Gheorghe P3un | Mario J. Pérez-Jiménez | Arto Salomaa

Bounding the Indegree of 'Spiking Neural P
Systems

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 773, June 2006

1

Bounding the Indegree of Spiking Neural P
Systems

Gheorghe Paun
Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucuresti, Romania and
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun®@us.es

Mario J. Pérez-Jiménez
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marperQus.es

Arto Salomaa
Turku Centre for Computer Science

Lemminkaisenkatu 14, 20520 Turku, Finland
asalomaa@utu.fi

TUCS Technical Report
No 773, June 2006

Abstract

We continue the search of normal forms for spiking neural P systems, and we
prove that the indegree of such systems (the maximal number of incoming
synapses of neurons) can be bounded by 2 without losing the computational
completeness.

Keywords: spiking neuron, spike train, membrane computing, synapses, inde-
gree of graph, recursively enumerable

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

This paper is a direct continuation of [1], where several normal forms for spiking
neural P systems [2] were found. In particular, it was shown that the outdegree
of these systems can be diminished to 2, still preserving the equivalence with
Turing machines. The dual problem, of the indegree bounding, was formulated
as an open problem in [1]. We solve here this problem, proving, like in the case
of the outdegree, that again a normal form holds true: systems with indegree
two are computationally complete.

In the next section we will introduce the spiking neural P systems (in short,
SN P systems), but for the reader’s convenience, we informally mention here
that an SN P system consists of a set of neurons placed in the nodes of a graph
whose edges are called synapses; the neurons contain spikes, objects of a unique
type, which can be processed by means of firing/spiking rules and by means of
forgetting rules; the rules of the first type consume some spikes and produce a
new spike, which is sent to all neurons linked by a synapse to the neuron where
the rule was used, while the forgetting rules just remove spikes from neurons.
One of the neurons is designated as the output one, and its spikes can also exit
into the environment, thus providing a trace of the system evolution. Like in [2],
as the result of a computation we consider the number of steps elapsed between
the first two spikes which exit (the system through) the output neuron, without
caring about subsequent spikes; in particular, we do not care whether or not the
computation halts. (Our result can be easily extended to other ways of defining
the output of a computation, such as those considered in [4], but we do not
explicitly consider other cases here.)

In this way, we can compute all Turing computable sets of natural numbers.
In [1], it is shown that the computing power is not diminished by requiring that
each neuron has only two outgoing synapses. The same is proved here for the
ingoing synapses. Actually, the two restrictions can be combined: SN P systems
with indegree at most two and outdegree at most two are Turing complete.

What remains to investigate are the families of sets of numbers generated
by systems with (indegree, outdegree) € {(1,1),(1,2),(2,1)}. We show here
that they contain all finite sets of numbers and are included in the family of
semilinear sets of numbers, but a more precise study of these families remains
to be carried out.

2 Prerequisites

We assume the reader to have some familiarity with (basic elements of) language
and automata theory, e.g., from [5], and introduce directly the computing de-
vices we investigate.

A spiking neural P system (in short, an SN P system), of degree m > 1, is a
construct of the form

II=(0,01,...,0m,syn,out),
where:
1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0m, are neurons, of the form o; = (n;, R;),1 <i < m, where:

a) n; > 0 is the initial number of spikes contained by the neuron;

b) R; is a finite set of rules of the following two forms:

(1) E/a® — a;d, where E is a regular expression with a the only
symbol used, ¢ > 1, and d > 0;

(2) a® — A, for some s > 1, with the restriction that a®* € L(F) for
no rule E/a® — a;d of type (1) from R;;

3. syn C {1,2,...,m} x {1,2,...,m} with (i,i) ¢ syn for 1 < i < m
(synapses);

4. out € {1,2,...,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules, and they are
applied as follows: if the neuron contains k spikes, a* € L(E) and k > ¢, then
the rule E/a® — a;d can be applied, and this means that ¢ spikes are consumed,
only k — ¢ remain in the neuron, the neuron is fired, and it produces a spike
after d time units (a global clock is assumed, marking the time for the whole
system, hence the functioning of the system is synchronized). If d = 0, then
the spike is emitted immediately, if d = 1, then the spike is emitted in the next
step, and so on. In the case d > 1, if the rule is used in step ¢, then in steps
t,t+1,t4+2,...,t+d—1 the neuron is closed, and it cannot receive new spikes
(if a neuron has a synapse to a closed neuron and tries to send a spike along it,
then the spike is lost). In step ¢+ d, the neuron spikes and becomes again open,
hence can receive spikes (which can be used in step ¢t +d + 1). A spike emitted
by a neuron o; branches and goes to all neurons o; such that (¢,7) € syn.

