
from other tissues and multi-cell structures—see the pre-
sentation of liver computing-like structures in Paton et
al., 1992). Recently, population P systems were used in
modelling quorum sensing in bacteria and the results are
rather encouraging—see details in Terrazas et al. (2005)
and Bernardini et al. (2005).
forth, either with a biological or with a mathematical
motivation.

In short, we abstract as much as possible/necessary, in
order to obtain a mathematical model which is intended
to be (i) minimalistic (as elegant as possible, contain-
ing as restricted ingredients as possible), but (ii) with-
out losing the biological inspiration (hence remaining
as “realistic” as possible), with (iii) good computability
properties (as powerful as possible, in comparison with
standard models of computing – Turing machine and its
restrictions, and as efficient as possible – useful in solv-
ing computationally hard problems in a feasible time).
All these are contradictory criteria, so that many mod-
els were proposed, focusing on one or another of these
goals.

Then, when dealing with biological applications, fur-
ther details should be added, especially related to the
reaction rates, probabilities with which each rule is ap-
plied, and which can be statically associated with rules or
can be dynamically computed depending on the concen-
tration of reactants. In this way, quantitative ingredients
are added, expressed by real numbers (thus, the basic
4. Computing power: easy universality

In language and automata theory, the intuition is that
a computing model can reach the power of Turing ma-
chines as soon as it has (1) enough context-sensitivity,
and (2) erasing capabilities. The first feature ensures the
possibility to send information at any distance in the data
structure used (in general, a string of abstract symbols,
like on the tape of the Turing machine), thus provid-
ing a way to control the computation in a precise way,
while the erasing makes possible the use of an arbitrar-
ily large workspace. Both these features are plentifully
available in a cell: the biochemical reactions are of the
form u → v, with several reactants in u, while the sym-
port/antiport processes always involve at least two chem-
icals, which, in both cases, means context-sensitivity;
then, erasing can be simulated by throwing waste prod-
ucts into the environment, or by storing objects in a
“garbage collector”, a membrane especially designed for
such a job.



Consequently, in some sense, it should be no won-
der that most classes of P systems considered so far are
computationally universal, equal in power with Turing
machines.

For instance, this is true for multiset-rewriting sys-
tems with catalytic rules (with two catalysts, see Freund
et al., 2005), and also for symport/antiport P systems,
even with rules of rather small sizes (see Alhazov et al.,
2005).

The conclusion is that the cell is a very powerful
“computer”. In particular, computing by communica-
tion only (by symport/antiport rules) is already universal,
which is a result with a more general significance, stress-
ing once again the role of compartmentalization (hence
of membranes) and of communication.

These results can have both pleasant (mathematical)
and not so pleasant (practical) consequences. On the
good side, if we are interested in devising (maybe, im-
plementing) computing models inspired from the cell,
then, it is just natural to look for powerful computers, if
possible, able to do whatever a Turing machine can do;
moreover, in order to have a programmable computer
we need a model which has universality properties, in
the same sense as proved already in 1935 by Turing for
his machines (informally, a Turing machine is universal
if it can simulate any other given machine, as soon as a
code of the particular machine is introduced as an input
to the universal machine). On the other hand, the only
natural definition and proof of universality for Turing
machines and their restrictions are encountered for the
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5. Computational efficiency

One of the explicit goals of various branches of nat-
ural computing is to find ways to address computation-
ally hard problems (typically, NP-complete problems)
in order to solve them (in a strict sense or in a proba-
bilistic sense) in a feasible time. In turn, one of the most
promising approaches towards such a goal is parallel
computing, as best illustrated by DNA computing.

The rules of a P system are used in parallel, that
is, in each membrane all objects evolve simultaneously,
and, in turn, at the level of the system all membranes
evolve simultaneously. This is a good degree of paral-
lelism, which, however, is not sufficient to devise poly-
nomial time solutions to NP-complete problems (un-
less P = NP, which is not at all plausible); the proof
of this result can be found in Zandron et al. (2000).
However, biology suggests operations with membranes
which, sometimes surprisingly, make possible polyno-
mial (often linear) solutions to NP-complete problems.
Among these operations, the most investigated so far
in membrane computing were membrane division and
membrane creation. While membrane division brings a
further level of parallelism, making possible the expo-
nential growth of the number of membranes (hence of
separated computing compartments) in polynomial time,
membrane creation has a more subtle effect, also en-
countered in the case of membrane division: structuring
the working space. For instance, by rules of the form
a → aa, allowed at the theoretical level, in n steps we
uring machines themselves. Thus, as we said before,
rom a mathematical and computational point of view,
he fact that most P systems are universal is a rather at-
ractive result.

