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Abstract. Recently, the idea of spiking neurons and thus of computing
by spiking was incorporated into membrane computing, and so-called
spiking neural P systems (abbreviated SN P systems) were introduced.
Very shortly, in these systems neurons linked by synapses communicate
by exchanging identical signals (spikes), with the information encoded
in the distance between consecutive spikes. Several ways of using such
devices for computing were considered in a series of papers, with uni-
versality results obtained in the case of computing numbers, both in the
generating and the accepting mode; generating, accepting, or processing
strings or infinite sequences was also proved to be of interest.

In the present paper, after a short survey of central notions and re-
sults related to spiking neural P systems (including the case when SN P
systems are used as string generators), we contribute to this area with
two (types of) results: (i) we produce small universal spiking neural P
systems (84 neurons are sufficient in the basic definition, but this num-
ber is decreased to 49 neurons if a slight generalization of spiking rules
is adopted), and (ii) we investigate the possibility of generating a lan-
guage by following the trace of a designated spike in its way through the
neurons.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [6], with 
the motivation coming from two directions: the attempt of membrane computing



to pass from cell-like architectures to tissue-like or neural-like architectures (see
[15], [12]), and the intriguing possibility of encoding information in the duration
of events, or in the interval of time elapsed between events, as vividly investigated
in recent research in neural computing (of “third generation”) [8], [9].

This double challenge led to a class of P systems based on the following simple
ideas: let us use only one object, the symbol denoting a spike, and one-membrane
cells (called neurons) which can hold any number of spikes; each neuron fires in
specified conditions (after collecting a specified number of spikes) and then sends
one spike along its axon; this spike passes to all neurons connected by a synapse
to the spiking neuron (hence it is replicated into as many copies as many target
neurons exist); between the moment when a neuron fires and the moment when
it spikes, each neuron needs a time interval, and this time interval is the essential
ingredient of the system functioning (the basic information carrier – with the
mentioning that also the number of spikes accumulated in each moment in the
neurons provides an important information for controlling the functioning of
the system); one of the neurons is considered the output one, and its spikes
provide the output of the computation. The sequence of time moments when
spikes are sent out of the system is called a spike train. The rules for spiking
take into account all spikes present in a neuron not only part of them, but not
all spikes present in a neuron are consumed in this way; after getting fired and
before sending the spike to its synapses, the neuron is idle (biology calls this
the refractory period) and cannot receive spikes. There are also rules used for
“forgetting” some spikes, rules which just remove a specified number of spikes
from a neuron.

In the spirit of spiking neurons, as the result of a computation (not necessarily
a halting one) in [6] one considers the number of steps elapsed between the first
two spikes of the output neuron. Even in this restrictive framework, SN P sys-
tems turned out to be Turing complete, able to compute all Turing computable sets
of natural numbers. This holds both in the generative mode (as sketched above,
a number is computed if it represents the interval between the two consecutive
spikes of the output neuron) and in the accepting mode (a number is introduced
in the system in the form of the interval of time between the first two spikes enter-
ing a designated neuron, and this number is accepted if the computation halts).
If a bound is imposed on the number of spikes present in any neuron during a
computation, then a characterization of semilinear sets of numbers is obtained.

These results were extended in [13] to several other ways of associating a set of
numbers with an SN P system: taking into account the interval between the first
k spikes of each spike train, or all spikes, taking only alternately the intervals,
or all of them, considering halting computations. Then, the spike train itself
(the sequences of symbols 0, 1 describing the activity of the output neuron: we
write 0 if no spike exits the system in a time unit and 1 if a spike is emitted) was
considered as the result of a computation; the infinite case is investigated in [14],
the finite one in [2]. A series of possibilities of handling infinite sequences of bits
are discussed in [14], while morphic representations of regular and of recursively



enumerable languages are found in [2]. The results from [2] are briefly recalled
in Section 5 below.

In this paper we directly continue these investigations, contributing in two
natural directions. First, the above mentioned universality results (the possibility
to compute all Turing computable sets of numbers) do not give an estimation on
the number of neurons sufficient for obtaining the universality. Which is the size
of the smallest universal “brain” (of the form of an SN P system)? This is both
a natural and important (from computer science and, also, from neuro-science
point of view) problem, reminding the extensive efforts paid for finding small
universal Turing machines – see, e.g., [16] and the references therein.