The rules of type (2) are forgetting rules, and they are applied as follows: if
the neuron contains exactly s spikes, then the rule a® — X can be used, and this
means that all s spikes are removed from the neuron.

In each time unit, in each neuron which can use a rule we have to use a rule,
either a firing or a forgetting one. Because two firing rules Ey/a®* — a;d; and
E>/a®? — a;dy can have L(E1)NL(Ey) # 0, it is possible that two or more rules
can be applied in a neuron, and then one of them is chosen non-deterministically.
Note however that we cannot interchange a firing rule with a forgetting rule, as
all pairs of rules E/a® — a;d, a® — X have disjoint domains, in the sense that

a® ¢ L(E).
The initial configuration of the system is described by the numbers
ni,MN2,...,Ny, of spikes present in each neuron. During a computation, the

system is described both by the numbers of spikes present in each neuron and
by the state of each neuron, in the open-closed sense; specifically, if a neuron is
closed, we have to specify the moment when it will become again open.

Using the rules as suggested above, we can define transitions among con-
figurations. A transition between two configurations C7,C5 is denoted by
C1 = (5. Any sequence of transitions starting in the initial configuration
is called a computation. A computation halts if it reaches a configuration where
all neurons are open and no rule can be used. With any computation, halting
or not, we associate a spike train, the sequence (t1,to,...) of natural numbers
1 <t <ty < ... indicating time instances, when the output neuron sends a
spike out of the system (we also say that the system itself spikes at that time).
With any spike train containing at least two spikes we associate a result, in the
form of the number t5 — ¢1; we say that this number is computed by II. The set
of all numbers computed in this way by II is denoted by Na(II) (the subscript
indicates that we only consider the distance between the first two spikes of any
computation).

There are several parameters describing the complexity of an SN P system:
number of neurons, number of rules, number of spikes consumed or forgotten
by a rule, etc. Here we consider only the following two: the outdegree and the
indegree of the synapse graph. By NSN P(ind,,oud,,) we denote the family
of sets Na(II) computed by SN P systems II with the indegree at most n and
the outdegree at most m. As usual, if one of these parameters is not bounded,
then we replace the respective subscript with x. By NFIN, NSLIN, NRE we
denote the families of finite, semilinear, and Turing computable sets of (positive)
natural numbers (number 0 is ignored).

In [2] it is proved that NSNP(ind,,oud,) = NRE, then in [1] this result was
improved to NSNP(ind.,ouds) = NRE, leaving as an open problem whether
or not a similar result is true also for indegree.

In the next section we will prove that this is the case, and in the proof we
use the characterization of NRFE by means of register machines.

Such a device — in the non-deterministic version — is a construct M =
(m, H,lo,lp, I), where m is the number of registers, H is the set of instruc-
tion labels, Iy is the start label (labeling an ADD instruction), I, is the halt
label (assigned to instruction HALT), and I is the set of instructions; each label
from H labels only one instruction from I, thus precisely identifying it. The
instructions are of the following forms:

o [; : (ADD(7),1;,1x) (add 1 to register r and then go to one of the instructions
with labels [;, [, non-deterministically chosen),

o I; : (SUB(r),l;,lr) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label [;, otherwise go to the instruction with
label Ix),

e [;, : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following
way: we start with all registers empty (i.e., storing the number zero), we apply
the instruction with label [y and we continue to apply instructions as indicated
by the labels (and made possible by the contents of registers); if we reach the
halt instruction, then the number n present in register 1 at that time is said
to be generated by M. (Without loss of generality we may assume that in the
halting configuration all other registers are empty; also, we may assume that
register 1 is never subject of SUB instructions, but only of ADD instructions.)
It is known (see, e.g., [3]) that register machines generate all sets of numbers
which are Turing computable.

3 Bounding the Indegree

The main result of our note is the following one:
Theorem 3.1 NSNP(inds,oud,) = NRE.

Proof. We only have to prove the inclusion NRE C N SN P(inds, oud.), and we
do this in two steps: first we modify the constructions from [2], [4] by which the
similar inclusion is proved without a bound on the indegree (an SN P system
is constructed, simulating a given register machine), then we also bound the
indegree of the constructed SN P system.

For the first step, let us take an arbitrary register machine M =
(m, H,lo,lp, I), as specified in the end of the previous section. We construct

an SN P system II such that N (M) = Ny(II), following the same idea as in [2]:
modules are built for simulating the ADD and SUB instructions of M, as well as
for providing the output (i.e., for sending out two spikes at the right moments
of time). A neuron is associated with each register and with each label of M; if
a register r contains the number n, then the corresponding neuron o, contains
2n spikes. At the beginning of the computation, there is only one spike in the
system, in neuron o;,. This means that in the first step, this neuron fires. In
general, a neuron associated with a label of M is empty during the computation,
except when it is activated by receiving a spike. We will describe furthermore
the functioning of the system II after presenting its modules.