However, there is no immediate hope of implement-
ng, neither in a lab, nor on an electronic support, a P
ystem as a programmable computer. On the other hand,
embrane computing is used more and more as a frame-
ork for modelling biological processes. In this case,
too powerful model has a major drawback: most de-

idability questions about the model evolution are not
lgorithmically solvable.

This conflict, between the intrinsic high power of cell-
ike computing systems and the practical need for de-
idable models, is a major motivation for research in
embrane computing. For immediate applications, this

onflict is avoided by looking for computer experiments,
ot for analytical results: computer programs are written
hich simulate the P systems modelling given biological
rocesses, and the evolution of the systems is followed
n silico for a large number of steps, looking for regular-
ties, trends, interrelations, statistics.
can produce 2n copies of a; this is an exponential space,
which, according to the theorem in Zandron et al. (2000),
is not sufficient for essentially speeding-up computa-
tions. However, introducing a structure/localization by
means of membranes which separate the exponentially
many copies of a leads to efficiency results as mentioned
above. Many problems known to be NP-complete (in cer-
tain cases, even problems which are PSPACE-complete)
were proven to be solvable in polynomial time by means
of membrane systems provided with membrane division
or membrane creation. Among them, there are both de-
cision problems, with yes/no answers (such as SAT, the
satisfiability of propositional formulas in the conjunc-
tive normal form), and optimization numerical problem
(such as CAP, the common algorithmic problem: let S
be a finite set and F be a family of subsets of S; find
the cardinality of a maximal subset of S which does not
include any set from F).

We do not enter here into details, but we refer,
e.g., to Pérez-Jiménez et al. (2002) and Pérez-Jiménez
(2005), and to the chapter from Ciobanu et al. (2005)
devoted to this topic. Anyway, these results are of a



clear theoretical interest (new characterizations of the
Turing complexity classes were given, as well as of
the P = NP problem, intriguing borderlines between
efficiency and non-efficiency were found—with many
challenging open problems still waiting to be consid-
ered), without having yet a practical consequence as
long as no implementation of membrane systems is
available.

6. A glimpse to applications

As mentioned above, membrane computing was ini-
tiated having as primary goals computability in general
and natural computing in particular, without aiming to
faithfully model biological facts in such a way to pro-
vide a modelling framework for the use of biologists.
However, after significantly developing at the theoreti-
cal level, the domain started to be useful for biological
and medical applications, in general in the following sce-
nario: a membrane computing model is constructed for a
given process taking place in the cell, a program is writ-
ten (or one of the many computer programs available is
used) for simulating the model, and then computer ex-
periments are carried out, tuning certain parameters and
playing with the inputs, thus generating (numerical or
graphical) data of interest for the study of the process
considered.

The approach has a series of features which answer
several of the limitations or difficulties of models based
on differential equations: modularity (intrinsic to a mem-

one adequate (approximating finite by infinite is useful,
provided that the “finite” is large enough).

On the other hand, as mentioned also earlier, the best
results are obtained when the intrinsically discrete mod-
els of membrane computing are supplemented with con-
tinuous ingredients, mainly in the form of numbers asso-
ciated with rules (given in advance or computed at each
step of the evolution of the system) and which control
the rule applications. Reaction rates, stoichiometric co-
efficients, kinetic constants, probabilities, etc. were con-
sidered in this respect.

All these means that the mathematical minimalism
should be forgotten when dealing with applications.
Similarly, the computability-specific features should be
abandoned. For instance, when modelling a biological
process we are no longer interested in halting compu-
tations and in their results, but in the evolution itself
of the process, which, in general, should be endless. A
dynamical systems approach is then necessary, and a re-
lated theory started to be elaborated, especially by the
efforts of Verona group (see Manca, 2004; Manca et al.,
2004, and the corresponding chapter from Ciobanu et
al. (2005)). A typical application in biology/medicine
where such a hybrid P system model is involved will be
discussed below.

Besides applications in biology, membrane comput-
ing was considered also in other areas, such as computer
graphics (models based on compartmentalized Linden-
mayer systems proved to be more powerful and more
efficient than those using classic L systems), cryptogra-
brane system, crucial in biology, but not specific to sys-
tems of differential equations), scalability/extensibility
(further membranes and/or evolution rules can be added
to an existing system without essentially changing the
way of working with the system), understandability (evo-
lution rules directly correspond to chemical reactions,
hence they are totally “transparent” for biologists), pro-
grammability (a rewriting-based model can be easily
transformed into a program, with certain programming
languages, such as CLIPS, perfectly adequate to such a
job), while preserving other good features of differential
equations models, such as non-linearity of evolution.