Our answer is rather surprising/encouraging: 84 neurons ensure the univer-
sality in the basic setup of SN P systems, as they were defined in [6], while this
number is decreased to 49 if slightly more general spiking rules are used (rules
with the possibility to produce not only one spike, but also two or more spikes
at the same time – such rules are called extended). The proof is based on simu-
lating a small universal register machine from [7]. (The full details for the proof
of these results about small universal SN P systems will be provided elsewhere
– see [11].)

Extended rules are also useful when generating strings: we associate a symbol
bi with a step when the system outputs i spikes and in this way we obtain a
string over an arbitrary alphabet, not only on the binary one, as in the case
of standard rules. Especially flexible is the case when we associate the empty
string with a step when no spike is sent out of the system we associate (that is,
b0 is interpreted as λ). Results from [3], concerning the power of extended SN P
systems as language generators, are also recalled in Section 5.

Then, another natural issue is to bring to the SN P systems area a notion
introduced for symport/antiport P systems in [5]: mark a spike and follow its
path through the system, recording the labels of the visited neurons until either
the marking disappears or the computation halts. Because of the very restrictive
way of generating strings in this way, there are simple languages which cannot
be computed, but, on the other hand, there are rather complex languages which
can be obtained in this framework.

Due to space restrictions, we do not give full formal details in definitions and
proofs (we refer to the above mentioned papers for that); such details are or will
be available in separate papers to be circulated/announced through [19].

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [17] and [18], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from
V ; the empty string is denoted by λ, and the set of all nonempty strings over V
is denoted by V +. When V = {a} is a singleton, then we write simply a∗ and
a+ instead of {a}∗, {a}+. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then the mirror
image of x is mi(x) = an . . . a2a1.



A morphism h : V ∗
1 −→ V ∗

1 such that h(a) ∈ {a, λ} for each a ∈ V1 is called
a projection, and a morphism h : V ∗

1 −→ V ∗
2 such that h(a) ∈ V2 ∪ {λ} for each

a ∈ V1 is called a weak coding.
If L1, L2 ⊆ V ∗ are two languages, the left and right quotients of L1 with

respect to L2 are defined by L2\L1 = {w ∈ V ∗ | xw ∈ L1 for some x ∈ L2},
and respectively L1/L2 = {w ∈ V ∗ | wx ∈ L1 for some x ∈ L2}. When the
language L2 is a singleton, these operations are called left and right derivatives,
and denoted by ∂l

x(L) = {x}\L and ∂r
x(L) = L/{x}, respectively.

A Chomsky grammar is given in the form G = (N, T, S, P ), where N is the
nonterminal alphabet, T is the terminal alphabet, S ∈ N is the axiom, and
P is the finite set of rules. For regular grammars, the rules are of the form
A → aB, A → a, for some A, B ∈ N, a ∈ T .

We denote by FIN, REG, CF, CS, RE the families of finite, regular, context-
free, context-sensitive, and recursively enumerable languages; by MAT we de-
note the family of languages generated by matrix grammars without appearance
checking. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

Let V = {b1, b2, . . . , bm}, for some m ≥ 1. For a string x ∈ V ∗, let us denote
by valm(x) the value in base m + 1 of x (we use base m + 1 in order to consider
the symbols b1, . . . , bm as digits 1, 2, . . . , m, thus avoiding the digit 0 in the left
hand of the string). We extend this notation in the natural way to sets of strings.

All universality results of the paper are based on the notion of a register
machine. Such a device – in the non-deterministic version – is a construct M =
(m, H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labeling an ADD instruction), lh is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from H
labels only one instruction from I, thus precisely identifying it. The instructions
are of the following forms:

– li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

– li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go
to the instruction with label lj , otherwise go to the instruction with label
lk),

– lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n present in register 1 at that time is said to be
generated by M . (Without loss of generality we may assume that in the halting
configuration all other registers are empty; also, we may assume that register 1
is never subject of SUB instructions, but only of ADD instructions.) It is known
(see, e.g., [10]) that register machines generate all sets of numbers which are
Turing computable.



