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Abstract. This paper presents a general framework for modelling with
membrane systems that is based on a computational paradigm where
rules have associated a finite set of attributes and a corresponding func-
tion. Attributes and functions are meant to provide those extra features
that allow to define different strategies to run a P system. Such a strat-
egy relying on a bounded parallelism is presented using an operational
approach and applying it for a case study presenting the basic model of
quorum sensing for Vibrio fischeri bacteria.

1 Introduction

In 1998, Gheorghe Păun initiated the field of research called membrane com-
puting with a paper firstly available on the web and later published in [19]. 
Membrane computing aims at defining computational models which abstract 
from the functioning and structure of the cell. In particular, membrane comput-
ing starts from the observation that compartmentalization through membranes 
is one of the essential features of (eucaryotic) cells. Unlike bacterium, which 
generally consists of a single intracellular compartment, a(n) (eucaryotic) cell is 
sub-divided into functionally distinct compartments. Thus, a class of computing 
devices called membrane systems, or P systems, are defined [19], which have 
three essential features: a membrane structure consisting of a hierarchical ar-
rangement of several compartments defined as regions delimited by membranes; 
objects assigned to regions; and rules assigned to the regions of the membrane 
structure, acting upon the objects inside. In particular, each region is supposed 
to contain a finite set of rules and a finite multiset (or set) of objects. Rules en-
code generic processes for producing/consuming objects and for moving objects 
from one region to the other. Objects are described either as symbols from a



given alphabet or as strings over a given alphabet. The application of the rules
is performed in a non-deterministic maximally parallel manner: all the applica-
ble rules that should be used to modify existing objects must be applied, and
this is done in parallel for all membranes.

Since this model was introduced for the first time in 1998, many variants of
membrane systems have been proposed and studied – a comprehensive bibliog-
raphy of P systems can be found at the P systems web page [29]. The most
investigated membrane system topics are related to the computational power
of different variants, their capabilities to solve hard problems, like NP-complete
problems, decidability, complexity aspects and hierarchies of classes of languages
produced by these devices.

Membrane computing represents nowadays a research area of a larger inter-
disciplinary field called natural computing, that involves scientists studying the
emergence of new computational paradigms inspired from the behavior of vari-
ous natural phenomena. In the same time there is a growing interest in apply-
ing mathematical and computational paradigms to model real natural systems.
Computational biology is such a field, where mathematical and computational
models of biological systems are designed for the analysis and simulation of the
behavior of these systems. Biological modeling has involved standard continuous
and stochastic mathematical approaches, as well as discrete models. Standard
mathematical models with their simulation techniques have proved to be pow-
erful tools for understanding the dynamics of biological systems (e.g., see [25],
[26]). Discrete modeling instead advocates the use of different formalisms taken
from various areas of computer science (e.g., formal grammars [6], Petri nets [16],
X machines [9], [27], process algebra [24], [3], statecharts [15], etc.) to develop
computational models of biological systems.

This paper presents a general framework for modeling with membrane systems
that is based on a model of P systems where rules have associated a finite set
of attributes and a corresponding function. Attributes and functions are meant
to provide those extra features which are necessary to close the “gap” between
the abstractness of more standard P system models and the “reality” of the
phenomenon to be modeled (Section 2). The behavior of such P systems is defined
in Section 3 in terms of bounded parallelism, which precisely formalizes the idea
of a membrane system as a system where a certain number of components evolve
in parallel at the same time by means of a certain number of rules applied inside
each one of these components. Then, in Section 4, as a particular instance of the
general model, we consider P systems where rules have associated a real constant
as an attribute and the corresponding function is used to compute a value of
a probability depending on this constant and on certain multisets of objects
defining the context where the rule is applied; for this particular variant of P
systems, we also define a strategy for the application of the rules which, in each
step, selects the next rule to be applied depending on the aforementioned values
of probabilities. Finally, in Section 5, as a case study, we present a P system
model for the quorum sensing mechanism of bacterial cell-to-cell communication.



2 The Model

Usually a P system is defined as a hierarchical arrangement of a number of
membranes identifying a corresponding number of regions inside the system, and
with these regions having associated a finite multiset of objects and a finite set of
rules. Moreover, one can also consider membrane systems where the underlying
structure is defined as an arbitrary graph like in tissue P systems [20], and in
population P systems [1]. In this paper, we only focus on membrane systems
of the former type where the underlying structure is defined as being a tree of
nested membranes.

Rules of many different forms have been considered for membrane systems in
order to encode the operation of modifying the objects inside the membranes
and the operation of moving objects from one place to the other. In particu-
lar, for communicating objects, one can use either the targets here, in, out, or
symport/antiport rules, or boundary rules [20].