Of course, this does not mean at all that membrane
computing should substitute differential equations in all
applications. Membrane computing – in general, multi-
set processing by means of rewriting-like rules – is a tech-
nique complementary to systems of differential equa-
tions, in many cases as relevant as differential equations,
in most cases much easier to use, and in some cases the
unique technique which can be used; this last situation
is met, for instance, when we deal with small popula-
tions of reactants, such that a discrete model is the only
phy, modelling in a uniform way parallel architectures,
in linguistics, economics, etc. A very promising applica-
tion, in devising approximate algorithms for hard opti-
mization problems, will be also briefly presented below.

7. Working with objects on membranes

We pass now to describing three recent results, start-
ing with a theoretical one, which bridges brane calculi
Cardelli (2005) and membrane computing. Brane cal-
culi are somewhat dual to membrane computing, as they
work with objects placed on membranes (corresponding
to proteins attached to or embedded in the real mem-
branes), with operations with membranes controlled by
these objects, and trying to stay as close to the biology
as possible; also the tools and the goals are different—
process algebra and systems biology, respectively. How-
ever, the two areas can easily be integrated in an ex-
tended membrane computing working both with objects
in the compartments and bound to membranes. In par-
ticular, the main operations with membranes considered
in the two calculi developed in Cardelli (2005) can be



easily formalized in terms of P systems, and then used
in building computing models as standard in membrane
computing.

This was done in Cardelli and Păun (2005) for four of
the six operations from Cardelli (2005): pino, exo, mate,
drip. We recall here only the last two operations:

mate : [ ]ua[ ]v → [ ]uxv, drip : [ ]uav → [ ]ux[ ]v,

where the membranes are represented by square brack-
ets, a is a protein, u, v, and x are multisets of proteins
which are supposed to be placed on the respective mem-
branes (and thus control the operations; the fact that we
again consider multisets reminds of the fact that the cur-
rently accepted model of biological membranes is the
fluid-mosaic one, with the possibility of proteins to mi-
grate on the surface of membranes). The meaning of
these rules should be obvious: in the first case, the two
membranes merge and form a unique membrane, with
all proteins on it; in the second case, the membrane is
split into two membranes, with the proteins specified by
u and v distributed as indicated by the rule and all other
proteins of the starting membrane, not specified in the
drip rule, distributed non-deterministically on the two
new membranes; in each case, protein a is replaced by
the proteins specified by x.

We stress the fact that these operations are biologi-
cally realizable, they are chosen and formulated in such
a way to directly correspond to processes taking place
in a cell. This makes rather interesting the result ob-
t
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with the semantics as suggested by the following rules

pino : [P]uav → [[ ]uxP]v,

exo : [[P]uaQ]v → P[Q]uxv,

where P and Q represent the contents of the regions
where they appear.

In Păun (2005) the interpretation of these rules was
slightly changed, as suggested below (because the new
semantics do not correspond to the operations pino, exo,
we change the name of operations to cre, dis, for “mem-
brane creation” and “membrane dissolution”):

cre : [P]uav → [[P]ux]v,

dis : [[P]uaQ]v → [P Q]uxv.

That is, when a membrane is created inside an existing
membrane, the new membrane contains all previously
existing membranes, and while dissolving a membrane,
its contents remains inside the membrane where it was
placed before the operation. The interpretation of the
latter operation is rather similar to the usual dissolution
operation in membrane computing, while the membrane
creation is understood as doubling the existing mem-
brane, with the initial multiset marking the membrane
being distributed to the two new membranes.

Also for this pair of operations it is possible to show
that we reach the power of Turing machines—we skip
the formal statement and proof of this result and we refer
to the downloadable version of paper (Păun, 2005) for
ained in Cardelli and Păun (2005): P systems based on
he mate/drip operations are Turing complete, and the
roof is obtained for systems with a reduced number of
embranes (at most eleven at any step of a computa-

ion, placed in only two levels, but improvements are
robably possible from this point of view), with mul-
isets u, v, x of a reduced size (at most five elements

used in total in each rule). As said before, Turing com-
pleteness is good from a computational point of view,
because it brings universality/programmability, but it is
bad from the modelling point of view, because it brings
non-decidability. This is an aspect which entails a special
difficulty to systems biology (see again Kitano, 2002 and
the very title of Tomita, 2001) and should be considered
when evaluating the plans and the achievements in this
area.

A similar universality result is reported in Păun
(2005), for another pair of operations, corresponding to
pino, exo from Cardelli (2005).

The operations from Cardelli (2005) are of the form

pino : [ ]uav → [[ ]ux]v, exo : [[ ]ua]v → [ ]uxv,
details.