A register machine can also be used as a number accepting device: we in-
troduce a number n in some register r0, we start working with the instruction
with label l0, and if the machine eventually halts, then n is accepted (we may
also assume that all registers are empty in the halting configuration). Again,
accepting register machines characterize NRE.

Furthermore, register machines can compute all Turing computable functions:
we introduce the numbers n1, . . . , nk in some specified registers r1, . . . , rk, we
start with the instruction with label l0, and when we stop (with the instruction
with label lh) the value of the function is placed in another specified register,
rt, with all registers different from rt being empty. Without loss of generality we
may assume that r1, . . . , rk are the first k registers of M , and then the result of
the computation is denoted by M(n1, . . . , nk).

In both the accepting and the computing case, the register machines can be
deterministic, i.e., with the ADD instructions of the form li : (ADD(r), lj) (add 1
to register r and then go to the instruction with label lj).

In the following sections, when comparing the power of two language gener-
ating/accepting devices the empty string λ is ignored.

3 Spiking Neural P Systems

We give here the basic definition we work with, introducing SN P systems in the
form considered in the small universal SN P systems, hence computing functions
(which, actually, covers both the generative and accepting cases).

A computing spiking neural membrane system (abbreviated SN P system), of
degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression1 over a, c ≥ 1, and
d ≥ 0;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d
of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π .
1 The regular language defined by E is denoted by L(E).



The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d ∈ Ri can be applied. This means consuming (removing) c
spikes (thus only k− c remain in σi), the neuron is fired, and it produces a spike
after d time units (as usual in membrane computing, a global clock is assumed,
marking the time for the whole system, hence the functioning of the system is
synchronized). If d = 0, then the spike is emitted immediately, if d = 1, then the
spike is emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then
in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost). In the step t + d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the
step t + d + 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d. If all spiking rules are of this form, then
the system is said to be finite (it can handle only a bounded number of spikes
in each of its neurons).

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1)∩L(E2) 	= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule
is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other (the system is synchronized).

The initial configuration of the system is described by the numbers n1, n2, . . . ,
nm, of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of the neuron, more precisely, by the number of
steps to count down until it becomes open (this number is zero if the neuron is
already open).

A computation in a system as above starts in the initial configuration. In
order to compute a function f : Nk −→ N, we introduce k natural numbers
n1, . . . , nk in the system by “reading” from the environment a binary sequence
z = 0b10n1−110n2−11 . . . 10nk−110f , for some b, f ≥ 0; this means that the input
neuron of Π receives a spike in each step corresponding to a digit 1 from the
string z. Note that we input exactly k + 1 spikes. The result of the computation
is also encoded in the distance between two spikes: we impose to the system to
output exactly two spikes and halt (sometimes after the second spike), hence
producing a train spike of the form 0b′10r−110f ′

, for some b′, f ′ ≥ 0 and with
r = f(n1, . . . , nk).



If we use an SN P system in the generative mode, then no input neuron is
considered, hence no input is taken from the environment; we start from the
initial configuration and the distance between the first two spikes of the output
neuron (or other numbers, see the discussion in the Introduction) is the result of
the computation. Dually, we can ignore the output neuron, we input a number
in the system as the distance between two spikes entering the input neuron, and
if the computation halts, then the number is accepted.

We do not give here examples, because in the next section we show the four
basic modules of our small universal SN P system.

4 Two Small Universal SN P Systems

In both the generating and the accepting case, SN P systems are universal,
they compute the Turing computable sets of numbers. The proofs from [6], [13]
are based on simulating register machines, which are known to be equivalent
to Turing machines when computing (generating or accepting) sets of numbers,
[10]. In [7], the register machines are used for computing functions, with the
universality defined as follows. Let (ϕ0, ϕ1, . . .) be a fixed admissible enumeration
of the set of unary partial recursive functions. A register machine Mu is said to
be universal if there is a recursive function g such that for all natural numbers
x, y we have ϕx(y) = Mu(g(x), y). In [7], the input is introduced in registers 1
and 2, and the result is obtained in register 0 of the machine.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),
l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),
l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),
l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),
l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),
l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),
l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),
l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),
l16 : (ADD(4), l11), l17 : (ADD(2), l21),
l18 : (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),
l20 : (ADD(0), l0), l21 : (ADD(3), l18),
lh : HALT.