Here, in order to capture the features of most of these rules, we consider rules
of the form:

u [ v ] → u′ [ v′ ] (1)

with u, v, u′, v′ some finite multisets. These rules are generalized boundary rules
operating as multiset rewriting rules which simultaneously replace a multiset of
objects placed outside the membrane and a multiset of objects placed inside the
membrane with two new multisets placed in the same places. In this way, we
are able to capture in a concise way the essential features of transformation and
communication of objects usually considered in the area of membrane computing.
Moreover, from a modeling point of view, rules like (1) allow us to express
any sort of interactions occurring at the membrane level, like, for instance, the
binding of a signal molecule to a specific receptor which occurs at cell-surface
level (e.g., see [21]).

We associate to each rule a finite set of attributes in order to be able to
capture specific quantitative aspects of the phenomenon to be modeled. Specifi-
cally, these attributes are used by rules as different reaction rates and/or different
probabilities which overall affects the strategy of the application of the rules.

Definition 1 (program). Let V, K be alphabets, let D be a set (possibly infi-
nite), and let A be a finite subset of D. The set D is called the set of values and
the set A is called the set of attributes. Let F = {f1, f2, . . . , fp} be a finite set
of functions such that, for all 1 ≤ t ≤ n, ft : P(D) × V ∗ × V ∗ × V ∗ × V ∗ −→ D
with P(D) the family of all subsets of D. A program (over V, K, D, A, F) is a
construct 〈u [ v ] → u′ [ v′ ], σ, fi〉l where: u, v, u′, v′ ∈ O∗, σ ⊆ A, fi ∈ F , for
some 1 ≤ i ≤ p, and l ∈ K.

Thus, a program consists of a rule, a finite set of attributes and a function
which, given this set of attributes and four multisets, returns a value from a
certain chosen set. In particular, the first two multisets are usually considered
as being the two multisets placed on the left side of the rule; the two remaining
multisets are instead supposed to be the multisets placed respectively inside



and outside a given membrane. That is, each function is expected to compute a
particular value depending on the rule and on the contents of the outside and
the inside regions that define the “context” where the rule is applied.

Here our main focus is in modeling systems consisting of many different bio-
chemical reactions distributed across different compartments. Therefore, the
following interpretation for programs will be predominantly used throughout
the paper. Objects represent chemicals and multisets of objects are interpreted
as “bags” or “soup” of chemicals. Rules model transformations involving these
chemicals. Each rule has associated a finite set of attributes and a corresponding
function defining particular properties that affect the behavior of the rule itself;
these properties are usually said to define the reactivity of the rule (e.g., see [2],
[21]). Moreover, since we want to have systems consisting of many different com-
partments, we assign to each program a label to differentiate the set of programs
from one compartment to the other.

Remark 1. Although the aforementioned interpretation will be mainly used in
this paper, it is not the unique possible and that is why we introduce the notions
of set of values and set of attributes in a more generic fashion. For instance, one
may use attributes to model properties inherent to the membranes and may
use the corresponding function to update these attributes every time a rule is
applied. Alternatively, one may consider hybrid models where the attributes
represent continuous variables which are updated through the use of certain
functions (e.g., see [9] for hybrid X machines, and [16] for hybrid Petri nets).

Next, we introduce the notion of P specification which makes explicit the basic
components necessary to define a particular P system model.

Definition 2 (P specification). A P specification is a construct

S = (V, K, D, A, F , P )

where:

1. V is an alphabet; its elements are called objects;
2. K is an alphabet; its elements are called labels;
3. D is a set of values;
4. A ⊆ D is a finite set of attributes;
5. F = {f1, f2, . . . , fp} is a finite set of functions as in Definition 1.
6. P is a finite set of programs over V, K, D, A, F of the form specified in Def-

inition 1.

Thus, a P specification provides a “scheme” for the definition of P systems
with programs defined over the sets V , K, D, A, and F . In particular, from
a modeling point of view, we can say that the alphabet V of objects specifies
different “sorts” for the chemicals present inside a certain system, the alphabet
K of labels specifies different “types” for the membranes possibly present inside
a certain system, and the set D specifies the domain of interpretations for the
attributes and the corresponding functions.



A P system is then obtained by augmenting a certain P specification with an
initial configuration. In particular, we recall that the structure of a P system
is given by a hierarchical arrangement of some n ≥ 1 membranes labeled in an
one-to-one manner with values in {1, 2, . . . , n} [20]. However, since here we use
labels from a given alphabet to identify the “type” of a membrane, the value
from {1, 2, . . . , n} assigned to a membrane is called the index of the membrane;
the membrane structure is then said to be indexed by the values 1, 2, . . . , n.

Definition 3 (P system). A P system of degree n ≥ 1 is a construct:

Π = (S, μ, M1, M2, . . . , Mn)

where S = (V, K, D, A, F , P ) is a P specification with V, K, D, A, F , P as in
Definition 2, μ a membrane structure containing n membranes indexed by the
values 1, 2, . . . , n, and, for all 1 ≤ i ≤ n, Mi = (wi, li), with wi ∈ V ∗ the content
of membrane i and li ∈ K the label of membrane i.