8. Nishida’s membrane algorithms

The most applied branch of natural computing is by
far the evolutionary computing, genetic algorithms in-
cluded, which provides unexpectedly (from a mathe-
matical point of view) good solutions to a large num-
ber of problems, just performing a random search in
the space of candidate solutions, driven by evolution-
ary metaphors. Roughly speaking, the solutions are en-
coded as “chromosomes”, which are evolved by means
of random crossover operations and point mutations, and
selected by means of a fitness mapping. In some sense,
the best “explanation” why this strategy works so well
is a “bio-mystical” one: because the same strategy was
used by nature in evolving species. Well, but evolution
is not only based on DNA processing, but also on im-
proving at other levels, the one which interests us here
being the cell. What should we choose from the cell ar-
chitecture and functioning and how can this be imitated
through a software run on a usual computer in order to



obtain a class of “cell-like” algorithms as useful as ge-
netic algorithms?

A first answer to this question was provided by
Nishida (2004), in the form of membrane algorithms.
These algorithms can be considered as a high level (dis-
tributed and dynamically evolving their structure dur-
ing the computation) evolutionary algorithms. The basic
variant is the following one: a (small) number of can-
didate solutions to an optimization problem are placed
in the regions of a membrane structure of a linear shape
(with the membranes embedded one in another one), to-
gether with local sub-algorithms which can improve the
local solutions; after a (small) number of steps of lo-
cal work, when the solutions from each membrane are
evolved, the best of them is sent to the immediately lower
membrane and the worst is sent to the immediately up-
per membrane (with exceptions to this rule in the in-
nermost and the outermost membrane); in this way, the
better solutions are moved down and the worst ones are
moved up in the membrane hierarchy; this process is it-
erated until either a specified number of steps is reached,
or no improvement of the best solution is obtained for
a specified number of steps. When halting, the central
membrane provides the answer, the solution to the prob-
lem. There are several variants, in terms of the number
of membranes, with the initial solutions generated by a
first generation of membrane algorithms (thus working
in a two-stage manner, which proves to be very efficient),
with the possibility to create or to destroy certain mem-
branes during the computation, etc.

looking for more sophisticated membrane algorithms.
Trusting the cell, we are quite optimistic with this kind
of strategies.

9. Applications in cancer-related research

Because the processes related to cancer are at the same
time intricate and well investigated, with a large amount
of data accumulated and publicly available, various types
of models were attempted in this area—membrane com-
puting models included. We only mention the simulation
of p53 protein pathways control (the interaction between
proteins p53 and MdM2) through a P system, as carried
out by Suzuki and his co-workers (details can be found in
Ciobanu et al., 2005), and the modelling of avascular tu-
mor growth, carried out in Gutiérrez-Naranjo and Pérez-
Jiménez (2005), and we briefly present the modelling of
EGFR (epidermal growth factor receptor) signalling net-
work from Pérez-Jiménez and Romero-Campero (2005).
The EGFR has an important role in cell growth, survival,
proliferation and differentiation, hence it is a key target
for the development of anticancer therapies. The signal-
ing network involved in EGFR activity is rather com-
plex. In Pérez-Jiménez and Romero-Campero (2005), a
P system with three regions, 60 proteins, and 160 reac-
tions among these proteins is considered. The picture of
the system is given in Fig. 2, where both the membranes
are the reactions are indicated (the nucleus was not con-
sidered yet, but ongoing investigations will take it into
account, hence one further region will be used). These re-
Nishida has checked this strategy for the travelling
salesman problem (find the shortest path which vis-
its all nodes of a graph, passing exactly once through
each node), and the results were more than encourag-
ing. Known benchmark problems were addressed and
always the conclusions were the same: at the beginning,
the convergence is very fast, so that, after a small num-
ber of steps we get a solution which is almost the best
which can be provided by the algorithm, irrespective how
much we continue to work; the number of membranes
is rather influential on the quality of the solution, but,
depending also on the dimension of the problem (the
number of nodes in the graph), 50–100 membranes are
sufficient for obtaining a solution which is better than
that provided by simulated annealing; the method is re-
liable, both the average quality and the worst solutions
were good enough and always better than the average
and the worst solutions given by simulated annealing.

This direction of research is rather new, but it has a
clear practical interest, so further efforts are necessary,
e.g., checking the usefulness of this approach for other
problems, comparing this method with other methods,
actions were expressed as multiset rewriting rules, with
reaction rates computed according to the law of mass
action and to Michaelis law. The model was simulated
by means of a CLIPS program developed by the authors,
and the evolution in time of various proteins was graphi-
cally represented. The results, proving the robustness of
the EGFR signalling network, looks like those in Figs.
3 and 4, and they are in full accordance with biological
data (e.g., from Klodenko et al., 1999) obtained experi-
mentally. This proves that the model is reliable, hence lab
experiments can be replaced by computer experiments
based on this model (and its supporting software).