Fig. 1. The universal register machine from [7]

The constructions from [6] do not provide a bound on the number of neurons,
but such a bound can be found if we start from a specific universal register
machine. We will use here the one with 8 registers and 23 instructions from [7] –
for the reader convenience, this machine is recalled in Figure 1, in the notation
and the setup introduced in the previous section.

Theorem 1. There is a universal SN P system with 84 neurons.



Proof. (Outline) We follow the way used in [6] to simulate a register machine by
an SN P system. This is done as follows: neurons are associated with each register
(r) and with each label (li) of the machine; if a register contains a number n,
then the associated neuron will contain 2n spikes; modules as in Figures 2 and 3
are associated with the ADD and the SUB instructions (each of these modules
contains two neurons – with primed labels – which do not correspond to registers
and labels of the simulated machine).
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li
a2 → a; 0

a → λ

l′i l′′i

a → a; 0 a → a; 0

rlj

a2 → a; 0

a → λ

Fig. 2. Module ADD (simulating li : (ADD(r), lj))

The work of the system is triggered by introducing two spikes in the neuron
σl0 (associated with the starting instruction of the register machine). In general,
the simulation of an ADD or SUB instruction starts by introducing two spikes
in the neuron with the instruction label. We do not describe here in detail the
(pretty transparent) way the modules from Figures 2 and 3 work – the reader
can consult [6] in this respect.

Starting with neurons σ1 and σ2 already loaded with 2g(x) and 2y spikes,
respectively, and introducing two spikes in neuron σl0 , we can compute in our
system in the same way as Mu; if the computation halts, then neuron σ0 will
contain 2ϕx(y) spikes. What remains to do is to construct input and output
modules, for reading a sequence of bits and introducing the right number of
spikes in the neurons corresponding to registers 1 and 2, and, in the end of the
computation, to output the contents of register 0. Modules of these types are
given in Figures 4, 5, having seven and two additional neurons, respectively.

After this direct construction, we get a system with 91 neurons (9 for the
registers of the starting register machine – one further register is necessary for
technical reasons, 25 for its labels, 24× 2 for the ADD and SUB instructions, 7
in the input module, and 2 in the output module). However, some “code opti-
mization” is possible, based on certain properties of the register machine from
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li
a2 → a; 0

a → λ

r

(a2)+a/a3 → a; 0

a → a; 1

l′i

l′′i

a → a; 0

a → a; 1

lj

a2 → a; 0

a → λ

a2 → a; 0

a → λ

lk

Fig. 3. Module SUB (simulating li : (SUB(r), lj , lk))

[7] (for instance, consecutive ADD instructions can be simulated by a specific
module, smaller than two separate ADD modules); we skip the technical details
and we only mention that the final SN P system will contain 84 neurons.

This is a small number (a small “brain”, compared to the human one; it would be
nice to know where in the evolution scale there are animals with about 84 neurons
in their brain), but we do not know whether it is optimal or not. Anyway, we
believe that in the previous setup, we cannot significantly decrease the number
of neurons from a universal SN P system.

However, we can do better starting from the following observation. In many
modules mentioned above we need pairs of intermediate neurons for duplicating
the spike to be transmitted further (this is the case for neurons σl′i , σl′′i in Figure
2), and this suggests to consider a slight extension of the rules of SN P systems:
to allow spiking rules of the form E/ac → ap; d, where all components are as
usual, and p ≥ 1. The meaning is that c spikes are consumed and p spikes are
produced. To be “realistic”, we impose the restriction c ≥ p (the number of
produced spikes is not larger than the number of consumed spikes).

Theorem 2. There is a universal SN P system with 49 neurons, using rules of
the form E/ac → ap; 0, with p ≥ 1.