As usual, a P system of degree n ≥ 1 is defined as consisting of a membrane
structure containing n membranes. Each membrane contains a multiset of objects
and gets assigned a label from the set K. This latter symbol is particularly useful
for retrieving from the given specification the set of programs which can be used
inside each membrane in the system. In other words, this label precisely identifies
the “type” of the membrane in terms of the rules which can be applied inside.

Most of the P system variants utilize a maximal parallel rewriting manner
[20]. This means, in each step, in each membrane, all the objects that can evolve
by means of some rules must evolve in parallel, with the only restriction that
the same occurrence of the same object cannot be used by more than one rule
at a time. That is, in each step, for each membrane, a maximal set of rules to
be applied is non-deterministically selected by making sure that no further rules
can be applied to the objects left inside the membranes. In this paper we will
introduce a mechanism to bound the number of applications of the rules and the
number of membranes that will evolve in a step. In this respect, the key issues
that need to be addressed in order to define a strategy for the application of the
rules in a P system are: a) how to select the next rule to be applied inside a given
membrane, b) how many different rules can be applied in parallel at the same
time inside the membrane, and c) how many different membranes can evolve in
parallel at the same time.

3 Parallelism of Type (k, q)

We formalize here the notion of a transition step in P systems evolving in a
(k, q)−parallel manner: in each step, at most k membranes evolve in parallel at
the same time and, inside each membrane, at most q rules are applied in parallel
at the same time. Moreover, in a given step, if k membranes can evolve by means
of some rules, then exactly k membranes must evolve in parallel in that step;
inside each membrane, if q rules can be applied, then exactly q rules are applied



in parallel inside that membrane. In other words, parallelism of type (k, q) is
assumed to be maximal and exhaustive with respect to k and q.

Our formalization makes use of some concepts of the operational semantics
for P systems introduced in [5] and it is based on the explicit assignment of the
rules contained to the programs to the respective membranes; this is obtained
by assigning the index of a membrane to each object possibly present inside the
system.

Let Π = (S, μ, M1, M2, . . . , Mn) with S = (V, K, D, A, F , P ) and Mi =
(wi, li), for all 1 ≤ i ≤ n, be a P system as specified in Definition 3. The
following extra notions are associated to the P system Π :

– the indexed alphabet (of Π) denoted by V̄ is the set V̄ = { ai | a ∈ V, 1 ≤
i ≤ n };

– for all 1 ≤ i ≤ n, and for all u ∈ V ∗, the i-version of u is the multiset denoted
by ui ∈ V̄ such that, for all a ∈ V , for all 1 ≤ j 	= i ≤ n, |ui|ai = |u|a and
|uaj | = 0;

– the set of membrane rules (of Π) is the set of programs denoted by MR
and such that: MR = { uj vi → u′

j v′i | 〈u [ v ] → u′ [ v′ ], σ, f〉li ∈ P, j =
upper(μ, i) }, where upper(μ, i) is a function returning for a given membrane
structure μ, the membrane containing the region i.

Thus, the indexed alphabet of Π is the alphabet of symbols from V with attached
indexes of the membranes in the system. The i-version of a multiset u, with
1 ≤ i ≤ n and u ∈ V ∗, is the multiset obtained by assigning the index i to all
the objects in u. The set MR explicitly identifies, for each membrane, the set of
rules which can be used inside that membrane by replacing the multisets in the
rules with the corresponding indexed versions. In particular, for all 1 ≤ i ≤ n,
the set of rules which can be used inside membrane i are the rules contained in
programs labeled by li.

Moreover, for all 1 ≤ i ≤ n, a multiset of rules for membrane i, is a collection
of membrane rules r1, r2, . . . , rki , with ki ≥ 0 and with these rules not necessarily
distinct, such that, for all 1 ≤ h ≤ ki, rh is a membrane rule in MR of the form
uj vi → u′

j v′i with vi 	= λ. The size of Ri, denoted by |Ri|, is the number of rules
in Ri.

A multiset of rules in Π is a collection of membranes rules of the form R1,
R2, . . . , Rn such that, for all 1 ≤ i ≤ n, Ri is a multiset of rules for membrane i.

Then, a configuration of a P system is defined as being a multiset over the
indexed alphabet.

Definition 4 (Configuration). Let Π = (S, μ, M1, M2, . . . , Mn) be a P system
as in Definition 3 where S = (V, K, D, A, F , P ) and Mi = (wi, li), for all 1 ≤
i ≤ n. A configuration (of Π) is a multiset C ∈ V̄ . The initial configuration (of
Π), denoted by C0, is the multiset u1 u2 . . . un such that, for all 1 ≤ i ≤ n, ui is
the i-version of wi.

Notice that, with the notions introduced in this section so far, we have essentially
reduced a P system of degree n ≥ 1 to an equivalent one of degree 1 where the
objects have an index specifying the membrane which they are assigned to in



the original system. Thus, the behavior of such a system can be defined as being
a multiset rewriting system where the rules are selected according to a certain
strategy depending on the indexes assigned to the objects. In fact, according to
Definition 4, a configuration of a P system is just a multiset of objects and the
membrane rules are usual multiset rewriting rules.