10. Membrane computing software

Besides the theoretical developments, mainly related
to computability power and efficiency, and the applica-
tions, a significant direction of research in membrane
computing concerns implementations (in fact, simula-
tions) on the usual computer. There are about two dozens
of programs able to simulate various types of P systems,
some of them with a didactic purpose (used, e.g., as



Fig. 2. The EGF signalling network.



Fig. 3. The EGF receptor activation by auto-phosphorylation (with a
rapid decay after a high peak in the first 5 s).

teaching or research assistants, for instance, in check-
ing the correctness of constructions involved in proofs),
others devoted to applications; there also are several dis-
tributed implementations, trying to be closer to the in-
trinsic distributed and parallel character of P systems.
We refer to MC Website (2005) and to the correspond-
ing chapter from Ciobanu et al. (2005) for details.

11. Hopes and limits

At about 7 years since the domain was initiated, the
question arises whether membrane computing succeeded
in its attempt to “learn computing paradigms from living
cells”. The answer is a qualified yes: from a theoretical
point of view, a powerful branch of natural computing
was developed, with a continuous afflux of new ideas,

notions, problems, having a series of applications, espe-
cially in modelling biological phenomena. No lab im-
plementation was intended, and no such implementation
is known to be planned for the near future. Then, ex-
cept for Nishida’s membrane algorithms (and, partially,
the computer graphics and cryptography), no “real” ap-
plication in practical computer science was reported, at
least not in the direction which is more plausible: imitat-
ing the cell in devising new types of algorithms and/or
of computers. For instance, at the theoretical level, poly-
nomial solutions to computationally hard (presumably
intractable) problems can be devised in terms of P sys-
tems, but there is no way to implement these solutions
on the existing computers, sequential or with a limited
parallelism as they are. In several places, it was advo-
cated that membrane computing can be a general, uni-
fying framework for investigating distributed and par-
allel computing, many parallel architectures were for-
malized/simulated in terms of P systems, but also this
promising idea still waits to be fully materialized.

However, not planned in the beginning, membrane
computing turned out to be a useful framework for
building models with biological relevance, and the num-
ber of applications of this type is steadily increasing
and becoming more and more advanced and elaborated.
Multiset processing has already convincingly proved
the usefulness and the advantages with respect to tools
based on differential equations—at least in a series
of circumstances where compartmentalization is essen-
tial, or the concentration of chemicals is too small in
Fig. 4. The evolution of the kinase MEK (proving a surprising robust-
ness of the signalling cascade).
order to legitimate the use of continuous mathemati-
cal tools. Easy scalability, programmability, and under-
standability are other attractive features of membrane
computing as a modelling framework for the use of
biology.

On the other hand, coming back to the initial idea of
learning from the cell/biology for the use of computabil-
ity (which is the general goal of natural computing), we
have to be aware that not all processes, tools, ideas which
work so marvellously in nature can be imitated in silico.
This remark is a warning for natural computing in gen-
eral, not only for membrane computing. Nature has (in
a certain sense) unlimited time and resources, nature is
cruel, kills what is not fit (all these are difficult to incorpo-
rate in computers, let them be based on electronic hard-
ware or on a hypothetic bio-ware); nature has other goals
than computing; many bio-chemical processes have a de-
gree of non-determinism which we cannot afford in our
computations; the life processes are complex, with a high
degree of redundancy; biology seems to deal with non-
crisp mathematics, with probabilities, with fuzzy estima-
tions, which are not fully manageable in computations.



With respect to cell-inspired computing, the big hopes
are related to distribution, parallelism, decentralization,
self-healing, and other similar dreams of computer sci-
ence, but we have to note that the cell is not fully
decentralized, not maximally parallel, not fully non-
deterministic, and so on. The right questions concerns
then the right degree of centralization, parallelism, etc.—
and in this respect further efforts should be paid.

Last but not least, maybe we dream too much even
from a theoretical point of view. First, the space–time
trade-off specific to molecular computing, cannot rede-
fine complexity classes, and it is sometimes too costly
in space (in the size of used bio-ware). Then, Conrad
(1988) warned us that programmability (universality),
efficiency, and evolvability are three contradictory fea-
tures of any computing model, of any type, and we
cannot simultaneously improve on all of these features.
Both these last observations indicate that there is no
free lunch in computer science, even in the bio-inspired
one.
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