(Note that the delay is zero in the rules of the extended form used in the the-
orem.) As above, we do not know whether this result is optimal, but we again
believe that it cannot be significantly improved (without, maybe, changing the
definition of SN P systems in an essential way).
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a → a; 0

c1

a3 → a; 0

c2

a3 → a; 0

l0

a2 → a; 0

a → λ

c3

a → a; 0

a → a; 0

c4

1 2

a2/a → a; 0

c5

c6

a2/a → a; 0

Fig. 4. Module INPUT

5 SN P Systems as String Generators

Following [2] we can also consider as the result of a computation the spike train
itself, thus associating a language with an SN P system. Specifically, like in
[2], we can consider the language Lbin(Π) of all binary strings associated with
halting computations in Π : the digit 1 is associated with a step when one or
more spikes exit the output neuron, and 0 is associated with a step when no
spike is emitted by the output neuron. We denote B = {0, 1}.

Because (in the case of extended systems) several spikes can exit at the same
time, we can also work on an arbitrary alphabet: let us associate the symbol bi

with a step when the output neuron emits i spikes. We have two cases: inter-
preting b0 (hence a step when no spike is emitted) as a symbol or as the empty
string. In the first case we denote the generated language by Lres(Π) (with “res”
coming from “restricted”), in the latter one we write Lλ(Π).

The respective families are denoted by LαSNePm(rulek, consp, prodq), where
α ∈ {bin, res, λ} and parameters m, k, p, q are as above. We omit the superscript
e and the parameter prodq when working with standard rules (in this case we
always have q = 1).

We recall from [2] the following results:

Theorem 3. (i) There are finite languages (for instance, {0k, 10j}, for any k ≥
1, j ≥ 0) which cannot be generated by any SN P system with restricted rules,
but for any L ∈ FIN , L ⊆ B+, we have L{1} ∈ LbinSNP1(rule∗, cons∗), and if
L = {x1, x2, . . . , xn}, then we also have {0i+3xi | 1 ≤ i ≤ n} ∈ LbinSNP∗(rule∗,
cons∗).
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8 d1

out

a2 → a; 0

a → λ

a → a; 0a(aa)+/a2 → a; 0

a(aa)∗/a → a; 0

Fig. 5. Module OUTPUT

(ii) The family of languages generated by finite non-extended SN P systems
is strictly included in the family of regular languages over the binary alphabet,
but for any regular language L ⊆ V ∗ there is a finite SN P system Π and a
morphism h : V ∗ −→ B∗ such that L = h−1(L(Π)).

(iii) LbinSNP∗(rule∗, cons∗) ⊂ REC, but for every alphabet V = {b1, b2,
. . . ,bs} there are a morphism h1 : (V ∪ {b, c})∗ −→ B∗ and a projection h2 :
(V ∪ {b, c})∗ −→ V ∗ such that for each language L ⊆ V ∗, L ∈ RE, there is an
SN P system Π such that L = h2(h−1

1 (L(Π))).

These results show that the language generating power of non-extended SN P
systems is rather eccentric; on the one hand, finite languages (like {0, 1}) cannot
be generated, on the other hand, we can represent any RE language as the direct
morphic image of an inverse morphic image of a language generated in this way.
This eccentricity is due mainly to the restricted way of generating strings, with
one symbol added in each computation step, and this again naturally suggests
the idea of extended rules, with the possibility of having λ as output in steps
when no spike exits the system. As we will see immediately, this possibility
considerably enlarges the generated families of languages.

The next results were obtained in [3], as counterparts of the results from
Theorem 3; as expected, the extended rules are useful, the obtained families
of languages are larger, and finite, regular, and recursively enumerable can be
directly obtained, without additional symbols and squeezing mechanisms.

We consider at the same time both the restricted case (with b0 associated with
a step when no spike is sent out) and the non-restricted one (with b0 interpreted
as λ); V is the alphabet {b1, . . . , bs}:
Theorem 4. (i) FIN = LαSNeP1(rule∗, cons∗, prod∗), α ∈ {res, λ}, and this
result is sharp, becauseLresSNeP2(rule2, cons3, prod3) contains infinite languages.



(ii) If L ∈ REG, then {b0}L ∈ LresSNeP4(rule∗, cons∗, prod∗) and L{b0} ∈
LresSNeP3(rule∗, cons∗, prod∗), but there are minimal linear languages which
are not in the family LresSNeP∗(rule∗, cons∗, prod∗).

