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Abstract. We introduce a variant of P systems where rules have asso-
ciated a real number providing a measure for the “intrinsic reactivity”of
the rule and roughly corresponding to the kinetic coefficient which, in
bio-chemistry, is usually associated to each molecular reaction. The be-
haviour of these P systems is then defined according to a strategy which,
in each step, randomly selects the next rule to be applied depending upon
a certain distribution of probabilities. As an application, we present a P
system model of the quorum sensing regulatory networks of the bac-
terium Vibrio Fischeri. In this respect, a formalisation of the network
in terms of P systems is provided and some simulation results concern-
ing the behaviour of a colony of such bacteria are reported. We also
briefly describe the implementation techniques adopted by pointing out
the generality of our approach which appears to be fairly independent
from the particular choice of P system variant and the language used to
implement it.

1 Introduction

Membrane computing represents a new and rapidly growing research area which 
is part of the natural computing paradigm and which was initiated by Ghe-
orghe Păun in 1998 with a seminal paper initially circulated on the web and 
later published in [13]. Already a monograph has been dedicated to this sub-
ject [14] and some fairly recent results can be found in [15],[9],[10]. Membrane 
computing aims at defining computational models which abstract from the func-
tioning and structure of the cell. Specifically, membrane computing starts from 
the observation that membranes play a fundamental role in the functioning of



a living cell. Membranes are essentially involved in many reactions taking place
inside various compartments of a cell, and they act as selective channels of com-
munication between different compartments as well as between the cell and its
environment [1].

Membrane computing formalises these essential features of living cells by in-
troducing the notion of membrane systems, which are usually called P systems.
P systems are characterised by four fundamental features: a membrane structure
where objects evolve according to some evolution rules, which also determine the
communication of objects between membranes. Specifically, the membrane struc-
ture consists in a number of membranes arranged in a hierarchical structure, all
of them but one included in an unique main membrane called skin membrane.
This most external membrane defines the boundary between the inside of the
system and its outside, which is called environment. A membrane without any
membrane inside is called elementary. Each membrane identifies a corresponding
region inside the system: the space between the membrane and the membranes
(if any) directly contained in it. A graphical representation of such a membrane
structure is reported in Figure 1.
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Fig. 1. A membrane structure containing 9 membranes and 9 corresponding regions;
labels are used to uniquely identify each distinct membrane in the system.

Some objects are then assigned to the regions, each object appearing with a
specific multiplicity. That is, each region, in general, contains a multiset of ob-
jects rather than a set. As well as this, finite sets of evolution rules are assigned
to the region, one per each region, which are used to modify the objects associ-
ated with the regions and to move them across the membrane from one region to
the other. Rules have a local scope: the rules assigned to a specific region inside
the system can be applied only to the objects associated with that same region.
P systems were originally introduced to investigate the computational nature of



various features of biological membranes [13], with an approach typical to formal
language theory and theory of computing, rather than to provide a comprehen-
sive model of the living cell. Nevertheless, some recent researche trends [4], [5],
[16] have been actually dedicated to the study of P systems as a modelling tool
where P systems are used as a formalism for describing, and possibly simulating,
the behaviour of biological systems. Therefore, there is a growing interest in de-
veloping implementations for the membrane computing paradigm in order to be
able to execute P system models and run simulations of biological phenomena
of various interest. In this respect, a number of tools have already been pro-
duced (some of them are available from http://psystems.disco.unimib.it/,
the P systems web pages) but yet correct implementation techniques need to be
identified, especially when the quantitative aspects featuring the ”reality” of a
biological phenomenon are considered in the model.