To this aim, we need first to introduce the concepts of i-irreducibility and the
concept of (C, k, q)-consistency.

Definition 5 (i-irreducibility). Let Π = (S, μ, M1, M2, . . . , Mn) be a P sys-
tem as in Definition 3 where S = (V, K, D, A, F , P ), and let β be a finite multiset
over V̄ . Let MR be the set of membrane rules in Π. Given 1 ≤ i ≤ n, we say that
β is i-irreducible if, for all uj vi → u′

j v′i ∈ MP with vi 	= λ, we have β 	
 uj vi.

Thus, given a P system of degree n ≥ 1, for all 1 ≤ i ≤ n, a multiset over the
indexed alphabet is i-irreducible if there are no more rules which can be applied
to the objects with index i. In other words, if we interpret these objects as being
the content of membrane i, this means that there are no more rules that can be
applied to the objects placed inside membrane i.

Definition 6 ((C, k, q)-consistency). Let Π = (S, μ, M1, M2, . . . , Mn) be a P
system as in Definition 3 where S = (V, K, D, A, F , P ), and let R be a multiset
of rules in Π. Let C ∈ V̄ ∗ be a configuration of Π, and let k, q 	= 0 be pos-
itive integers with k ≤ n. We say that R is (C, k, q)-consistent if there exists
{i1, i2, . . . , ig} ⊆ {1, 2, . . . , n} with g ≤ k such that R can be written as a col-
lection of rules Ri1 , Ri2 , . . . , Rig with Rih

a multiset of rules for membrane ih,
and

1. if g < k, then, for all i ∈ ({1, 2, . . . , n} \ {i1, i2, . . . , ig}), C is i-irreducible;
2. for all i ∈ {i1, i2, . . . , ik}, if Ri = u1

j v1
i → z1

j w1
i , . . . , up

j vp
i → zp

j wp
i , then we

have C = xu1
j v1

i . . . up
j vp

i , for some x ∈ V̄ ∗;
3. for all i ∈ {i1, i2, . . . , ik}, |Ri| ≤ q, and if Ri = u1

j v1
i → z1

j w1
i , . . . , up

j vp
i →

zp
j wp

i with p < q, then C = xu1
j v1

i . . . up
j vp

i , for some i-irreducible x ∈ V̄ ∗.

The notion of (C, k, q)-consistency precisely characterizes the multisets of rules
which can be applied to a given configuration C in accordance to the parallelism
of type (k, q). In fact, such a multiset of rules must contain a multiset of rules for
at most k distinct membranes; if there are not k membranes that can evolve by
means of some rules, then a smaller but maximal number of membranes must be
selected (Condition 1 of Definition 6). The rules contained in the selected multiset
must be applicable to the objects currently contained inside each membrane
(Condition 2 of Definition 6). Moreover, for each membrane, at most q rules
must be selected; if inside some membrane there are less than q rules that can
be applied, then all of them must be applied (Condition 3 of Definition 6).

Therefore, in order to perform a (k, q)-parallel step in a given P system, it
is necessary to first select a multiset of rules R to be applied to the current
configuration C such that R is (C, k, q)-consistent. In this respect, we assume
to have defined an algorithm to select programs and membranes Ak,q such that,



given a configuration of a P system Π and its set of programs, returns a multiset
of rules which is (C, k, q) consistent. In all the previous sections, this selection
has been defined as being non-deterministic but, in general, one may identify
other strategies which, in particular, should take into account the attributes
associated with the rules. Approaches in this direction are considered in [2], [21],
[22] where strategies for the selection of the rules are defined which depend on a
notion of rate of application of the rules, or on certain probabilities associated
with the rules. In the next section, we present one such strategy where the rules
to be applied in the next step are selected depending on a particular distribution
of probabilities computed step by step.

Here, we define the notion of a (k, q)-parallel step of computation by assuming
a generic algorithm for the selection of the rules.

Definition 7 ((k, q)-parallel step). Let Π = (S, μ, M1, M2,. . . , Mn) be a P
system as in Definition 3 where S = (V, K, D, A, F , P ), and let C1, C2 be con-
figurations of Π. Let Ak,q be an algorithm for the selection of the rules which is
able to return a (C1, k, q)-consistent multiset of rules in Π. We say that C2 can
be obtained from C1 in a (k, q)-parallel step, denoted by C1 ⇒(k,q)

Π C2, if there
exists a multiset R of rules in Π such that:

1. Ak,q(C1, P ) = R;
2. R = uj1 vi1 → zj1 wi1 , . . . , ujp vip → zjp wip , for some p > 0;
3. C1 = xuj1 vi1 . . . ujp vip and C2 = x zj1 wi1 . . . zjp wip , for some x ∈ V̄ ∗.

If that is the case, then we write C1 ⇒(k,q)
Π C2.