(iii) LλSNeP2(rule∗, cons∗, prod∗) ⊆ REG ⊂ LλSNeP3(rule∗, cons∗, prod∗);
the second inclusion is proper, because LλSNeP3(rule4, cons4, prod2) contains
non-regular languages; actually, the family LλSNeP3(rule3, cons6, prod4) con-
tains non-semilinear languages.

(iv) RE = LλSNeP∗(rule∗, cons∗, prod∗).

It is an open problem to find characterizations (even only representations) of
other families of languages in the Chomsky hierarchy.

6 Following the Traces of Spikes

We have seen above that SN P systems can be used also for generating or accept-
ing languages, and even infinite sequences [14], by just taking the spike trains as
generated strings/sequences. Here we consider yet another idea for defining a lan-
guage, taking into account the traces of a distinguished spike through the system.
This is a direct counterpart of trace languages from [5], and also has some simi-
larity with the idea of “computing by observing”, as recently considered in [1].

Specifically, in the initial configuration of the system we “mark” one spike
from a specified neuron – the intuition is that this spike has a “flag” – and we
follow the path of this flag during the computation, recording the labels of the
neurons where the flag is present in the end of each step. Actually, for neuron
σi we consider the symbol bi in the trace string.

The previous definition contains many delicate points which need clarifications
– and we use a simple example to do this.

Assume that in neuron σi we have three spikes, one of them marked; we write
aaa′ to represent them. Assume also that we have a spiking rule aaa/aa → a; 0.
When applied, this rule consumes two spikes, one remains in the neuron and one
spike is produced and sent along the synapses going out of neuron σi. Two cases
already appear: the marked spike is consumed or not. If not consumed, then it
remains in the neuron. If consumed, then the flag passes to the produced spike.
Now, if there are two or more synapses going out of neuron σi, then again we can
have a branching: only one spike is marked, hence only on one of the synapses
(i, j), non-deterministically chosen, we will transmit a marked spike. If σj is an
open neuron, then the marked spike ends in this neuron. If σj is a closed neuron,
then the marked spike is lost, and the same happens if the marked spike exits
in the environment. Anyway, if the marked spike is consumed, at the end of this
step it is no longer present in neuron i; it is in neuron σj if (i, j) ∈ syn and
neuron σj is open, or it is removed from the system in other cases.

Therefore, if in the initial configuration of the system neuron σi contains the
marked spike, then the trace can start either with bi (if the marked spike is not
consumed) or with bj (if the marked spike was consumed and passed to neuron
σj); if the marked spike is consumed and lost, then we generate the empty string,
which is ignored in our considerations. Similarly in later steps.



If the rule used is of the form aaa/aa → a; d, for some d ≥ 1, and the marked
spike is consumed, then the newly marked spike remains in neuron σi for d steps,
hence the trace starts/continues with bd

i . Similarly, if no rule is used in neuron
σi for k steps, then the trace records k copies of bi.

If a forgetting rule is used in the neuron where the marked spike is placed,
then the trace string stops (and no symbol is recorded for this step).

Therefore, when considering the possible branchings of the computation, we
have to take into account the non-determinism not only in using the spiking
rules, but also in consuming the marked spike and in sending it along one of the
possible synapses.

The previous discussion has, hopefully, made clear what we mean by recording
the labels of the neurons where the flag is present in the end of each step, and
why choosing the end of a step and not the beginning: in the latter case, all
traces would start with the same symbol, corresponding to the input neuron,
which is a strong – and artificial – restriction.

Anyway, we take into account only halting computations: irrespective whether
or not a marked spike is still present in the system, the computation should halt
(note that it is possible that the marked spike is removed and the computation
still continues for a while – but this time without adding further symbols to the
trace string).

For an SN P system Π we denote by T (Π) the language of all strings de-
scribing the traces of the marked spike in all halting computations of Π . Then,
we denote by TSNPm(rulek, consp, forgq) the family of languages T (Π), gen-
erated by systems Π with at most m neurons, each neuron having at most k
rules, each of the spiking rules consuming at most p spikes, and each forgetting
rule removing at most q spikes. As usual, a parameter m, k, p, q is replaced with
∗ if it is not bounded.

We pass now to investigating the relationship with the families of languages
from Chomsky hierarchy, starting with a counterexample result (whose simple
proof is omitted).