In this paper, we present a variant of P systems (Section 2) where rules are
generalised boundary rules which allow us to express transformations affect-
ing simultaneously the objects placed on both sides of a membrane, that is,
both the objects placed inside that compartment and the objects placed into
the surrounding region. As well as this, each rule has associated a real number
providing a measure for the “intrinsic reactivity”of the rule and roughly corre-
sponding to the kinetic coefficient which, in bio-chemistry, is usually associated
to each molecular reaction [16]. Moreover, in this variant, rules are applied ac-
cording to a strategy which, in each step, randomly selects the next rule to be
applied depending upon a certain distribution of probabilities. The main dif-
ference with respect to the usual approach adopted in membrane computing
is that, in our approach, there is no parallelism in the application of the rules
as the system evolves only by means of a rule at a time. Next, in Section 3,
we present, as a case-study, a P system model for the quorum sensing system
of the marine bacterium Vibrio fischeri together with some simulation results
obtained by implementing the model in Scilab (a free software package avail-
able at http://scilabsoft.inria.fr/). The novelty of our approach consists
in the fact that we do not only provide a description for the reactions involved
in the quorum sensing regulatory network but we are also able to provide a
model for an arbitrarily large colony of bacteria. In this respect, we can say
our simulations provides a snapshot of the behaviour of the colony as a whole
complex system. Finally, the last section describes implementation techniques
for our P system model by presenting the data structures and the code that
are necessary to support its execution. Moreover, by following [12], we advocate
the use of the mark-up language SBML as a “machine-interpretable” language
for defining executable specifications of P systems and the corresponding code
that can be automatically generated from. In this respect, we want to stress
the generality of our approach which appears to be fairly independent of the
particular choice of a P system variant, the language used to implement it,
and flexible enough with respect to the strategy of applying the rules of the
system.



2 Definitions

We start by recalling from [14] some basic notions of formal language theory
which are commonly used in the area of membrane computing. An alphabet is
a finite non-empty set of abstract symbols. Given an alphabet O, we denote
by O∗ the set of all possible strings over O, including the empty string λ. The
length of a string x ∈ O∗ is denoted by |x| and, for each a ∈ O, |x|a denotes
the number of occurrences of the symbol a in x. A multiset over O is a mapping
M : O −→ N such that, M(a) defines the multiplicity of a in the multiset M
(N denotes the set of natural numbers). Such a multiset can be represented by
a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ O∗ and by all its permutations with aj ∈ O,

M(aj) �= 0, 1 ≤ j ≤ n. In other words, we can say that each string x ∈ O∗

identifies a finite multiset over O defined by Mx = { (a, |x|a) | a ∈ O }. Moreover,
given two strings x, y ∈ O∗, we denote by xy their catenation, which corresponds
to the union of the multiset represented by string x and the multiset represented
by string y.

Membrane structures are represented as usual by means of strings of matching
pairs of square-brackets, with each pair of square-brackets representing a mem-
brane and each one of them being labelled with a different value in {1, 2, . . . , n},
for n the number of membranes in the structure. For example, the membrane
structure of 1 can be represented by using the following string of matching square
brackets:

[1 [2 ]2 [3 ]3 [4 [5 ]5 [6 [8 ]8 [9 ]9]6 [7 ]7 ]4 ]1

where:

• membrane 1 is the skin membrane,
• membrane 2, membrane 3, membrane 5, membrane 7, membrane 8 and mem-

brane 9 are elementary membranes, Moreover,
• membrane 1 directly contains membrane 2, membrane 3 and membrane 4,
• membrane 4 directly contains membrane 5, membrane 6 and membrane 7,
• membrane 6 directly contains membrane 8 and membrane 9.

We refer to [14] for further details about this representation.
A P system is then defined in the following way.

Definition 1. A P system is a construct

Π = (O, L, µ, C1, C2, . . . , Cn, R)

where:

• O is a finite alphabet of symbols representing objects;
• L is a finite alphabet of symbols representing labels for the compartments;
• µ is a membrane structure consisting of n ≥ 1 membranes;
• Ci = (li, wi), for each 1 ≤ i ≤ n, is the initial configuration of the com-

partment i with li ∈ L and wi ∈ O∗ a finite multiset of objects;



• R is a finite set containing m ≥ 1 rules that are labelled in one-to-one
manner with values in {1, 2, . . . , m} and that are of the form

j : u [ v ]l
kj→ u′[ v′ ]l

with 1 ≤ j ≤ m, u, v, u′, v′ ∈ V ∗ some finite multisets of objects, l ∈ L a
label for the compartment, and ki a real number.