Thus, a (k, q)-parallel step in a P system consists in the parallel application of a
(C, k, q)-consistent multiset of rules to a certain configuration C. The multiset of
rules to be applied is supposed to be returned by a particular algorithm to select
membranes and programs, and this has to be done before every step depending
on the current configuration of the system.

Then, we introduce the notion of sequence of (k, q)-parallel steps and (k, q)-
parallel execution of a P system.

Definition 8 (sequence of (k, q)-parallel steps). Let Π = (S, μ, M1, M2,. . . ,
Mn) be a P system as in Definition 3. A sequence of (k, q)-parallel steps in Π
is a sequence σ such that

σ = C1, C2, . . . , Ch

where, for all 1 ≤ i ≤ h, Ci is a configuration of Π, and, if i 	= h, then Ci ⇒(k,q)
Π

Ci+1. If that is the case, we say that σ is a sequence of (k, q)-parallel steps in
Π that starts from C1 and that Ch is obtained from C1 in h − 1 steps; we also
write C1 ⇒(k,q),h

Π Ch.

Definition 9 ((k, q)-parallel execution). Let Π = (S, μ, M1, M2, . . . , Mn) be
a P system as in Definition 3. A (k, q)-parallel execution of Π is a sequence of
(k, q)-parallel steps in Π which starts from the initial configuration of Π.



Thus, we have characterized the behavior of P systems operating according to a
bounded parallelism where the number of membranes and the number of rules
which can be used in every step are overall bounded by some given constants.

Remark 2. From a computational point of view, the introduction of bounded
parallelism in membrane systems does not affect the fundamental universality
results concerning the computational power of different variants of P systems,
such as P systems with catalysts, with symport/antiport, with boundary rules,
etc. In fact, it is easy to see that, in all those cases, the simulation of counter
machines is achieved by means of P systems where the number of rules applied
in parallel in each step is actually overall bounded (e.g., see [7]). On the other
hand, it is shown in [8], [10] that P systems with catalysts operating in sequential
mode and P systems with symport/antiport operating in sequential mode (i.e.,
with parallelism of type (1, 1)) are strictly less powerful than their corresponding
parallel versions. Moreover, one can also notice that, whenever k is equal to the
number of membranes in the system, our notion of parallelism of type (k, q)
coincides with the notion of q-Max-Parallelism introduced in [7].

4 An Algorithm to Select Membranes and Programs

We present an algorithm to select membranes and programs for P systems op-
erating with parallelism of type (1, 1) (i.e., in sequential mode) where the next
membrane to evolve and the next rule to be applied inside this membrane is
randomly selected according to a certain distribution of probabilities. However,
with respect to Definition 3, the algorithm is here defined only for a restricted
model of P systems where rules are all of the forms:

u [ ] → [ v ], [ v ] → u[ ], [ v ] → [ v′ ] (2)

that is, there is a distinction between transformation rules and communication
rules, communication is only unidirectional, and there is no interaction between
the inside and the outside of a membrane.

Our strategy for selecting membranes and programs is based on Gillespie’s
algorithm [12]. This algorithm [12] provides an exact method for the stochastic
simulation of systems of bio-chemical reactions; the validity of the method is
rigorously proved and it has been already successfully used to simulate various
biochemical processes [17]. As well as this, Gillespie’s algorithm is used in the
implementation of stochastic π-calculus [4] and in its application to the modeling
of biological systems [23].

We follow a similar approach to associate a stochastic behavior to membrane
systems by considering P systems where each rule has associated a real constant
which defines its rate of application and which is used to compute the probability
of the rule to be applied in the next step in the same way as in Gillespie’s
algorithm. More precisely, we consider a class of P systems where, with respect
to Definition 3, the set of values is the set of non-negative real numbers denoted
by R

+
0 , each programs contains a rule like (2), a real constant as an attribute,



and a function to compute a probability depending on the value of this constant.
For short, such a P system is called PPR (i.e., a P systems with Probabilities
associated with the Rules).

In order to compute the probability values, we use, for all the programs, the
function φ such that φ : R

+
0 × V ∗ × V ∗ −→ R

+
0 with:

φ(k, u, α) = k ·
∏

a∈alph(u)

|α|a!
|u|a! · (|α|a − |u|a)!

(3)

for all k ≥ 0, u, α ∈ V ∗ and u � α; φ(k, u, α) = 0 for all k ≥ 0, u, α ∈ V ∗ and
u 	� α.

That is, given a rule [ v ] → u[ ], or a rule [ v ] → [ v′ ] with an associated
attribute k, and given a multiset α 
 v, expression (3) returns the number of
different ways of choosing |v|a occurrences of a from the multiset α, for all a
such that |a| ≥ 0. In particular, the multiset α is supposed to be the multiset
of objects placed inside the membrane where the rule is going to be used. In a
similar way, given a rule u [ ] → [ v ] with attribute k, expression (3) is used to
compute a probability value for this rule by considering the multiset u and the
multiset of objects placed in the outside region.