An ADD instruction /; : (ADD(r), 1, 1)) is simulated by a module as indicated
in Figure 1, and an SUB instruction I; : (SUB(r),l;,lx) is simulated by a module
as in Figure 2.

Figure 1: Module ADD, simulating the instruction {; : (ADD(r),;, lx)

These modules are similar to those in [2], with an additional care paid to
the indegree of certain neurons. Specifically, one introduces the new neurons
with labels ¢;5, ¢;6 in module ADD and ¢;3, ¢4 in module SUB (note that all
neurons o,; are uniquely associated with the respective modules, because the
label I; is associated with only one instruction of M). Thus, we do not give full
details concerning the functioning of these modules, and refer the reader to [2];
we only mention that the execution of a module starts by introducing a spike in
neuron oy, and ends by introducing a spike in one of the neurons with labels [;
and [, thus activating the respective module. The correct choice of the “exit”
neuron is ensured by the interplay between neurons with spiking rules a — a;0
and a — a;1. In the meantime, the neuron o, receives two spikes in the case
of the ADD module, or is checked for zero and two spikes removed when this is
possible, in the case of the SUB module.

If the computation of M never halts, then the work of ADD and SUB mod-
ules of II never halts. If the instruction [, : HALT is reached, then neuron o,
receives a spike, and then the OUTPUT module from Figure 3 is activated.
Note that the ADD modules do not use rules of neurons o, and that neuron o;
is only subject of modules ADD (register 1 is never decremented). This ensures
the correct functioning of module OUTPUT, which will spike exactly twice,
after a number of steps equal to the contents of register 1 of M.

Figure 2: Module SUB, simulating the instruction I; : (SUB(r),;,lx)

In
a— a;0
1

out

Ch1

Figure 3: Module OUTPUT

The equality N(M) = No(II) is obtained. Let us now examine the indegree of
the system II. Neurons with labels ¢;; have the indegree one or two, but neurons
associated with labels of M and with registers of M can have an arbitrarily large
indegree.

The case of neurons o;, where | € lab(M), is simpler: in each step of a
computation, each such neuron can receive at most one spike along one of its
incoming synapses. By introducing intermediate neurons as suggested in Figure
4, we can replace the synapses to neuron o; in such a way that its indegree
becomes 2. Note that instead of one computation step, we perform now a
number of steps of the order of log, k, where k£ was the previous indegree of the
neuron.

Slightly more complex is the situation of neurons o,.: in a step of a computa-
tion, such a neuron receives no spike if it is not involved in the current operation,
one spike if it is involved in a SUB instruction, or two spikes if it is involved
in an ADD instruction. Assume that we have the synapses (ej,r),1 < j < s,
along which one spike can come, and the pairs of synapses (cj,r), (d;,r), for

Figure 4: Decreasing the indegree of neurons oy,! € lab(M)

some 1 < j < k, such that one of the pairs of neurons (o.,;,04,) sends two
spikes to o,.. Then we can proceed as follows: we apply the procedure described
in Figure 4 separately for neurons o, for neurons o4;, and for neurons o,
concentrating step by step the synapses until reaching an intermediate unique
neuron oc,op,og, respectively. From neurons op,or we build synapses to a
further neuron, opg. Now, from o¢ and opg we construct synapses to the neu-
ron o,. The indegree of all neurons is now at most two (of course, “delaying”
neurons, using a rule a — a;0 only for passing the spike further, are necessary
if s # k).

Still, a problem remains to be solved, that of the synchronization of the
system. The procedures described above take more steps than initially necessary
for the spikes to reach their targets. Let us denote by a the maximal number
of steps necessary in any of the previously described procedures for sending the
spikes from the input neurons to the output neurons.

First, we add “delaying” neurons to constructions as the one in Figure 4,
such that all blocks of this type take exactly a steps for sending the spikes from
the input to the output neurons (this is an easy task: just add neurons with the
rule a — a;0 as many times as necessary).

Let us now examine again the modules ADD and SUB as changed after
decreasing the indegree.

In module ADD, the way from o.,, and o.,, to o, takes now « steps instead
of one; in order to re-synchronize the process, we have to add a — 1 delaying

neurons also along the synapses (I;, ¢;1), (1;, ¢i3), (¢ia, ¢i5), (¢is, ¢ig). In this way,
the paths from oy, to o, and o.,, will last o + 1 steps, as that from oy, to o,.
Similarly for the SUB modules: we add a—1 delaying neurons along synapses
(li,ci1), (Li, ci2), and thus the spikes of oy, reach all neurons o, i1, 0¢,, at the
same time, after a steps.
In this way, the system obtained in the end of all these operations is equiv-
alent with II and has the indegree 2. a

The previous construction can be combined with the construction used in
[1] for decreasing the outdegree, hence we get the following combined normal
form result:

Corollary 3.1 NSNP(inds,oudy) = NRE.