Thus, a P system is characterised by a finite alphabet O for the objects placed
into the compartments, a finite alphabet L for labelling the compartments, a
membrane structure µ, an initial configuration for each compartment in the
system, and a finite set R containing rules describing transformations that can
be applied to the objects placed inside the compartments. Specifically, the ini-
tial configuration of a compartment consists of a label from the alphabet L
and a finite multiset of objects from O represented as a string in O∗; these
objects are those which are initially placed inside that compartment. Compart-
ments can interact each other by means of the rules in R which are of the form

u [ v ]l
kj→ u′[ v′ ]l. Such a rule specifies that a multiset u, which is supposed to

be contained in the outside part of a compartment labelled by l, and a multiset
v, which is supposed to be contained inside a compartment labelled by l, can be
simultaneously replaced by the multisets u′, v′ in the respective places. More-
over, each rule in R has associated a real constant which is meant to provide a
measure of the ”reactivity” of the rule in a similar way to what was done in [5],
[16]. In other words, in our P systems, multisets of objects are used to model
bags or soups of chemicals whereas rules are used to model generic biochemical
processes which affect the number and distribution of these objects within the
system. All these rules are supposed to consume certain chemicals in order to
produce some new ones.

Then, in order to make the system transit from one configuration to the other,
a strategy for the application of the rules is adopted that makes the system evolve
only by means of a rule at a time. Moreover, in each step, only one rule to be ap-
plied inside a specific cell is randomly selected according to a given distribution
of probabilities. To this aim, we developed an adaption of Gillespie’s algorithm in
order to associate a stochastic behaviour to population P systems. Gillespie’s al-
gorithm [8] (see also [7] for some recent improvements) provides an exact method
for the stochastic simulation of systems of bio-chemical reactions; the validity
of the method is rigorously proved and it has been already successfully used to
simulate various biochemical processes [11]. As well as this, Gillespie’s algorithm
is used in the implementation of stochastic π-calculus [17] and in its application
to the modelling of biological systems [18] (an implementation of the stochas-
tic pi-machine is avaliable at http://www.doc.ic.ac.uk/~anp/spim/). Here,
with respect to the original algorithm, we have to take into account the fact
that in P systems we have different cells, each one with its own set of rules,
and the fact that the application of a rule inside a cell can affect the content of
environment too.



Specifically, let Π = (O, L, µ, (w1, l1), . . . , (wn, ln), R) be a P system as spec-
ified in Definition 1. At any moment, a configuration of the system Π can be
represented as a tuple

Γ = ((x1, l1), . . . , (xn, ln), µ)

where, for each 1 ≤ i ≤ n, xi is the multiset of objects currently contained in
compartment i. Thus, given such a configuration, for each 1 ≤ i ≤ n, we define
the set R(i) of pairs (j, pj) such that:

• j is the index of a rule in R of the form u [ v ]li
kj→ u′[ v′ ]li , with xf = y u

and xi = z v, for f the index of the compartment that directly contains
i and some y, z ∈ O∗ (i.e., the rule j is applicable inside compartment i
because it is labelled by li, the surrounding region contains the multiset u,
and compartment i contains the multiset v);

• pj is the probability of the rule j to be applied in the next step of evolution;
this probability is computed by multiplying the constant kj by the number of
possible combinations of the objects present on the left-side of the rules with
respect to the multisets xi and xf (for example, if we have a rule [ ab ]li →
[ w ]li , with a, b ∈ O, w ∈ O∗, the probability pj is given by kj ∗ |xi|a ∗ |xi|b
(i.e., there are |xi|a ∗ |xi|b different possible ways of assigning objects to the
rule [ ab ]li → [ w ]li);

Then, given these probabilities, the strategy for the application of the rules is
defined according to the following procedure.