Lemma 1. There are singleton languages which are not in TSNP∗(rule∗,
cons∗, forg∗).

Theorem 5. The family of trace languages generated by SN P systems by means
of computations with a bounded number of spikes present in their neurons is
strictly included in the family of regular languages.

The inclusion follows from the fact that the transition diagram associated with
the computations of an SN P system which use a bounded number of spikes is
finite and can be interpreted as the transition diagram of a finite automaton.
The fact that the inclusion is proper is a consequence of Lemma 1.

As expected, also non-regular languages can be generated – as well as much
more complex languages.

Theorem 6. Every unary language L ∈ RE can be written in the form L =
h(L′) = (b∗1\L′) ∩ b∗2, where L′ ∈ TSNP∗(rule∗, cons∗, forg∗) and h is a
projection.



Proof. (Sketch) This result is a consequence of the fact that SN P systems can
simulate register machines. Specifically, starting from a register machine M , we
construct an SN P system Π which halts its computation with 2n spikes in a
specified neuron σout if and only if n can be generated by the register machine
M ; in the halting moment, a neuron σlh of Π associated with the label of the
halting instruction of M gets two spikes and fires. The neuron σout contains no
rule used in the simulation of M (the corresponding register is only incremented,
but never decremented – see the details of the construction from [6], as well as
Figures 2 and 3).
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Π

out

a(aa)+/a2 → a; 0

lh

a2 → a; 0

a → λ

1

a′

a2 → a; 4

2

a2 → λ

a → a; 0
3

4

a → a; 0

5

a(aa)∗/a → a; 0

6

a2 → a; 0

Fig. 6. The SN P system from the proof of Theorem 6

Now, consider a language L ⊆ b∗2, L ∈ RE. There is a register machine M
such that n ∈ N(M) if and only if bn

2 ∈ L. Starting from such a machine M ,
we construct the system Π as in [6], having the properties described above. We
append to the system Π six more neurons, as indicated in Figure 6. There is a
marked spike in neuron σ1, and it will stay here during all the simulation of M .
In the moment when neuron σlh of Π spikes, its spike goes both to neuron σout

and to neuron σ1.
Neurons σ3, σ4, σ5, σ6 send a spike to neuron σ2 only when neuron σout has

finished its work (this happens after n steps of using the rule a(aa)+/a2 → a; 0,
for 2n being the contents of neuron σout in the moment when neuron σlh spikes).



The marked spike leaves neuron σ1 four steps after using the rule a2 → a; 4,
hence five steps after the spiking of neuron σlh . This means that the marked
spike waits in neuron σ2 exactly n steps. When the spike of neuron σ6 reaches
neuron σ2, the two spikes present here, the marked one included, are forgotten.

Thus, the traces of the marked spike are of the form br
1b

n
2 , for some r ≥ 1

and n ∈ N(M). By means of the left derivative with the regular language b∗1
we can remove prefixes of the form bk

1 and by means of the intersection with
b∗2 we ensure that the maximal prefix of this form is removed. Similarly, the
projection h : {b1, b2}∗ −→ {b1, b2}∗ defined by h(b1) = λ, h(b2) = b2, removes
all occurrences of b1. Consequently, L = (b∗1\T (Π)) ∩ b∗2 = h(T (Π)).

Corollary 1. The family TSNP∗(reg∗, cons∗, forg∗) is incomparable with each
family of languages FL which contains the singleton languages, is closed under
left derivative with regular languages and intersection with regular languages,
and does not contain all unary recursively enumerable languages.

Families FL as above are FIN, REG, CF, CS, MAT etc.

7 Final Remarks

After a brief informal survey of main results related to SN P systems as number
generating or accepting devices, we have produced small universal SN P systems
(with 84 and 49 neurons, depending on the type of spiking rules used), and
we have introduced and preliminarily investigated the possibility of using SN P
systems as language generators by following the trace of a marked spike across
the neurons. Many topics remain open for further research, and other suggestions
from biology are worth considering.
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port/antiport: (unexpected) universality results. In Proc. 8th International Meeting
of DNA Based Computing (M. Hagiya, A. Ohuchi, eds.), Japan, 2002, 151–160.
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