Remark 3. The function given by expression (3) is already used in [22] to com-
pute probability values for rules. However, this is done in the context of a different
algorithm to select rules and programs which is not directly related to Gillespie’s
algorithm.

Next, we provide a formal definition for the notion of a PPR.

Definition 10 (PPR). A PPR of degree n ≥ 1 is a construct

Π = (V, K, R+
0 , A, φ, P, μ, M1, M2, . . . , Mn)

where:

– (V, K, R+
0 , A, φ, P ) is a P specification with φ the function given by expres-

sion (3), and all the programs in P having the form 〈 r, k, φ〉l for r a rule
like (2), and k ∈ A;

– μ, and M1, M2, . . . , Mn are as in Definition 3.

Remark 4. The function φ is used to compute the probabilities associated with
the rules in a slightly different form with respect to the type of functions consid-
ered in Definition 1: only two multisets instead of four are used by the function
φ. This is because we are restricted to rules of the forms u [ ] → [ v ], [ v ] → u[ ],
[ v ] → [ v′ ] containing only one multiset on the left side. However, our approach
could be easily generalized to the case of rules of the form u [ v ] → u′ [ v′ ] with
u, v 	= λ by considering a function φ′ such that

φ′(k, u, v, wout, win) = φ(k, u, wout) · φ(1, v, win)

where wout, win denote the multisets of objects placed respectively inside and
outside the membrane where the rule is going to be applied.



Let Π be a PPR, and let C be a configuration of Π . For all 1 ≤ i ≤ n, we define
the multiset Oi ∈ V ∗ as being the multiset of objects such that |Oi|a = |C|ai ,
for all a ∈ V (i.e., Oi is the multiset of objects contained inside membrane i in
the configuration C).

We associate to membrane i, with 1 ≤ i ≤ n, a set TRi containing all the
triples:

– (t, vi → uj , pt), with 〈 [ v ] → u[ ], k, φ〉li , li the label of membrane i, j =
upper(μ, i), and pt = φ(k, v, Oi);

– (t′, vi → v′i, pt′), with 〈 [ v ] → [ v′ ], k, φ〉li , li the label of membrane i, and
pt′ = φ(k, v, Oi);

– (t′′, ui → vj , pt′′), with 〈u [ ] → [ v ], kh, φ〉lj , i = upper(μ, j), lj the label of
membrane j, and pt′′ = φ(k, u, Oi).

Thus, for each membrane i, the set TRi is supposed to contain all the rules that
can be used inside membrane i with these rules having associated a correspond-
ing value of probability. In particular, if a certain rule is not applicable inside
membrane i, then the probability of this rule to be applied turns to be equal to
0. Moreover, notice that rules which send a multiset inside a certain membrane
are considered as rules to be used inside the surrounding region.

The following algorithm is then defined to select membranes and programs
for P systems with parallelism of type (1, 1).

First, for each membrane i, we compute the index of the next program to be
used inside membrane i and its waiting time by using the classical Gillespie’s
algorithm:

1. calculate a0 =
∑

pj , for all (j, r, pj) ∈ TRi;
2. generate two random numbers r1 and r2 uniformly distributed over the unit

interval (0, 1);

3. calculate the waiting time for the next reaction as τi =
1
a0

ln(
1
r1

);

4. take the index j, of the program such that
j−1∑

k=1

pk < r2a0 ≤
j∑

k=1

pk;

5. return the triple (τi, j, i).

Notice that the larger the real constant associated with a rule and the number of
occurrences of the objects placed on the left-side of the rule inside a membrane
are, the greater the chance that the rule will be applied in the next step of
the simulation. There is no constant time-step in the simulation. The time-step
is determined in every iteration and it takes different values depending on the
configuration of the system.

Next, a step of application of the rules is simulated by using the following
procedure:

• Initialization
◦ set time of the simulation t = 0;
◦ for each membrane i in μ compute a triple (τi, j, i) by using the procedure

described above; construct a list containing all such triples;
◦ sort the list of triple (τi, j, i) according to τi;



• Iteration
◦ extract the first triple, (τm, j, m) from the list;
◦ set time of the simulation t = t + τm;
◦ update the waiting time for the rest of the triples in the list by subtract-

ing τm;
◦ apply the rule contained in the program j only once changing the number

of objects in the membranes affected by the application of the rule;
◦ for each membrane m′ affected by the application of the rule remove the

corresponding triple (τ ′
m′ , j′, m′) from the list;

◦ for each membrane m′ affected by the application of the rule j re-run the
Gillespie algorithm for the new context in m′ to obtain (τ ′′

m′ , j′′, m′), the
next program j′′, to be used inside membrane m′ and its waiting time
τ ′′
m′ ;

◦ add the new triples (τ ′′
m′ , r′′, m′) to the list and sort this list according

to each waiting time and iterate the process.
• Termination

◦ Terminate simulation when time of the simulation t reaches or exceeds
a preset maximal time of simulation, or no more rules can be applied to
the objects left inside the membranes.