First, for each compartment i, we compute the index of the next rule to be
used inside cell i and its waiting time by using the classical Gillespie’s algorithm:

1. construct the sets R(i) containing pairs (j, pj) where pj is the probability
associated to rule j currently applicable inside compartment i; let us denote
by Mi, Mi ≥ 1, the number of elements of R(i); the pairs in R(i) are supposed
to be associated in an one-to-one manner with values in {1, . . . , Mi}, i.e.
k : (jk, pjk

) , for 1 ≤ k ≤ Mi;
2. calculate a0 =

∑
pj , for all (j, pj) ∈ R(i);

3. generate two random numbers r1 and r2 uniformly distributed over the unit
interval (0, 1);

4. calculate the waiting time for the next reaction as τi =
1
a0

ln(
1
r1

)

5. take the index h, 1 ≤ h ≤ Mi, such that
h−1∑

k=1

pk < r2a0 ≤
h∑

k=1

pk, with

k : (jk, pjk
) ∈ R(i), and pk = pjk

, for all 1 ≤ k ≤ h;
6. return the triple (τi, jh, i), if h : (jh, pjh

) ∈ R(i).

Notice that the larger the stochastic constant of a rule and the number of occur-
rences of the objects placed on the left-side of the rule inside a membrane are,
the greater is the chance that a given rule will be applied in the next step of
the simulation. There is no constant time-step in the simulation. The time-step



is determined in every iteration and it takes different values depending on the
configuration of the system.

Next, a step of application of the rules is simulated by using the following
procedure:

• Initialisation
◦ set time of the simulation t = 0;
◦ for each compartment i in µ compute a triple (τi, j, i) by using the

procedure described above;
◦ sort the list according to each waiting time;

• Iteration
1. extract the first triple, (τm, j, m) from the list;
2. set time of the simulation t = t + τm;
3. update the waiting time for the rest of the triples in the list by sub-

tracting τm;
4. apply the rule j only once changing the number of objects in the com-

partment and in the surrounding region
5. if the surrounding region has been affected by the application of the

rule then remove the corresponding triple from the list;
6. re-run the Gillespie algorithm for the compartment m and for the

compartment associated with the surrounding region in order to obtain
the new corresponding triples; add these new triples to the list;

7. sort this list according to each waiting time and iterate the process.
• Termination

1. Terminate simulation when time of the simulation t reaches or exceeds
a preset maximal time of simulation.

Specifically, in each step, the compartment selected is the cell with the minimal
waiting time.

3 Modelling Quorum Sensing in Vibrio Fischeri

Bacteriaaregenerally consideredtobe independentorganisms.However ithasbeen
observed that certain bacteria, like the marine bacterium Vibrio Fischeri, exhibit
coordinatedbehaviourwhich allows an entire population of bacteria to regulate the
expression of certain or specific genes in a coordinated way depending on the size
of the population. This cell density dependent gene regulation system is referred to
as quorum sensing [6], [19], QS for short. In this respect, a comprehensive literature
about QS can be found at http://www.nottingham.ac.uk/quorum/– a web page
maintained by the Nottingham Quorum Sensing Group.

This phenomenon was first investigated in the marine bacterium Vibrio Fis-
cheri. This bacterium exists naturally either in a free-living planktonic state
or as a symbiont of certain luminescent squid. The bacteria colonise specialised
light organs in the squid, which cause it to luminesce. Luminescence in the squid
is thought to be involved in the attraction of prey, camouflage and communica-
tion between different individuals. The source of the luminescence is the bacteria



themselves. The bacteria only luminesce when colonising the light organs and
do not emit light in the free-living state. The QS process in Vibrio Fischeri re-
lies on the synthesis, accumulation and subsequent sensing of a signal molecule,
3-oxo-C6-HSL, an N-acyl homoserine lactone or AHL, we will call it OHHL.
When only a small number of bacteria are present these proteins are produced
at a low level. OHHL diffuses out of the bacterial cells and into the surrounding
environment. At high cell density the signal accumulates in the area surrounding
the bacteria and can also diffuse to the inside of the bacterial cells. The signal is
able to interact with the LuxR protein to form the complex LuxR-OHHL. This
complex binds to a region of DNA called the Lux Box causing the transcription
of the luminescence genes, a small cluster of 5 genes, luxCDABE. As well as the
transcription of LuxR and OHHL, which are therefore called autoinducers as
they activate their own synthesis. In this way, bacteria can effectively communi-
cate each other by responding to changes in the concentration of signal molecules
inside and in the surrounding environment.