4 The Size of the Small Families

What remains to investigate is the size and the properties of families
NSNP(ind,, oud;) for (,7) € {(1,1),(1,2),(2,1)}.

First, let us remark that NFIN C NSNP(indy,oud,): given a finite set
F ={n;| 1< i<k} of natural numbers, for the system

I = ({a},(2,{a*/a — a;0} U{a — a;n; — 1|1 <i<k}),01)

we have Na(II) = F (we can consider that this system has the indegree and the
outdegree zero, as no synapse appears in it).

Then, because the systems with outdegree one cannot increase the num-
ber of spikes from their neurons, it follows (as already observed in [2]) that
NSNP(indy,oud;) € NSLIN (the system can be easily simulated by a finite
automaton).

A similar result is valid also for the family NSN P(ind;,ouds). A system
with such indegree and outdegree has the synapse graph of a very particular
form: a possible cycle, from which starts binary trees. If there is no cycle, then
only the tree containing the output neuron is relevant (no other tree contributes
to the computations which determine the output), and from it only the synapses
going to the output neuron — hence we can reduce the tree to a line. If there is
a cycle, and the output neuron is on it, then no tree is relevant. If there is a
cycle and the output neuron is on a tree emerging from the cycle, then we can
trim all trees different from the one containing the output neuron, as well as
all branches of this tree which are not on the way from the cycle to the output
neuron, or after the output neuron.

In conclusion, the graph is either a linear tree ended with the output neuron,
or a cycle from which emerges a linear tree ended with the output neuron. In
the first case, there are only a finite number of possible computations, hence
the generated set of numbers is finite. In the second case, the number of spikes
cannot increase in the neurons of the cycle, but it can increase in the neurons of
the tree, because the cycle can repeatedly introduce spikes in the tree. However,
if a neuron of the tree can ever use a rule, then its contents cannot increase
unboundedly: after using a spiking rule or a forgetting rule, the number of
spikes in the neuron decreases. From the cycle, we get at most one spike in
a step, hence the increase of the number of spikes is one by one; this means
that when we reach again the number of spikes which enable the used rule, the
rule is used again, decreasing the number of spikes. If a neuron never uses a

rule, then it is useless, and can be removed from the system, and then we can
remove also all neurons not linked to the output neuron. Consequently, again
the contents of neurons is bounded, hence can be controlled by the states of a
finite automaton.

We synthesize all these observations in the following theorem:

Theorem 4.1 NFIN C NSNP(indi,oud:) < NSNP(ind;,oud;) C
NSLIN, for each (i,j) € {(1,2),(2,1)}.

We conjecture that all families NSNP(ind;, oud;) from the previous result
are equal to NFIN.

5 Closing Remarks

We have proved here that the indegree of spiking neural P systems can be
bounded by 2 without losing the computational completeness, also, in parallel
with bounding the outdegree by 2. It remains as a research topic to see whether
other graph-theoretic restrictions might be of interest for SN P systems. Cycle
structure of the graphs could be studied. As regards planarity, it is interesting
to note that most of the examples from [2] and [4] deal, indeed, with planar
SN P systems, but this is not the case with the systems used in the proofs. In
turn, the ADD, SUB, and OUTPUT modules from the proof of Theorem 3.1 are
also planar, but their combination in the system is not necessarily so, because
this depends on the relations between the instructions of the starting register
machine.

References

[1] O.H. Ibarra, A. Paun, Gh. Pdun, A. Rodriguez-Patén, P. Sosik, S. Wood-
worth: Normal forms for spiking neural P systems. In Fourth Brainstorming
Week on Membrane Computing, Febr. 2006, Fenix Editora, Sevilla, 2006.

[2] M. Tonescu, Gh. Paun, T. Yokomori: Spiking neural P systems. Fundamenta
Informaticae, 71, 2-3 (2006), 279-308.

[3] M. Minsky: Computation — Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, NJ, 1967.

[4] Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural
P systems. Intern. J. Found. Computer Sci., to appear (also available at [6]).

[5] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes.
Springer-Verlag, Berlin, 1997.

[6] The P Systems Web Page: http://psystems.disco.unimib.it.

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

)
§\\ ,4 ,/é University of Turku
; s e Department of Information Technology
%‘ “\Q\ e Department of Mathematics

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 952-12-1738-3
ISSN 1239-1891