Therefore, in this approach, it is the waiting time computed by the Gillespie’s
algorithm to be used to select the membrane which is allowed to evolve in the
next step of computation. Specifically, in each step, the membrane associated to
the rule with the same minimal waiting time is selected to evolve by means of
this rule. If there are more than one rule with the same waiting time, then we
assume one of them to be randomly selected to be used in the next step.

Moreover, since the application of a rule can affect more than one membrane
at the same time (e.g., some objects may be moved from one place to another),
we need to reconsider a new rule for each one of these membranes by taking into
account the new distribution of objects inside them.

Remark 5. The use of a variable time-unit for each step does not affect the
semantics of our model; in each step, a single rule at a time is applied inside a
specific membrane. This means the behavior of the systems is still synchronous
although each application of a rule has associated a different time-unit. In fact,
the waiting time is mainly used as a parameter necessary to determine the rule
to be applied in the next step of computation.

Remark 6. The current algorithm brings some improvements with respect to the
notion of step introduced in Definition 7. In fact, in the iteration phase, we need
not to recompute all the probabilities associated with each program applicable
inside each membrane, but we can do that only for those membranes which are
actually affected by the last application of a program. That is so because the
value of the probabilities associated with the other rules remain unchanged.

Remark 7. The use of the waiting time parameters leads to selecting a membrane
using the minimum waiting time principle. Getting rid of this parameter will lead



to a variant of this algorithm that is associated to an (n, 1)−parallel behavior of
the system, where n is the total number of membranes. Indeed, in this case there
is no way to distinguish between membranes and all of them will be selected.

5 A Case-Study: Bacterial Quorum Sensing

We present an application of membrane systems to the modeling of quorum
sensing in bacteria (QS, for short).

The QS mechanism is a communication strategy based on diffusible signals
which kick-in under high cellular density. Bacteria use this mechanism to obtain
a population-wide coordination of infection, invasion, and evasion of a host’s
defence. We refer to [13], [14], [28] for further details about the biology of QS.
Moreover, a comprehensive bibliography of QS-related research can be found at
the web page [30] maintained by the Nottingham Quorum Sensing Group.

QS bacteria produce and release chemical signal molecules, called autoin-
ducers, whose external concentration increases as a function of increasing cell-
population density. Bacteria detect the accumulation of a minimal threshold
stimulatory concentration of these autoinducers and alter their gene expression,
and therefore their behavior in response to the variation of the concentration
of autoinducers. Using these signal-response systems, bacteria synchronize par-
ticular behaviors on a population-wide scale and thus function as multicellular
organisms.

The first described quorum-sensing system is that of the bioluminescent ma-
rine bacterium Vibrio fischeri, and it is considered the basic paradigm for quorum
sensing in most (gram-negative) bacteria [18]. Vibrio fischeri colonize the light
organ of the Hawaiian squid Euprymna scolopes. In this organ, the bacteria grow
to high cell density and induce the expression of genes for bioluminescence. The
squid uses the light provided by the bacteria for counter-illumination to mask its
shadow and avoid predation. The bacteria benefit because the light organ is rich
in nutrients and allow proliferation in numbers unachievable in seawater. Two
proteins, named LuxI and LuxR, control the expression of the luciferase operon
(luxICDABE) required for light production. LuxI is the autoinducer synthase,
which produces the autoinducer 3OC6-homoserine lactone (OHHL, for short),
and LuxR acts as a receptor for these autoinducers. OHHL freely diffuses in
and out of the cell and increases in concentration in correspondence of the in-
creasing of the cell density. When this concentration reaches a critical threshold,
OHHL binds to LuxR and this complex activates the transcription of the operon
encoding luciferase. As well as this, the LuxR-OHHL complex also induces the
expression of luxI because it is encoded in the luciferase operon. This regulatory
configuration floods the environment with the signal. This creates a positive
feedback loop that causes the entire population to switch into “quorum-sensing
mode”, and produce light; in this case, it is also said that the population is
quorated.

QS systems have then been identified in other bacterial populations, for in-
stance, Pseudomonas aeruginosa, Vibrio harveyi, and Bacillus subtillis, where



the existence of quorum-sensing networks relying on multiple signalling circuits
acting synergistically has also been observed.

5.1 A P System Model of QS

A P system model for the QS system of Vibrio fischeri is here defined where
a colony of such bacteria is represented by means of a membrane structure
consisting of a number of elementary membranes, each one of them representing
a bacterium, included in an unique membrane (the skin) representing a common
shared environment. In particular, each membrane will contain a set of programs
modeling the QS regulatory circuits responsible for the production of light.