Next, a model for quorum sensing in Vibrio fischeri is obtained by considering
a P system consisting of a number of distinct compartments placed inside an
unique main membrane, which represents the environment, and where each one
of these compartments represents a bacterium and contains rules describing the
reactions involved in the regulation of the luminescence genes. Compartments
representing bacteria interact each other by sending objects into the environment
and receiving some others from it. Specifically, given a population of m ≥ 1
bacteria, we define the P system Π(m) such that

Π(m) = (O, {e, b}, µ, C1, C2, . . . , Cm, Cm+1, R)

and where:

• O = {OHHL, LuxR, LuxR-OHHL, LuxBox}∪
∪{LuxBox-LuxR-OHHL},

• µ = [ [ ]1 [ ]2 . . . [ ]m ]m+1,
• Ci = (b, LuxBox), for each 1 ≤ i ≤ m,
• Cm+1 = (e, λ),
• R = Rb ∪Re with Rb the set of rules to be used inside compartments labelled

by b and Re the set of rules to be used inside the compartment labelled by e.
Each compartment labelled by b represents a bacterium whereas the unique
compartment labelled by e represents the environment.

Notice that the P system Π(m) is a parametric one as its definition depends on
the value m, the number of bacteria in the colony.

The set Rb contains the following rules:
An unstressed bacterium produces the signal OHHL and the protein LuxR at

basal rates - very low rates:

1 : [ LuxBox ]b
k1→ [ LuxBox, OHHL ]b,

2 : [ LuxBox ]b
k2→ [ LuxBox, LuxR ]b.



The protein LuxR acts as a receptor and OHHL as its ligand. Both together
form the complex LuxR-OHHL which in turn can dissociate into OHHL and
LuxR again:

3 : [ LuxR, OHHL ]b
k3→ [ LuxR-OHHL ]b,

4 : [ LuxR-OHHL ]b
k4→ [ LuxR, OHHL ]b.

The complex LuxR-OHHL acts as a transcription factor or as a promoter binding
to a region of the bacterium DNA called LuxBox and starting the transcription of
different proteins involved in the production of light. The complex LuxR-OHHL
can also dissociate from the LuxBox:

5 : [ LuxBox, LuxR-OHHL ]b
k5→ [ LuxBox-LuxR-OHHL ]b,

6 : [ LuxBox-LuxR-OHHL ]b
k6→ [ LuxBox, LuxR-OHHL ]b.

The binding of the complex LuxR-OHHL to the LuxBox produces a massive
increase of the production of the signal OHHL and of the protein LuxR. In this
sense OHHL and LuxR are autoinducers:

7 : [ LuxBox-LuxR-OHHL ]b
k7→ [ LuxBox-LuxR-OHHL, OHHL ]b,

8 : [ LuxBox-LuxR-OHHL ]b
k8→ [ LuxBox-LuxR-OHHL, LuxR ]b.

OHHL is a small molecule that diffuses outside the bacterium and so it can
accumulate in the environment:

9 : [ OHHL ]b
k9→ OHHL [ ]b.

Due to the presence of proteases and other chemical substances OHHL, LuxR and
the complex LuxR-OHHL undergo a process of degradation in the bacterium:

10 : [ OHHL ]b
k10→ [ ]b,

11 : [ LuxR ]b
k11→ [ ]b,

12 : [ LuxR-OHHL ]b
k12→ [ ]b.

The set Re contains the following rules:
When the signal OHHL accumulates in the environment it can diffuse inside

the bacteria. OHHL also undergoes a process of degradation in the environment

13 : OHHL [ ]b
k13→ [ OHHL ]b,

14 : [ OHHL ]e
k14→ [ ]e.