To this aim, we use: the symbol OHHL to denote the autoinducer, the
symbol LuxR to denote the receptor for the autoinducer OHHL, the symbol
LuxR-OHHL to denote the complex formed by the binding of the autoinducer
OHHL to the receptor LuxR, the symbol LuxBox to denote the luciferase
operon in its down-regulated state (i.e., when it is not active for the production
of light), and the symbol LuxBox-LuxR-OHHL to denote the luciferase operon
in its up-regulated state (i.e., when it is active for the production of light). Then,
we define the following P signature for QS in Vibrio fischeri.

BS(A) = (V, K, R+
0 , φ, A, P )

where A = {k1, k2, k4, k3, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14} is a set of real
constants, V = {OHHL, LuxR, LuxR-OHHL, LuxBox, LuxBox-LuxR-OH
HL}, K = {e, b}, φ is the function given by expression 2, and P is finite set
containing all the following programs:

– 〈 [ LuxBox ] → [ LuxBoxLuxR ], k1, φ〉b,
〈 [ LuxBox ] → [ LuxBoxOHHL ], k2, φ〉b

(at low cell density the autoinducer OHHL and the receptor LuxR are
produced at a basal rate);

– 〈 [ OHHL LuxR ] → [ LuxR-OHHL ], k3, φ〉b,
〈 [ LuxR-OHHL ] → [ OHHL LuxR ], k4, φ〉b

(the autoinducer OHHL and the receptor LuxR bind together to form the
complex LuxR-OHHL which, in turn, dissociates in its components);

– 〈 [ LuxR-OHHL LuxBox ] → [ LuxBox-LuxR-OHHL ], k5, φ〉b,
〈 [ LuxBox-LuxR-OHHL ] → [ LuxR-OHHL LuxBox ], k6, φ〉b

(the complex LuxR-OHHL binds to the region of DNA responsible for the
production of light; such a complex can also dissociate from that region by
returning the luciferase operon to a down-regulated state);

– 〈 [ LuxBox-LuxR-OHHL ] → [ LuxBox-LuxR-OHHL OHHL ], k7, φ〉b,
〈 [ LuxBox-LuxR-OHHL ] → [ LuxBox-LuxR-OHHL LuxR ], k8, φ〉b

(the binding of the complex to the corresponding region of DNA produces an
increase in the production of the autoinducer OHHL and in the production
of the receptor LuxR);



– 〈 [ OHHL ] → OHHL [ ], k9, φ〉b

(the autoinducer OHHL freely diffuses outside the bacterium and accumu-
lates in the environment);

– 〈 [ OHHL ] → [ ], k10, φ〉b,
〈 [ LuxR ] → [ ], k11, φ〉b,
〈 [ LuxR-OHHL ] → [ ], k11, φ〉b

(the autoinducer OHHL, the receptor LuxR and the complex LuxR-OHHL
undergo a process of degradation inside the bacterium);

– 〈OHHL [ ] → [ OHHL ], k12, φ〉b

(the autoinducer OHHL diffuse back from the environment into the bac-
terium);

– 〈 [ OHHL ] → [ ], k13, φ〉e

(the autoinducer OHHL is degraded in the environment).

Thus, we have identified 14 rules which model the main transformations in-
volved in the QS system of Vibrio fischeri. Notice that the signature BS is
parametric with respect to the particular constants associated with the rules.

Next, we define a parametric PPR system Π(n, A) to represent a colony of
n ≥ 1 bacteria interacting by means of the QS system described by the afore-
mentioned rules. Specifically, we have

Π(n, A) = (BS(A), μ(n), M1, . . . , Mn, Mn+1)

where:

– A = {k1, k2, k4, k3, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14};
– μ(n) = [n+1 [1 ]1 . . . [n ]n ]n+1;
– Mi = (LuxBox, b), for all 1 ≤ i ≤ n;
– Mn+1 = (λ, e).

Thus, in the initial configuration, we assume all the bacteria in the colony to
contain only one occurrence of the object LuxBox representing the portion of
DNA responsible for the production of the autoinducer OHHL and the recep-
tor LuxR; the environment is instead supposed to be initially empty. Moreover,
notice that, by having the notion of P specification, we can represent an arbi-
trary large colony in a very compact way by avoiding repeating the same set of
programs for every membrane in the system.

Simulation results have been presented under different formalisms and show
the same behavior of the colony.

6 Discussion

As we have seen, there is a growing interest in using P systems for modeling bio-
logical systems. This often requires the introduction into the membrane system
model of some extra features especially when the quantitative aspects character-
izing the “reality” of the biological phenomenon to be modeled are considered.



Here we have addressed these issues by specifically introducing the notion of
a program consisting of a rule with a finite set of attributes and a function from
a given set (Definition 1). We have shown how attributes and functions can be
used to define P system models for bio-chemical systems consisting of a number
of bio-chemical reactions distributed across various compartments of the system.
A precise strategy for the application of the rules has also been defined for this
class of P systems which makes possible to associate a stochastic behavior to
such P systems. Our approach is based on the well-known Gillespie’s algorithm
and it is developed alongside the work done in [2], [21], [22] where alternative
strategies for the application of the rules are defined.
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