4 Simulation Results and Discussion

In order to implement our model in the aforementioned simulator, we have cho-
sen the following set of kinetic constants [5], k1 = 2, k2 = 2, k3 = 9, k4 =
1, k5 = 10, k6 = 2, k7 = 250, k8 = 200, k9 = 1, k10 = 50, k11 = 30, k12 = 15,



k13 = 20, k14 = 20. These values have been set such that the degradation rates
(k11, k12, k13, k14) compensate the basal production of the signal and the protein
(k1, k2) and such that the production rates when the regulatory region is occu-
pied (k7, k8) produce a massive increase in the transcription of the signal and
the protein.

We have studied the behaviour of the system for populations of different sizes
to examine how bacteria can sense the number of bacteria in the population and
produce light only when the number of individuals is big enough. First we have
considered a population of 300 bacteria. Next we show in Figure 2 the evolution
over time of the number of quorated bacteria and the number of signal (OHHL)
in the environment. We say a bacterium is quorated if and only if, the LuxBox
is occupied by the complex LuxR-OHHL.

It may be observed that the signal, OHHL, accumulates in the environment
until saturation and then, when this threshold is reached, bacteria are able to
detect that the size of the population is big enough. At the beginning, a few bac-
teria get quorated and then they accelerate a process of recruitment that makes
the whole population behave in a coordinated way. There exists a correlation
between the number of signals in the environment and the number of quorated
bacteria such that, when the number of signals in the environment drops, so
does the number of quorated bacteria and when the signal goes up it produces
a recruitment of more bacteria.

Now we show in Figure 3 the evolution over time of the average bacterium
across the population of the number of signal (OHHL), protein (LuxR) and the
complex (LuxR-OHHL).

Note that on average there is a correlation among the signal OHHL, the pro-
tein LuxR and the complex LuxR-OHHL. Moreover, the patterns in the evolution
of the average number of complexes across the population and the number of
quorated bacteria are similar.
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Fig. 2. The evolution of the quorated bacteria and the number of OHHL in the envi-
ronment
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Fig. 3. The evolution of the number of signal molecule (OHHL), protein (LuxR) and
the complex (LuxR-OHHL) for the average bacterium
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Fig. 4. The correlation between the amount of signal inside each bacterium (left) and
the occupation of the LuxBox by the complex (right)

In our approach the behaviour of each individual in the colony can be tracked.
We have taken a sample of two bacteria and have studied (see Figure 4) the
correlation between the amount of signal inside each bacterium (left) and the
occupation of the LuxBox by the complex (right) which represents that the
bacterium has been quorated.

In Figure 5 it is shown that the number of signal molecules inside the bac-
terium has to exceed a threshold in order to recruit the bacterium. It may be
observed that when the number of molecules is greater than the threshold the
bacterium gets quorated or up-regulated (left), but when there are less signal
molecules the bacterium switches off (right) the system and goes down-regulated.

We can also study how rules are applied across the evolution of the system.
For instance, we can show the evolution of the number of applications of the
rule representing the basal production of the signal OHHL (Figure 6) and the
number of applications of the rules representing the production of the signal
OHHL after the binding of the complex to the LuxBox (Figure 7).
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Fig. 5. The number of signal molecules inside bacterium when the level is greater than
the threshold (left) and under the threshold (right)
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Fig. 6. The evolution of the number of applications of the rule representing the basal
production of the signal OHHL

This can be compared with the number of applications of the rules represent-
ing the production of the signal OHHL after the binding of the complex to the
LuxBox. In this way, we can show how at the beginning the basal production
rule is the most applied rule while the other one is seldomly applied. Then, as
a result of the recruitment process the bacteria sense the size of the population
and they behave in a coordinate way by applying massively the third rule. Thus,
the system moves from a down-regulated state to an up-regulated one where
the bacteria collectively emit light. Specifically, this can be clearly seen if you
compare the last graph above with the next one. Two similar graphs can be
obtained for the rules producing the protein LuxR.

Finally, in order to study how bacteria can sense the number of individuals
in the colony and get quorated only when the size of the colony is big enough,
we have examined the behaviour of a population of only 10 bacteria. In this
case, as shown in Figure 8, we observed that the recruitment process does
not take place. Only one of the bacteria guessed wrong the size of the popu-
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Fig. 7. The evolution of the number of applications of the rule representing the pro-
duction of the signal OHHL after binding the complex to the LuxBox
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Fig. 8. No recruitment

lation and got up-regulated but then it switches off after sensing that the signal
does not accumulate in the environment. The average number of molecules (see
Figure 9) shows no pattern which means that the colony is not coordinating its
behaviour.

Furthermore, we tracked the behaviour of two bacteria in the colony (see
Figure 10) by obtaining that one never got quorated whereas the other one got
quorated. Observe that this bacterium got quorated because the amount of signal
inside exceeded the threshold.

Summing up, our simulations show that Vibrio fischeri has a quorum sensing
system where a single bacterium can guess that the size of the population is
big enough and starts to produce light. Then this bacterium starts to massively
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Fig. 9. No pattern of coordinating behaviour
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Fig. 10. The behaviour of two bacteria

produce signals, if the signal does not accumulate in the environment meaning
that the guess was wrong it switches off. On the other hand if the signal does ac-
cumulate in the environment, meaning that the number of bacteria in the colony
is big, then a recruitment process takes place that makes the whole population
of bacteria to luminesce. These results agree well with in vitro experiments and
with results obtained by using differential equations [6].



5 Implementation of the P System Model

We implemented the P system model of Definition 1 by following the approach
proposed in [12] that is based on an initial specification in SBML of the model
and a subsequent automatic generation of the executable code. In this section,
we briefly describe the data structures necessary to support the execution of our
variant of P systems. The language chosen is Scilab but similar considerations
may apply to other commonly-used programming languages, such as C, Java,
MatLab. Moreover, our approach appears to be fairly independent from the
particular choice of P system variant. An SBML specification of the P system
modelling quorum sensing in Vibrio fischeri is reported as an appendix.

The data structures used to represent the different components of P systems
are the follows:

• Rules:

Recall that we are using rules of the form:

j : u [ v ]l
kj→ u′[ v′ ]l

Which will be represented as:

Comp father(l) l kj multisets

with multisets = length(u) u length(v) v length(u′) u′ length(v′) v′ and where
Comp represents the compartment where the rule j can be applied, father(l)
represents the father of the membrane with label l in the membrane structure, l
is the label of the compartment involved in the rule and kj is the kinetic constant.
length(u), length(v), length(u′) and length(v′) tell us the size of u, v, u′ and v′,
respectively. And u and v are the strings of objects representing the left-hand
side (reactants) and u′ and v′ represent the right-hand side (products) of the
rule j.

• Compartments:

Each compartment is represented by:

label n-copies multiplicity-of -o1 · · · multiplicity-of -on

The first component represents the label associated with the compartment, the
second component is the number of instances of the compartment in the initial
configuration; the other components describe for each object oi ∈ O its corre-
sponding multiplicity inside that compartment.

• Configurations of the system:

A configuration of the system is made up of compartments; each compartment
is represented:

identifier label multiplicity-of -o1 · · · multiplicity-of -on



identifier is an index associated in a one-to-one manner with each compart-
ment, label is the label of the compartment and the last n components are the
multiplicities of the objects in the compartment in the current configuration of
the system.

Thus, the operation of a multiset u with a multiset v can be implemented by
just subtracting and adding the corresponding vectors to the vectors representing
the content of a certain compartment.

6 Conclusions

There is a growing interest in membrane computing in using P systems for
modelling biological systems. This often requires the introduction into the model
of quantitative aspects featuring the “reality” of the biological phenomenon to
be modelled which are not usually considered in the abstract model of P systems.
In this paper, these quantitative aspects have been considered for P systems by
associating to each rule a real number (i.e., a kinetic constant), and by defining
a Gillespie-like strategy for the application of the rules. This approach has been
used to model the quorum sensing process in a colony of Vibrio fischeri bacteria
by obtaining some simulation results which show the transition from a population
of down-regulated cells to a population of up-regulated cells.

Our interest for the future is in developing a flexible software platform for
running in silico experiments that integrates tools for the specification, exe-
cution and verification/validation of P system models. The details of the im-
plementation provided in this paper can be viewed as a first step in this di-
rection. A model checking approach is now being investigated that is based
on Maude term rewriting tool [2]. In this framework, a central issue is the in-
tegration of the specification at individual level (e.g., a bacterium) with the
specification at population level (e.g., the colony) such us to allow us to model
more complex and larger biological systems. In this respect, a number of case
studies need to be identified together with appropriate simulation/validation/
verification techniques.
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9. Martin-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A., eds., (2004).
Membrane Computing. International Workshop, WMC 2003, Tarragona, Spain,
July 2003. Revised Papers. Lecture Notes in Computer Science, 2933, Springer-
Verlag, Berlin, Heidelberg, New York.
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A An SBML Specification

Consider the P system Π(m), with m = 100, defined in Section 3. We start by
specifying the structure of the system by listing the compartments present in
the system and the relationships of inclusion between them.

<listOfCompartments>
<compartment id="e" />
<compartment id="b" outside="b"/>

</listOfCompartments>

There are two different “types” of compartments: compartments labelled by e
and compartment labelled by b; all the compartments labelled by b, the bacteria,
are included in a compartment with label e, the environment. Specifically, this is
just a shorthand for a membrane structure consisting of a number of membranes,
each one associated with a compartment labelled by b, contained inside an unique
main membrane associated with a compartment labelled by e. The actual number
of bacteria in the system is specified as a parameter of the system together with
the constants ki, 1 ≤ i ≤ 14.

<listOfParameters>
<parameter id="k1" value="2’’constant="true"/>
<parameter id="k2" value="2" constant="ture"/>
<parameter id="k3" value="9" constant="true"/>
<parameter id="k4" value="1" constant="true"/>
<parameter id="k5" value="10" constant="true"/>
<parameter id="k6" value="2" constant="true"/>
<parameter id="k7" value="250" constant="true"/>
<parameter id="k8" value="200" constant="true"/>
<parameter id="k9" value="1" constant="true"/>
<parameter id="k10" value="50" constant="true"/>
<parameter id="k11" value="30" constant="true"/>
<parameter id="k12" value="15" constant="true"/>
<parameter id="k13" value="20" constant="true"/>
<parameter id="k14" value="20" constant="true"/>
<parameter id="m" value="100" constant="true"/>

</listOfParameters>

Next, we specify the initial distribution of objects inside the system by listing
out the species and their initial concentration inside each compartment.



<listOfSpecies>
<specie id="OHHL_e"
initialConcentration="0" compartment="e" />
<specie id="OHHL_b"
initialConcentration="0" compartment="b" />
<specie id="LuxR_b"
initialConcentration="0" compartment="b" />
<specie id="LuxR_OHHL_b"
initialConcentration="0" compartment="b" />
<specie id="Lux_Box_b"
initialConcentration="1" compartment="b" />
<specie id="Lux_Box_LuxR_OHHL_b"
initialConcentration="0" compartment="b" />

</listOfSpecies>

The objects that can be contained inside the environment are labelled by e
whereas the objects that can appear inside a bacterium are labelled by b.

Finally we specify the rules as a list of SBML reactions. We just report here
two of them as an example.

<reaction name="Reaction1" reversible="false">
<listOfReactants>
<specieReference specie="Lux_Box_b" />

</listOfReactants>
<listOfProducts>
<specieReference specie="Lux_Box_b" />
<specieReference specie="OHHL_b" />

</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<ci>k1</ci>
<ci>Lux_Box_b</ci>

</apply>
</math>

</kineticLaw>
</reaction>

<reaction name="Reaction9" reversible="false">
<listOfReactants>
<specieReference specie="OHHL_b" />

</listOfReactants>
<listOfProducts>
<specieReference specie="OHHL_e" />

</listOfProducts>
<kineticLaw>



<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci>k9</ci>
<ci>OHHL_b</ci>

</apply>
</math>

</kineticLaw>
</reaction>

The movement of objects is specified by changing the labels of the products
according to the labels of the reactants.
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